Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Fariya Fatima | 1878 | 49.00% | 2 | 3.92% |
Prameela Rani Garnepudi | 943 | 24.60% | 15 | 29.41% |
Karun Eagalapati | 365 | 9.52% | 4 | 7.84% |
Siva Rebbagondla | 345 | 9.00% | 8 | 15.69% |
Johan Hovold | 99 | 2.58% | 6 | 11.76% |
Alexey Khoroshilov | 86 | 2.24% | 3 | 5.88% |
Amitkumar Karwar | 59 | 1.54% | 5 | 9.80% |
Zekun Shen | 22 | 0.57% | 1 | 1.96% |
Zhang Changzhong | 18 | 0.47% | 1 | 1.96% |
Gustavo A. R. Silva | 6 | 0.16% | 1 | 1.96% |
Dan Carpenter | 5 | 0.13% | 1 | 1.96% |
Lee Jones | 3 | 0.08% | 1 | 1.96% |
amit karwar | 2 | 0.05% | 1 | 1.96% |
Masahiro Yamada | 1 | 0.03% | 1 | 1.96% |
Marek Vašut | 1 | 0.03% | 1 | 1.96% |
Total | 3833 | 51 |
/* * Copyright (c) 2014 Redpine Signals Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include <linux/module.h> #include <linux/types.h> #include <net/rsi_91x.h> #include "rsi_usb.h" #include "rsi_hal.h" #include "rsi_coex.h" /* Default operating mode is wlan STA + BT */ static u16 dev_oper_mode = DEV_OPMODE_STA_BT_DUAL; module_param(dev_oper_mode, ushort, 0444); MODULE_PARM_DESC(dev_oper_mode, DEV_OPMODE_PARAM_DESC); static int rsi_rx_urb_submit(struct rsi_hw *adapter, u8 ep_num, gfp_t flags); /** * rsi_usb_card_write() - This function writes to the USB Card. * @adapter: Pointer to the adapter structure. * @buf: Pointer to the buffer from where the data has to be taken. * @len: Length to be written. * @endpoint: Type of endpoint. * * Return: status: 0 on success, a negative error code on failure. */ static int rsi_usb_card_write(struct rsi_hw *adapter, u8 *buf, u16 len, u8 endpoint) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; int status; u8 *seg = dev->tx_buffer; int transfer; int ep = dev->bulkout_endpoint_addr[endpoint - 1]; memset(seg, 0, len + RSI_USB_TX_HEAD_ROOM); memcpy(seg + RSI_USB_TX_HEAD_ROOM, buf, len); len += RSI_USB_TX_HEAD_ROOM; transfer = len; status = usb_bulk_msg(dev->usbdev, usb_sndbulkpipe(dev->usbdev, ep), (void *)seg, (int)len, &transfer, USB_CTRL_SET_TIMEOUT); if (status < 0) { rsi_dbg(ERR_ZONE, "Card write failed with error code :%10d\n", status); dev->write_fail = 1; } return status; } /** * rsi_write_multiple() - This function writes multiple bytes of information * to the USB card. * @adapter: Pointer to the adapter structure. * @endpoint: Type of endpoint. * @data: Pointer to the data that has to be written. * @count: Number of multiple bytes to be written. * * Return: 0 on success, a negative error code on failure. */ static int rsi_write_multiple(struct rsi_hw *adapter, u8 endpoint, u8 *data, u32 count) { struct rsi_91x_usbdev *dev; if (!adapter) return -ENODEV; if (endpoint == 0) return -EINVAL; dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; if (dev->write_fail) return -ENETDOWN; return rsi_usb_card_write(adapter, data, count, endpoint); } /** * rsi_find_bulk_in_and_out_endpoints() - This function initializes the bulk * endpoints to the device. * @interface: Pointer to the USB interface structure. * @adapter: Pointer to the adapter structure. * * Return: ret_val: 0 on success, -ENOMEM on failure. */ static int rsi_find_bulk_in_and_out_endpoints(struct usb_interface *interface, struct rsi_hw *adapter) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; __le16 