Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Lapuyade | 2920 | 96.37% | 1 | 9.09% |
Dan Carpenter | 68 | 2.24% | 1 | 9.09% |
Christophe Ricard | 13 | 0.43% | 1 | 9.09% |
Johannes Berg | 12 | 0.40% | 2 | 18.18% |
Joe Perches | 9 | 0.30% | 1 | 9.09% |
Krzysztof Kozlowski | 6 | 0.20% | 4 | 36.36% |
Thomas Gleixner | 2 | 0.07% | 1 | 9.09% |
Total | 3030 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * HCI based Driver for Inside Secure microread NFC Chip * * Copyright (C) 2013 Intel Corporation. All rights reserved. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/crc-ccitt.h> #include <linux/nfc.h> #include <net/nfc/nfc.h> #include <net/nfc/hci.h> #include "microread.h" /* Proprietary gates, events, commands and registers */ /* Admin */ #define MICROREAD_GATE_ID_ADM NFC_HCI_ADMIN_GATE #define MICROREAD_GATE_ID_MGT 0x01 #define MICROREAD_GATE_ID_OS 0x02 #define MICROREAD_GATE_ID_TESTRF 0x03 #define MICROREAD_GATE_ID_LOOPBACK NFC_HCI_LOOPBACK_GATE #define MICROREAD_GATE_ID_IDT NFC_HCI_ID_MGMT_GATE #define MICROREAD_GATE_ID_LMS NFC_HCI_LINK_MGMT_GATE /* Reader */ #define MICROREAD_GATE_ID_MREAD_GEN 0x10 #define MICROREAD_GATE_ID_MREAD_ISO_B NFC_HCI_RF_READER_B_GATE #define MICROREAD_GATE_ID_MREAD_NFC_T1 0x12 #define MICROREAD_GATE_ID_MREAD_ISO_A NFC_HCI_RF_READER_A_GATE #define MICROREAD_GATE_ID_MREAD_NFC_T3 0x14 #define MICROREAD_GATE_ID_MREAD_ISO_15_3 0x15 #define MICROREAD_GATE_ID_MREAD_ISO_15_2 0x16 #define MICROREAD_GATE_ID_MREAD_ISO_B_3 0x17 #define MICROREAD_GATE_ID_MREAD_BPRIME 0x18 #define MICROREAD_GATE_ID_MREAD_ISO_A_3 0x19 /* Card */ #define MICROREAD_GATE_ID_MCARD_GEN 0x20 #define MICROREAD_GATE_ID_MCARD_ISO_B 0x21 #define MICROREAD_GATE_ID_MCARD_BPRIME 0x22 #define MICROREAD_GATE_ID_MCARD_ISO_A 0x23 #define MICROREAD_GATE_ID_MCARD_NFC_T3 0x24 #define MICROREAD_GATE_ID_MCARD_ISO_15_3 0x25 #define MICROREAD_GATE_ID_MCARD_ISO_15_2 0x26 #define MICROREAD_GATE_ID_MCARD_ISO_B_2 0x27 #define MICROREAD_GATE_ID_MCARD_ISO_CUSTOM 0x28 #define MICROREAD_GATE_ID_SECURE_ELEMENT 0x2F /* P2P */ #define MICROREAD_GATE_ID_P2P_GEN 0x30 #define MICROREAD_GATE_ID_P2P_TARGET 0x31 #define MICROREAD_PAR_P2P_TARGET_MODE 0x01 #define MICROREAD_PAR_P2P_TARGET_GT 0x04 #define MICROREAD_GATE_ID_P2P_INITIATOR 0x32 #define MICROREAD_PAR_P2P_INITIATOR_GI 0x01 #define MICROREAD_PAR_P2P_INITIATOR_GT 0x03 /* Those pipes are created/opened by default in the chip */ #define MICROREAD_PIPE_ID_LMS 0x00 #define MICROREAD_PIPE_ID_ADMIN 0x01 #define MICROREAD_PIPE_ID_MGT 0x02 #define MICROREAD_PIPE_ID_OS 0x03 #define MICROREAD_PIPE_ID_HDS_LOOPBACK 0x04 #define MICROREAD_PIPE_ID_HDS_IDT 0x05 #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B 0x08 #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_BPRIME 0x09 #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_A 0x0A #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_3 0x0B #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_2 0x0C #define MICROREAD_PIPE_ID_HDS_MCARD_NFC_T3 0x0D #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B_2 0x0E #define MICROREAD_PIPE_ID_HDS_MCARD_CUSTOM 0x0F #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B 