buffer_size; int ii, bin_found = 0, bout_found = 0; iface_desc = interface->cur_altsetting; for (ii = 0; ii < iface_desc->desc.bNumEndpoints; ++ii) { endpoint = &(iface_desc->endpoint[ii].desc); if (!dev->bulkin_endpoint_addr[bin_found] && (endpoint->bEndpointAddress & USB_DIR_IN) && ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { buffer_size = endpoint->wMaxPacketSize; dev->bulkin_size[bin_found] = buffer_size; dev->bulkin_endpoint_addr[bin_found] = endpoint->bEndpointAddress; bin_found++; } if (!dev->bulkout_endpoint_addr[bout_found] && !(endpoint->bEndpointAddress & USB_DIR_IN) && ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK)) { buffer_size = endpoint->wMaxPacketSize; dev->bulkout_endpoint_addr[bout_found] = endpoint->bEndpointAddress; dev->bulkout_size[bout_found] = buffer_size; bout_found++; } if (bin_found >= MAX_BULK_EP || bout_found >= MAX_BULK_EP) break; } if (!(dev->bulkin_endpoint_addr[0] && dev->bulkout_endpoint_addr[0])) { dev_err(&interface->dev, "missing wlan bulk endpoints\n"); return -EINVAL; } if (adapter->priv->coex_mode > 1) { if (!dev->bulkin_endpoint_addr[1]) { dev_err(&interface->dev, "missing bt bulk-in endpoint\n"); return -EINVAL; } } return 0; } #define RSI_USB_REQ_OUT (USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE) #define RSI_USB_REQ_IN (USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_DEVICE) /* rsi_usb_reg_read() - This function reads data from given register address. * @usbdev: Pointer to the usb_device structure. * @reg: Address of the register to be read. * @value: Value to be read. * @len: length of data to be read. * * Return: status: 0 on success, a negative error code on failure. */ static int rsi_usb_reg_read(struct usb_device *usbdev, u32 reg, u16 *value, u16 len) { u8 *buf; int status = -ENOMEM; if (len > RSI_USB_CTRL_BUF_SIZE) return -EINVAL; buf = kmalloc(RSI_USB_CTRL_BUF_SIZE, GFP_KERNEL); if (!buf) return status; status = usb_control_msg(usbdev, usb_rcvctrlpipe(usbdev, 0), USB_VENDOR_REGISTER_READ, RSI_USB_REQ_IN, ((reg & 0xffff0000) >> 16), (reg & 0xffff), (void *)buf, len, USB_CTRL_GET_TIMEOUT); *value = (buf[0] | (buf[1] << 8)); if (status < 0) { rsi_dbg(ERR_ZONE, "%s: Reg read failed with error code :%d\n", __func__, status); } kfree(buf); return status; } /** * rsi_usb_reg_write() - This function writes the given data into the given * register address. * @usbdev: Pointer to the usb_device structure. * @reg: Address of the register. * @value: Value to write. * @len: Length of data to be written. * * Return: status: 0 on success, a negative error code on failure. */ static int rsi_usb_reg_write(struct usb_device *usbdev, u32 reg, u32 value, u16 len) { u8 *usb_reg_buf; int status = -ENOMEM; if (len > RSI_USB_CTRL_BUF_SIZE) return -EINVAL; usb_reg_buf = kmalloc(RSI_USB_CTRL_BUF_SIZE, GFP_KERNEL); if (!usb_reg_buf) return status; usb_reg_buf[0] = (cpu_to_le32(value) & 0x00ff); usb_reg_buf[1] = (cpu_to_le32(value) & 0xff00) >> 8; usb_reg_buf[2] = (cpu_to_le32(value) & 0x00ff0000) >> 16; usb_reg_buf[3] = (cpu_to_le32(value) & 0xff000000) >> 24; status = usb_control_msg(usbdev, usb_sndctrlpipe(usbdev, 0), USB_VENDOR_REGISTER_WRITE, RSI_USB_REQ_OUT, ((cpu_to_le32(reg) & 0xffff0000) >> 16), (cpu_to_le32(reg) & 