0x10 #define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1 0x11 #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A 0x12 #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_3 0x13 #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_2 0x14 #define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3 0x15 #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B_3 0x16 #define MICROREAD_PIPE_ID_HDS_MREAD_BPRIME 0x17 #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3 0x18 #define MICROREAD_PIPE_ID_HDS_MREAD_GEN 0x1B #define MICROREAD_PIPE_ID_HDS_STACKED_ELEMENT 0x1C #define MICROREAD_PIPE_ID_HDS_INSTANCES 0x1D #define MICROREAD_PIPE_ID_HDS_TESTRF 0x1E #define MICROREAD_PIPE_ID_HDS_P2P_TARGET 0x1F #define MICROREAD_PIPE_ID_HDS_P2P_INITIATOR 0x20 /* Events */ #define MICROREAD_EVT_MREAD_DISCOVERY_OCCURED NFC_HCI_EVT_TARGET_DISCOVERED #define MICROREAD_EVT_MREAD_CARD_FOUND 0x3D #define MICROREAD_EMCF_A_ATQA 0 #define MICROREAD_EMCF_A_SAK 2 #define MICROREAD_EMCF_A_LEN 3 #define MICROREAD_EMCF_A_UID 4 #define MICROREAD_EMCF_A3_ATQA 0 #define MICROREAD_EMCF_A3_SAK 2 #define MICROREAD_EMCF_A3_LEN 3 #define MICROREAD_EMCF_A3_UID 4 #define MICROREAD_EMCF_B_UID 0 #define MICROREAD_EMCF_T1_ATQA 0 #define MICROREAD_EMCF_T1_UID 4 #define MICROREAD_EMCF_T3_UID 0 #define MICROREAD_EVT_MREAD_DISCOVERY_START NFC_HCI_EVT_READER_REQUESTED #define MICROREAD_EVT_MREAD_DISCOVERY_START_SOME 0x3E #define MICROREAD_EVT_MREAD_DISCOVERY_STOP NFC_HCI_EVT_END_OPERATION #define MICROREAD_EVT_MREAD_SIM_REQUESTS 0x3F #define MICROREAD_EVT_MCARD_EXCHANGE NFC_HCI_EVT_TARGET_DISCOVERED #define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF 0x20 #define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF 0x21 #define MICROREAD_EVT_MCARD_FIELD_ON 0x11 #define MICROREAD_EVT_P2P_TARGET_ACTIVATED 0x13 #define MICROREAD_EVT_P2P_TARGET_DEACTIVATED 0x12 #define MICROREAD_EVT_MCARD_FIELD_OFF 0x14 /* Commands */ #define MICROREAD_CMD_MREAD_EXCHANGE 0x10 #define MICROREAD_CMD_MREAD_SUBSCRIBE 0x3F /* Hosts IDs */ #define MICROREAD_ELT_ID_HDS NFC_HCI_TERMINAL_HOST_ID #define MICROREAD_ELT_ID_SIM NFC_HCI_UICC_HOST_ID #define MICROREAD_ELT_ID_SE1 0x03 #define MICROREAD_ELT_ID_SE2 0x04 #define MICROREAD_ELT_ID_SE3 0x05 static const struct nfc_hci_gate microread_gates[] = { {MICROREAD_GATE_ID_ADM, MICROREAD_PIPE_ID_ADMIN}, {MICROREAD_GATE_ID_LOOPBACK, MICROREAD_PIPE_ID_HDS_LOOPBACK}, {MICROREAD_GATE_ID_IDT, MICROREAD_PIPE_ID_HDS_IDT}, {MICROREAD_GATE_ID_LMS, MICROREAD_PIPE_ID_LMS}, {MICROREAD_GATE_ID_MREAD_ISO_B, MICROREAD_PIPE_ID_HDS_MREAD_ISO_B}, {MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A}, {MICROREAD_GATE_ID_MREAD_ISO_A_3, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3}, {MICROREAD_GATE_ID_MGT, MICROREAD_PIPE_ID_MGT}, {MICROREAD_GATE_ID_OS, MICROREAD_PIPE_ID_OS}, {MICROREAD_GATE_ID_MREAD_NFC_T1, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1}, {MICROREAD_GATE_ID_MREAD_NFC_T3, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3}, {MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PIPE_ID_HDS_P2P_TARGET}, {MICROREAD_GATE_ID_P2P_INITIATOR, MICROREAD_PIPE_ID_HDS_P2P_INITIATOR} }; /* Largest