0xffff), (void *)usb_reg_buf, len, USB_CTRL_SET_TIMEOUT); if (status < 0) { rsi_dbg(ERR_ZONE, "%s: Reg write failed with error code :%d\n", __func__, status); } kfree(usb_reg_buf); return status; } /** * rsi_rx_done_handler() - This function is called when a packet is received * from USB stack. This is callback to receive done. * @urb: Received URB. * * Return: None. */ static void rsi_rx_done_handler(struct urb *urb) { struct rx_usb_ctrl_block *rx_cb = urb->context; struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)rx_cb->data; int status = -EINVAL; if (!rx_cb->rx_skb) return; if (urb->status) { dev_kfree_skb(rx_cb->rx_skb); rx_cb->rx_skb = NULL; return; } if (urb->actual_length <= 0 || urb->actual_length > rx_cb->rx_skb->len) { rsi_dbg(INFO_ZONE, "%s: Invalid packet length = %d\n", __func__, urb->actual_length); goto out; } if (skb_queue_len(&dev->rx_q) >= RSI_MAX_RX_PKTS) { rsi_dbg(INFO_ZONE, "Max RX packets reached\n"); goto out; } skb_trim(rx_cb->rx_skb, urb->actual_length); skb_queue_tail(&dev->rx_q, rx_cb->rx_skb); rsi_set_event(&dev->rx_thread.event); status = 0; out: if (rsi_rx_urb_submit(dev->priv, rx_cb->ep_num, GFP_ATOMIC)) rsi_dbg(ERR_ZONE, "%s: Failed in urb submission", __func__); if (status) { dev_kfree_skb(rx_cb->rx_skb); rx_cb->rx_skb = NULL; } } static void rsi_rx_urb_kill(struct rsi_hw *adapter, u8 ep_num) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; struct rx_usb_ctrl_block *rx_cb = &dev->rx_cb[ep_num - 1]; struct urb *urb = rx_cb->rx_urb; usb_kill_urb(urb); } /** * rsi_rx_urb_submit() - This function submits the given URB to the USB stack. * @adapter: Pointer to the adapter structure. * @ep_num: Endpoint number. * @mem_flags: The type of memory to allocate. * * Return: 0 on success, a negative error code on failure. */ static int rsi_rx_urb_submit(struct rsi_hw *adapter, u8 ep_num, gfp_t mem_flags) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; struct rx_usb_ctrl_block *rx_cb = &dev->rx_cb[ep_num - 1]; struct urb *urb = rx_cb->rx_urb; int status; struct sk_buff *skb; u8 dword_align_bytes = 0; skb = dev_alloc_skb(RSI_MAX_RX_USB_PKT_SIZE); if (!skb) return -ENOMEM; skb_reserve(skb, MAX_DWORD_ALIGN_BYTES); skb_put(skb, RSI_MAX_RX_USB_PKT_SIZE - MAX_DWORD_ALIGN_BYTES); dword_align_bytes = (unsigned long)skb->data & 0x3f; if (dword_align_bytes > 0) skb_push(skb, dword_align_bytes); urb->transfer_buffer = skb->data; rx_cb->rx_skb = skb; usb_fill_bulk_urb(urb, dev->usbdev, usb_rcvbulkpipe(dev->usbdev, dev->bulkin_endpoint_addr[ep_num - 1]), urb->transfer_buffer, skb->len, rsi_rx_done_handler, rx_cb); status = usb_submit_urb(urb, mem_flags); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed in urb submission\n", __func__); dev_kfree_skb(skb); } return status; } static int rsi_usb_read_register_multiple(struct rsi_hw *adapter, u32 addr, u8 *data, u16 count) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; u8 *buf; u16 transfer; int status; if (!addr) return -EINVAL; buf = kzalloc(RSI_USB_BUF_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; while (count) { transfer = min_t(u16, count, RSI_USB_BUF_SIZE); status = usb_control_msg(dev->usbdev, usb_rcvctrlpipe(dev->usbdev, 0), USB_VENDOR_REGISTER_READ, RSI_USB_REQ_IN, ((addr & 0xffff0000) >> 