headroom needed for outgoing custom commands */ #define MICROREAD_CMDS_HEADROOM 2 #define MICROREAD_CMD_TAILROOM 2 struct microread_info { const struct nfc_phy_ops *phy_ops; void *phy_id; struct nfc_hci_dev *hdev; int async_cb_type; data_exchange_cb_t async_cb; void *async_cb_context; }; static int microread_open(struct nfc_hci_dev *hdev) { struct microread_info *info = nfc_hci_get_clientdata(hdev); return info->phy_ops->enable(info->phy_id); } static void microread_close(struct nfc_hci_dev *hdev) { struct microread_info *info = nfc_hci_get_clientdata(hdev); info->phy_ops->disable(info->phy_id); } static int microread_hci_ready(struct nfc_hci_dev *hdev) { int r; u8 param[4]; param[0] = 0x03; r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_CMD_MREAD_SUBSCRIBE, param, 1, NULL); if (r) return r; r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A_3, MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL); if (r) return r; param[0] = 0x00; param[1] = 0x03; param[2] = 0x00; r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_B, MICROREAD_CMD_MREAD_SUBSCRIBE, param, 3, NULL); if (r) return r; r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T1, MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL); if (r) return r; param[0] = 0xFF; param[1] = 0xFF; param[2] = 0x00; param[3] = 0x00; r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T3, MICROREAD_CMD_MREAD_SUBSCRIBE, param, 4, NULL); return r; } static int microread_xmit(struct nfc_hci_dev *hdev, struct sk_buff *skb) { struct microread_info *info = nfc_hci_get_clientdata(hdev); return info->phy_ops->write(info->phy_id, skb); } static int microread_start_poll(struct nfc_hci_dev *hdev, u32 im_protocols, u32 tm_protocols) { int r; u8 param[2]; u8 mode; param[0] = 0x00; param[1] = 0x00; if (im_protocols & NFC_PROTO_ISO14443_MASK) param[0] |= (1 << 2); if (im_protocols & NFC_PROTO_ISO14443_B_MASK) param[0] |= 1; if (im_protocols & NFC_PROTO_MIFARE_MASK) param[1] |= 1; if (im_protocols & NFC_PROTO_JEWEL_MASK) param[0] |= (1 << 1); if (im_protocols & NFC_PROTO_FELICA_MASK) param[0] |= (1 << 5); if (im_protocols & NFC_PROTO_NFC_DEP_MASK) param[1] |= (1 << 1); if ((im_protocols | tm_protocols) & NFC_PROTO_NFC_DEP_MASK) { hdev->gb = nfc_get_local_general_bytes(hdev->ndev, &hdev->gb_len); if (hdev->gb == NULL || hdev->gb_len == 0) { im_protocols &= ~NFC_PROTO_NFC_DEP_MASK; tm_protocols &= ~NFC_PROTO_NFC_DEP_MASK; } } r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0); if (r) return r; mode = 0xff; r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1); if (r) return r; if (im_protocols & NFC_PROTO_NFC_DEP_MASK) { r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_INITIATOR, MICROREAD_PAR_P2P_INITIATOR_GI, hdev->gb, hdev->gb_len); if (r) return r; } if (tm_protocols & NFC_PROTO_NFC_DEP_MASK) { r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PAR_P2P_TARGET_GT, hdev->gb, hdev->gb_len); if (r) return r; mode = 0x02; r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1); if (r) return r; } return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_EVT_MREAD_DISCOVERY_START_SOME, param, 