16), (addr & 0xffff), (void *)buf, transfer, USB_CTRL_GET_TIMEOUT); if (status < 0) { rsi_dbg(ERR_ZONE, "Reg read failed with error code :%d\n", status); kfree(buf); return status; } memcpy(data, buf, transfer); count -= transfer; data += transfer; addr += transfer; } kfree(buf); return 0; } /** * rsi_usb_write_register_multiple() - This function writes multiple bytes of * information to multiple registers. * @adapter: Pointer to the adapter structure. * @addr: Address of the register. * @data: Pointer to the data that has to be written. * @count: Number of multiple bytes to be written on to the registers. * * Return: status: 0 on success, a negative error code on failure. */ static int rsi_usb_write_register_multiple(struct rsi_hw *adapter, u32 addr, u8 *data, u16 count) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; u8 *buf; u16 transfer; int status = 0; buf = kzalloc(RSI_USB_BUF_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; while (count) { transfer = min_t(u16, count, RSI_USB_BUF_SIZE); memcpy(buf, data, transfer); status = usb_control_msg(dev->usbdev, usb_sndctrlpipe(dev->usbdev, 0), USB_VENDOR_REGISTER_WRITE, RSI_USB_REQ_OUT, ((addr & 0xffff0000) >> 16), (addr & 0xffff), (void *)buf, transfer, USB_CTRL_SET_TIMEOUT); if (status < 0) { rsi_dbg(ERR_ZONE, "Reg write failed with error code :%d\n", status); kfree(buf); return status; } count -= transfer; data += transfer; addr += transfer; } kfree(buf); return 0; } /** *rsi_usb_host_intf_write_pkt() - This function writes the packet to the * USB card. * @adapter: Pointer to the adapter structure. * @pkt: Pointer to the data to be written on to the card. * @len: Length of the data to be written on to the card. * * Return: 0 on success, a negative error code on failure. */ static int rsi_usb_host_intf_write_pkt(struct rsi_hw *adapter, u8 *pkt, u32 len) { u32 queueno = ((pkt[1] >> 4) & 0x7); u8 endpoint; endpoint = ((queueno == RSI_WIFI_MGMT_Q || queueno == RSI_WIFI_DATA_Q || queueno == RSI_COEX_Q) ? WLAN_EP : BT_EP); return rsi_write_multiple(adapter, endpoint, (u8 *)pkt, len); } static int rsi_usb_master_reg_read(struct rsi_hw *adapter, u32 reg, u32 *value, u16 len) { struct usb_device *usbdev = ((struct rsi_91x_usbdev *)adapter->rsi_dev)->usbdev; u16 temp; int ret; ret = rsi_usb_reg_read(usbdev, reg, &temp, len); if (ret < 0) return ret; *value = temp; return 0; } static int rsi_usb_master_reg_write(struct rsi_hw *adapter, unsigned long reg, unsigned long value, u16 len) { struct usb_device *usbdev = ((struct rsi_91x_usbdev *)adapter->rsi_dev)->usbdev; return rsi_usb_reg_write(usbdev, reg, value, len); } static int rsi_usb_load_data_master_write(struct rsi_hw *adapter, u32 base_address, u32 instructions_sz, u16 block_size, u8 *ta_firmware) { u16 num_blocks; u32 cur_indx, i; u8 temp_buf[256]; int status; num_blocks = instructions_sz / block_size; rsi_dbg(INFO_ZONE, "num_blocks: %d\n", num_blocks); for (cur_indx = 0, i = 0; i < num_blocks; i++, cur_indx += block_size) { memcpy(temp_buf, ta_firmware + cur_indx, block_size); status = rsi_usb_write_register_multiple(adapter, base_address, (u8 *)(temp_buf), block_size); if (status < 0) return status; rsi_dbg(INFO_ZONE, "%s: loading block: %d\n", __func__, i); base_address += block_size; } if (instructions_sz % block_size) { memset(temp_buf, 0, block_size); memcpy(temp_buf, ta_firmware + cur_indx, instructions_sz % block_size); status = rsi_usb_write_register_multiple (adapter, base_address, (u8 *)temp_buf, instructions_sz % block_size); if (status < 0) return status; rsi_dbg(INFO_ZONE, "Written Last Block in Address 0x%x Successfully\n", cur_indx); } return 0; } static struct rsi_host_intf_ops usb_host_intf_ops = { .write_pkt = rsi_usb_host_intf_write_pkt, .read_reg_multiple = rsi_usb_read_register_multiple, .write_reg_multiple = rsi_usb_write_register_multiple, .master_reg_read = rsi_usb_master_reg_read, .master_reg_write = rsi_usb_master_reg_write, .load_data_master_write = rsi_usb_load_data_master_write, }; /** * rsi_deinit_usb_interface() - This function deinitializes the usb interface. * @adapter: Pointer to the adapter structure. * * Return: None. */ static void rsi_deinit_usb_interface(struct rsi_hw *adapter) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; rsi_kill_thread(&dev->rx_thread); usb_free_urb(dev->rx_cb[0].rx_urb); if (adapter->priv->coex_mode > 1) usb_free_urb(dev->rx_cb[1].rx_urb); kfree(dev->tx_buffer); } static int rsi_usb_init_rx(struct rsi_hw *adapter) { struct rsi_91x_usbdev *dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; struct rx_usb_ctrl_block *rx_cb; u8 idx, num_rx_cb; num_rx_cb = (adapter->priv->coex_mode > 1 ? 2 : 1); for (idx = 0; idx < num_rx_cb; idx++) { rx_cb = &dev->rx_cb[idx]; rx_cb->rx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!rx_cb->rx_urb) { rsi_dbg(ERR_ZONE, "Failed alloc rx urb[%d]\n", idx); goto err; } rx_cb->ep_num = idx + 1; rx_cb->data = (void *)dev; } skb_queue_head_init(&dev->rx_q); rsi_init_event(&dev->rx_thread.event); if (rsi_create_kthread(adapter->priv, &dev->rx_thread, rsi_usb_rx_thread, "RX-Thread")) { rsi_dbg(ERR_ZONE, "%s: Unable to init rx thrd\n", __func__); goto err; } return 0; err: usb_free_urb(dev->rx_cb[0].rx_urb); if (adapter->priv->coex_mode > 1) usb_free_urb(dev->rx_cb[1].rx_urb); return -1; } /** * rsi_init_usb_interface() - This function initializes the usb interface. * @adapter: Pointer to the adapter structure. * @pfunction: Pointer to USB interface structure. * * Return: 0 on success, a negative error code on failure. */ static int rsi_init_usb_interface(struct rsi_hw *adapter, struct usb_interface *pfunction) { struct rsi_91x_usbdev *rsi_dev; int status; rsi_dev = kzalloc(sizeof(*rsi_dev), GFP_KERNEL); if (!rsi_dev) return -ENOMEM; adapter->rsi_dev = rsi_dev; rsi_dev->usbdev = interface_to_usbdev(pfunction); rsi_dev->priv = (void *)adapter; if (rsi_find_bulk_in_and_out_endpoints(pfunction, adapter)) { status = -EINVAL; goto fail_eps; } adapter->device = &pfunction->dev; usb_set_intfdata(pfunction, adapter); rsi_dev->tx_buffer = kmalloc(2048, GFP_KERNEL); if (!rsi_dev->tx_buffer) { status = -ENOMEM; goto fail_eps; } if (rsi_usb_init_rx(adapter)) { rsi_dbg(ERR_ZONE, "Failed to init RX handle\n"); status = -ENOMEM; goto fail_rx; } rsi_dev->tx_blk_size = 252; adapter->block_size = rsi_dev->tx_blk_size; /* Initializing function callbacks */ adapter->check_hw_queue_status = rsi_usb_check_queue_status; adapter->determine_event_timeout = rsi_usb_event_timeout; adapter->rsi_host_intf = RSI_HOST_INTF_USB; adapter->host_intf_ops = &usb_host_intf_ops; #ifdef CONFIG_RSI_DEBUGFS /* In USB, one less than the MAX_DEBUGFS_ENTRIES entries is required */ adapter->num_debugfs_entries = (MAX_DEBUGFS_ENTRIES - 1); #endif rsi_dbg(INIT_ZONE, "%s: Enabled the interface\n", __func__); return 0; fail_rx: kfree(rsi_dev->tx_buffer); fail_eps: return status; } static int usb_ulp_read_write(struct rsi_hw *adapter, u16 addr, u32 data, u16 len_in_bits) { int ret; ret = rsi_usb_master_reg_write (adapter, RSI_GSPI_DATA_REG1, ((addr << 6) | ((data >> 16) & 0xffff)), 2); if (ret < 0) return ret; ret = rsi_usb_master_reg_write(adapter, RSI_GSPI_DATA_REG0, (data & 0xffff), 2); if (ret < 0) return ret; /* Initializing GSPI for ULP read/writes */ rsi_usb_master_reg_write(adapter, RSI_GSPI_CTRL_REG0, RSI_GSPI_CTRL_REG0_VALUE, 2); ret = rsi_usb_master_reg_write(adapter, RSI_GSPI_CTRL_REG1, ((len_in_bits - 1) | RSI_GSPI_TRIG), 2); if (ret < 0) return ret; msleep(20); return 0; } static int rsi_reset_card(struct rsi_hw *adapter) { int ret; rsi_dbg(INFO_ZONE, "Resetting Card...\n"); rsi_usb_master_reg_write(adapter, RSI_TA_HOLD_REG, 0xE, 4); /* This msleep will ensure Thread-Arch processor to go to hold * and any pending dma transfers to rf in device to finish. */ msleep(100); ret = rsi_usb_master_reg_write(adapter, SWBL_REGOUT, RSI_FW_WDT_DISABLE_REQ, RSI_COMMON_REG_SIZE); if (ret < 0) { rsi_dbg(ERR_ZONE, "Disabling firmware watchdog timer failed\n"); goto fail; } if (adapter->device_model != RSI_DEV_9116) { ret = usb_ulp_read_write(adapter, RSI_WATCH_DOG_TIMER_1, RSI_ULP_WRITE_2, 32); if (ret < 0) goto fail; ret = usb_ulp_read_write(adapter, RSI_WATCH_DOG_TIMER_2, RSI_ULP_WRITE_0, 32); if (ret < 0) goto fail; ret = usb_ulp_read_write(adapter, RSI_WATCH_DOG_DELAY_TIMER_1, RSI_ULP_WRITE_50, 32); if (ret < 0) goto fail; ret = usb_ulp_read_write(adapter, RSI_WATCH_DOG_DELAY_TIMER_2, RSI_ULP_WRITE_0, 32); if (ret < 0) goto fail; ret = usb_ulp_read_write(adapter, RSI_WATCH_DOG_TIMER_ENABLE, RSI_ULP_TIMER_ENABLE, 32); if (ret < 0) goto fail; } else { ret = rsi_usb_master_reg_write(adapter, NWP_WWD_INTERRUPT_TIMER, NWP_WWD_INT_TIMER_CLKS, RSI_9116_REG_SIZE); if (ret < 0) goto fail; ret = rsi_usb_master_reg_write(adapter, NWP_WWD_SYSTEM_RESET_TIMER, NWP_WWD_SYS_RESET_TIMER_CLKS, RSI_9116_REG_SIZE); if (ret < 0) goto fail; ret = rsi_usb_master_reg_write(adapter, NWP_WWD_MODE_AND_RSTART, NWP_WWD_TIMER_DISABLE, RSI_9116_REG_SIZE); if (ret < 0) goto fail; } rsi_dbg(INFO_ZONE, "Reset card done\n"); return ret; fail: rsi_dbg(ERR_ZONE, "Reset card failed\n"); return ret; } /** * rsi_probe() - This function is called by kernel when the driver provided * Vendor and device IDs are matched. All the initialization * work is done here. * @pfunction: Pointer to the USB interface structure. * @id: Pointer to the usb_device_id structure. * * Return: 0 on success, a negative error code on failure. */ static int rsi_probe(struct usb_interface *pfunction, const struct usb_device_id *id) { struct rsi_hw *adapter; struct rsi_91x_usbdev *dev; u16 fw_status; int status; rsi_dbg(INIT_ZONE, "%s: Init function called\n", __func__); adapter = rsi_91x_init(dev_oper_mode); if (!adapter) { rsi_dbg(ERR_ZONE, "%s: Failed to init os intf ops\n", __func__); return -ENOMEM; } adapter->rsi_host_intf = RSI_HOST_INTF_USB; status = rsi_init_usb_interface(adapter, pfunction); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed to init usb interface\n", __func__); goto err; } rsi_dbg(ERR_ZONE, "%s: Initialized os intf ops\n", __func__); if (id->idProduct == RSI_USB_PID_9113) { rsi_dbg(INIT_ZONE, "%s: 9113 module detected\n", __func__); adapter->device_model = RSI_DEV_9113; } else if (id->idProduct == RSI_USB_PID_9116) { rsi_dbg(INIT_ZONE, "%s: 9116 module detected\n", __func__); adapter->device_model = RSI_DEV_9116; } else { rsi_dbg(ERR_ZONE, "%s: Unsupported RSI device id 0x%x\n", __func__, id->idProduct); status = -ENODEV; goto err1; } dev = (struct rsi_91x_usbdev *)adapter->rsi_dev; status = rsi_usb_reg_read(dev->usbdev, FW_STATUS_REG, &fw_status, 2); if (status < 0) goto err1; else fw_status &= 1; if (!fw_status) { rsi_dbg(INIT_ZONE, "Loading firmware...\n"); status = rsi_hal_device_init(adapter); if (status) { rsi_dbg(ERR_ZONE, "%s: Failed in device init\n", __func__); goto err1; } rsi_dbg(INIT_ZONE, "%s: Device Init Done\n", __func__); } status = rsi_rx_urb_submit(adapter, WLAN_EP, GFP_KERNEL); if (status) goto err1; if (adapter->priv->coex_mode > 1) { status = rsi_rx_urb_submit(adapter, BT_EP, GFP_KERNEL); if (status) goto err_kill_wlan_urb; } return 0; err_kill_wlan_urb: rsi_rx_urb_kill(adapter, WLAN_EP); err1: rsi_deinit_usb_interface(adapter); err: rsi_91x_deinit(adapter); rsi_dbg(ERR_ZONE, "%s: Failed in probe...Exiting\n", __func__); return status; } /** * rsi_disconnect() - This function performs the reverse of the probe function, * it deinitialize the driver structure. * @pfunction: Pointer to the USB interface structure. * * Return: None. */ static void rsi_disconnect(struct usb_interface *pfunction) { struct rsi_hw *adapter = usb_get_intfdata(pfunction); if (!adapter) return; rsi_mac80211_detach(adapter); if (IS_ENABLED(CONFIG_RSI_COEX) && adapter->priv->coex_mode > 1 && adapter->priv->bt_adapter) { rsi_bt_ops.detach(adapter->priv->bt_adapter); adapter->priv->bt_adapter = NULL; } if (adapter->priv->coex_mode > 1) rsi_rx_urb_kill(adapter, BT_EP); rsi_rx_urb_kill(adapter, WLAN_EP); rsi_reset_card(adapter); rsi_deinit_usb_interface(adapter); rsi_91x_deinit(adapter); rsi_dbg(INFO_ZONE, "%s: Deinitialization completed\n", __func__); } #ifdef CONFIG_PM static int rsi_suspend(struct usb_interface *intf, pm_message_t message) { /* Not yet implemented */ return -ENOSYS; } static int rsi_resume(struct usb_interface *intf) { /* Not yet implemented */ return -ENOSYS; } #endif static const struct usb_device_id rsi_dev_table[] = { { USB_DEVICE(RSI_USB_VENDOR_ID, RSI_USB_PID_9113) }, { USB_DEVICE(RSI_USB_VENDOR_ID, RSI_USB_PID_9116) }, { /* Blank */}, }; static struct usb_driver rsi_driver = { .name = "RSI-USB WLAN", .probe = rsi_probe, .disconnect = rsi_disconnect, .id_table = rsi_dev_table, #ifdef CONFIG_PM .suspend = rsi_suspend, .resume = rsi_resume, #endif }; module_usb_driver(rsi_driver); MODULE_AUTHOR("Redpine Signals Inc"); MODULE_DESCRIPTION("Common USB layer for RSI drivers"); MODULE_DEVICE_TABLE(usb, rsi_dev_table); MODULE_FIRMWARE(FIRMWARE_RSI9113); MODULE_VERSION("0.1"); MODULE_LICENSE("Dual BSD/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1