2); } static int microread_dep_link_up(struct nfc_hci_dev *hdev, struct nfc_target *target, u8 comm_mode, u8 *gb, size_t gb_len) { struct sk_buff *rgb_skb = NULL; int r; r = nfc_hci_get_param(hdev, target->hci_reader_gate, MICROREAD_PAR_P2P_INITIATOR_GT, &rgb_skb); if (r < 0) return r; if (rgb_skb->len == 0 || rgb_skb->len > NFC_GB_MAXSIZE) { r = -EPROTO; goto exit; } r = nfc_set_remote_general_bytes(hdev->ndev, rgb_skb->data, rgb_skb->len); if (r == 0) r = nfc_dep_link_is_up(hdev->ndev, target->idx, comm_mode, NFC_RF_INITIATOR); exit: kfree_skb(rgb_skb); return r; } static int microread_dep_link_down(struct nfc_hci_dev *hdev) { return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_INITIATOR, MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0); } static int microread_target_from_gate(struct nfc_hci_dev *hdev, u8 gate, struct nfc_target *target) { switch (gate) { case MICROREAD_GATE_ID_P2P_INITIATOR: target->supported_protocols = NFC_PROTO_NFC_DEP_MASK; break; default: return -EPROTO; } return 0; } static int microread_complete_target_discovered(struct nfc_hci_dev *hdev, u8 gate, struct nfc_target *target) { return 0; } #define MICROREAD_CB_TYPE_READER_ALL 1 static void microread_im_transceive_cb(void *context, struct sk_buff *skb, int err) { const struct microread_info *info = context; switch (info->async_cb_type) { case MICROREAD_CB_TYPE_READER_ALL: if (err == 0) { if (skb->len == 0) { kfree_skb(skb); info->async_cb(info->async_cb_context, NULL, -EPROTO); return; } if (skb->data[skb->len - 1] != 0) { err = nfc_hci_result_to_errno( skb->data[skb->len - 1]); kfree_skb(skb); info->async_cb(info->async_cb_context, NULL, err); return; } skb_trim(skb, skb->len - 1); /* RF Error ind. */ } info->async_cb(info->async_cb_context, skb, err); break; default: if (err == 0) kfree_skb(skb); break; } } /* * Returns: * <= 0: driver handled the data exchange * 1: driver doesn't especially handle, please do standard processing */ static int microread_im_transceive(struct nfc_hci_dev *hdev, struct nfc_target *target, struct sk_buff *skb, data_exchange_cb_t cb, void *cb_context) { struct microread_info *info = nfc_hci_get_clientdata(hdev); u8 control_bits; u16 crc; pr_info("data exchange to gate 0x%x\n", target->hci_reader_gate); if (target->hci_reader_gate == MICROREAD_GATE_ID_P2P_INITIATOR) { *(u8 *)skb_push(skb, 1) = 0; return nfc_hci_send_event(hdev, target->hci_reader_gate, MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF, skb->data, skb->len); } switch (target->hci_reader_gate) { case MICROREAD_GATE_ID_MREAD_ISO_A: control_bits = 0xCB; break; case MICROREAD_GATE_ID_MREAD_ISO_A_3: control_bits = 0xCB; break; case MICROREAD_GATE_ID_MREAD_ISO_B: control_bits = 0xCB; break; case MICROREAD_GATE_ID_MREAD_NFC_T1: control_bits = 0x1B; crc = crc_ccitt(0xffff, skb->data, skb->len); crc = ~crc; skb_put_u8(skb, crc & 0xff); skb_put_u8(skb, crc >> 8); break; case MICROREAD_GATE_ID_MREAD_NFC_T3: control_bits = 0xDB; break; default: pr_info("Abort im_transceive to invalid gate 0x%x\n", target->hci_reader_gate); return 1; } *(u8 *)skb_push(skb, 1) = control_bits; info->async_cb_type = MICROREAD_CB_TYPE_READER_ALL; info->async_cb = cb; info->async_cb_context = cb_context; return nfc_hci_send_cmd_async(hdev, target->hci_reader_gate, MICROREAD_CMD_MREAD_EXCHANGE, skb->data, skb->len, microread_im_transceive_cb, info); } static int microread_tm_send(struct nfc_hci_dev *hdev, struct sk_buff *skb) { int r; r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_EVT_MCARD_EXCHANGE, skb->data, skb->len); kfree_skb(skb); return r; } static void microread_target_discovered(struct nfc_hci_dev *hdev, u8 gate, struct sk_buff *skb) { struct nfc_target *targets; int r = 0; pr_info("target discovered to gate 0x%x\n", gate); targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL); if (targets == NULL) { r = -ENOMEM; goto exit; } targets->hci_reader_gate = gate; switch (gate) { case MICROREAD_GATE_ID_MREAD_ISO_A: targets->supported_protocols = nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A_SAK]); targets->sens_res = be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A_ATQA]); targets->sel_res = skb->data[MICROREAD_EMCF_A_SAK]; targets->nfcid1_len = skb->data[MICROREAD_EMCF_A_LEN]; if (targets->nfcid1_len > sizeof(targets->nfcid1)) { r = -EINVAL; goto exit_free; } memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A_UID], targets->nfcid1_len); break; case MICROREAD_GATE_ID_MREAD_ISO_A_3: targets->supported_protocols = nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A3_SAK]); targets->sens_res = be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A3_ATQA]); targets->sel_res = skb->data[MICROREAD_EMCF_A3_SAK]; targets->nfcid1_len = skb->data[MICROREAD_EMCF_A3_LEN]; if (targets->nfcid1_len > sizeof(targets->nfcid1)) { r = -EINVAL; goto exit_free; } memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A3_UID], targets->nfcid1_len); break; case MICROREAD_GATE_ID_MREAD_ISO_B: targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK; memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_B_UID], 4); targets->nfcid1_len = 4; break; case MICROREAD_GATE_ID_MREAD_NFC_T1: targets->supported_protocols = NFC_PROTO_JEWEL_MASK; targets->sens_res = le16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_T1_ATQA]); memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T1_UID], 4); targets->nfcid1_len = 4; break; case MICROREAD_GATE_ID_MREAD_NFC_T3: targets->supported_protocols = NFC_PROTO_FELICA_MASK; memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T3_UID], 8); targets->nfcid1_len = 8; break; default: pr_info("discard target discovered to gate 0x%x\n", gate); goto exit_free; } r = nfc_targets_found(hdev->ndev, targets, 1); exit_free: kfree(targets); exit: kfree_skb(skb); if (r) pr_err("Failed to handle discovered target err=%d\n", r); } static int microread_event_received(struct nfc_hci_dev *hdev, u8 pipe, u8 event, struct sk_buff *skb) { int r; u8 gate = hdev->pipes[pipe].gate; u8 mode; pr_info("Microread received event 0x%x to gate 0x%x\n", event, gate); switch (event) { case MICROREAD_EVT_MREAD_CARD_FOUND: microread_target_discovered(hdev, gate, skb); return 0; case MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF: if (skb->len < 1) { kfree_skb(skb); return -EPROTO; } if (skb->data[skb->len - 1]) { kfree_skb(skb); return -EIO; } skb_trim(skb, skb->len - 1); r = nfc_tm_data_received(hdev->ndev, skb); break; case MICROREAD_EVT_MCARD_FIELD_ON: case MICROREAD_EVT_MCARD_FIELD_OFF: kfree_skb(skb); return 0; case MICROREAD_EVT_P2P_TARGET_ACTIVATED: r = nfc_tm_activated(hdev->ndev, NFC_PROTO_NFC_DEP_MASK, NFC_COMM_PASSIVE, skb->data, skb->len); kfree_skb(skb); break; case MICROREAD_EVT_MCARD_EXCHANGE: if (skb->len < 1) { kfree_skb(skb); return -EPROTO; } if (skb->data[skb->len-1]) { kfree_skb(skb); return -EIO; } skb_trim(skb, skb->len - 1); r = nfc_tm_data_received(hdev->ndev, skb); break; case MICROREAD_EVT_P2P_TARGET_DEACTIVATED: kfree_skb(skb); mode = 0xff; r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1); if (r) break; r = nfc_hci_send_event(hdev, gate, MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0); break; default: return 1; } return r; } static const struct nfc_hci_ops microread_hci_ops = { .open = microread_open, .close = microread_close, .hci_ready = microread_hci_ready, .xmit = microread_xmit, .start_poll = microread_start_poll, .dep_link_up = microread_dep_link_up, .dep_link_down = microread_dep_link_down, .target_from_gate = microread_target_from_gate, .complete_target_discovered = microread_complete_target_discovered, .im_transceive = microread_im_transceive, .tm_send = microread_tm_send, .check_presence = NULL, .event_received = microread_event_received, }; int microread_probe(void *phy_id, const struct nfc_phy_ops *phy_ops, const char *llc_name, int phy_headroom, int phy_tailroom, int phy_payload, struct nfc_hci_dev **hdev) { struct microread_info *info; unsigned long quirks = 0; u32 protocols; struct nfc_hci_init_data init_data; int r; info = kzalloc(sizeof(struct microread_info), GFP_KERNEL); if (!info) { r = -ENOMEM; goto err_info_alloc; } info->phy_ops = phy_ops; info->phy_id = phy_id; init_data.gate_count = ARRAY_SIZE(microread_gates); memcpy(init_data.gates, microread_gates, sizeof(microread_gates)); strcpy(init_data.session_id, "MICROREA"); set_bit(NFC_HCI_QUIRK_SHORT_CLEAR, &quirks); protocols = NFC_PROTO_JEWEL_MASK | NFC_PROTO_MIFARE_MASK | NFC_PROTO_FELICA_MASK | NFC_PROTO_ISO14443_MASK | NFC_PROTO_ISO14443_B_MASK | NFC_PROTO_NFC_DEP_MASK; info->hdev = nfc_hci_allocate_device(µread_hci_ops, &init_data, quirks, protocols, llc_name, phy_headroom + MICROREAD_CMDS_HEADROOM, phy_tailroom + MICROREAD_CMD_TAILROOM, phy_payload); if (!info->hdev) { pr_err("Cannot allocate nfc hdev\n"); r = -ENOMEM; goto err_alloc_hdev; } nfc_hci_set_clientdata(info->hdev, info); r = nfc_hci_register_device(info->hdev); if (r) goto err_regdev; *hdev = info->hdev; return 0; err_regdev: nfc_hci_free_device(info->hdev); err_alloc_hdev: kfree(info); err_info_alloc: return r; } EXPORT_SYMBOL(microread_probe); void microread_remove(struct nfc_hci_dev *hdev) { struct microread_info *info = nfc_hci_get_clientdata(hdev); nfc_hci_unregister_device(hdev); nfc_hci_free_device(hdev); kfree(info); } EXPORT_SYMBOL(microread_remove); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION(DRIVER_DESC);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1