Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
Dan J Williams 5126 86.11% 67 65.05%
Vishal Verma 269 4.52% 2 1.94%
Dave Jiang 179 3.01% 6 5.83%
Pankaj Gupta 101 1.70% 2 1.94%
Keith Busch 82 1.38% 2 1.94%
Ross Zwisler 74 1.24% 3 2.91%
Aneesh Kumar K.V 21 0.35% 4 3.88%
Dmitry V. Krivenok 17 0.29% 1 0.97%
Oliver O'Halloran 14 0.24% 3 2.91%
Tyler Hicks 14 0.24% 1 0.97%
Vaibhav Jain 13 0.22% 1 0.97%
Toshi Kani 12 0.20% 2 1.94%
Yue haibing 10 0.17% 1 0.97%
Davidlohr Bueso A 8 0.13% 1 0.97%
Gustavo A. R. Silva 5 0.08% 1 0.97%
Christoph Hellwig 4 0.07% 3 2.91%
Thomas Gleixner 2 0.03% 1 0.97%
Linda Knippers 1 0.02% 1 0.97%
Jiapeng Chong 1 0.02% 1 0.97%
Total 5953 103


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
 */
#include <linux/scatterlist.h>
#include <linux/memregion.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/hash.h>
#include <linux/sort.h>
#include <linux/io.h>
#include <linux/nd.h>
#include "nd-core.h"
#include "nd.h"

/*
 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
 * irrelevant.
 */
#include <linux/io-64-nonatomic-hi-lo.h>

static DEFINE_PER_CPU(int, flush_idx);

static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
		struct nd_region_data *ndrd)
{
	int i, j;

	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
		struct resource *res = &nvdimm->flush_wpq[i];
		unsigned long pfn = PHYS_PFN(res->start);
		void __iomem *flush_page;

		/* check if flush hints share a page */
		for (j = 0; j < i; j++) {
			struct resource *res_j = &nvdimm->flush_wpq[j];
			unsigned long pfn_j = PHYS_PFN(res_j->start);

			if (pfn == pfn_j)
				break;
		}

		if (j < i)
			flush_page = (void __iomem *) ((unsigned long)
					ndrd_get_flush_wpq(ndrd, dimm, j)
					& PAGE_MASK);
		else
			flush_page = devm_nvdimm_ioremap(dev,
					PFN_PHYS(pfn), PAGE_SIZE);
		if (!flush_page)
			return -ENXIO;
		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
				+ (res->start & ~PAGE_MASK));
	}

	return 0;
}

static int nd_region_invalidate_memregion(struct nd_region *nd_region)
{
	int i, incoherent = 0;

	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
		struct nvdimm *nvdimm = nd_mapping->nvdimm;

		if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
			incoherent++;
			break;
		}
	}

	if (!incoherent)
		return 0;

	if (!cpu_cache_has_invalidate_memregion()) {
		if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
			dev_warn(
				&nd_region->dev,
				"Bypassing cpu_cache_invalidate_memergion() for testing!\n");
			goto out;
		} else {
			dev_err(&nd_region->dev,
				"Failed to synchronize CPU cache state\n");
			return -ENXIO;
		}
	}

	cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
out:
	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
		struct nvdimm *nvdimm = nd_mapping->nvdimm;

		clear_bit(NDD_INCOHERENT, &nvdimm->flags);
	}

	return 0;
}

int nd_region_activate(struct nd_region *nd_region)
{
	int i, j, rc, num_flush = 0;
	struct nd_region_data *ndrd;
	struct device *dev = &nd_region->dev;
	size_t flush_data_size = sizeof(void *);

	nvdimm_bus_lock(&nd_region->dev);
	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
		struct nvdimm *nvdimm = nd_mapping->nvdimm;

		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
			nvdimm_bus_unlock(&nd_region->dev);
			return -EBUSY;
		}

		/* at least one null hint slot per-dimm for the "no-hint" case */
		flush_data_size += sizeof(void *);
		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
		if (!nvdimm->num_flush)
			continue;
		flush_data_size += nvdimm->num_flush * sizeof(void *);
	}
	nvdimm_bus_unlock(&nd_region->dev);

	rc = nd_region_invalidate_memregion(nd_region);
	if (rc)
		return rc;

	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
	if (!ndrd)
		return -ENOMEM;
	dev_set_drvdata(dev, ndrd);

	if (!num_flush)
		return 0;

	ndrd->hints_shift = ilog2(num_flush);
	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
		struct nvdimm *nvdimm = nd_mapping->nvdimm;
		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);

		if (rc)
			return rc;
	}

	/*
	 * Clear out entries that are duplicates. This should prevent the
	 * extra flushings.
	 */
	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
		/* ignore if NULL already */
		if (!ndrd_get_flush_wpq(ndrd, i, 0))
			continue;

		for (j = i + 1; j < nd_region->ndr_mappings; j++)
			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
			    ndrd_get_flush_wpq(ndrd, j, 0))
				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
	}

	return 0;
}

static void nd_region_release(struct device *dev)
{
	struct nd_region *nd_region = to_nd_region(dev);
	u16 i;

	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
		struct nvdimm *nvdimm = nd_mapping->nvdimm;

		put_device(&nvdimm->dev);
	}
	free_percpu(nd_region->lane);
	if (!test_bit(ND_REGION_CXL, &nd_region->flags))
		memregion_free(nd_region->id);
	kfree(nd_region);
}

struct nd_region *to_nd_region(struct device *dev)
{
	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);

	WARN_ON(dev->type->release != nd_region_release);
	return nd_region;
}
EXPORT_SYMBOL_GPL(to_nd_region);

struct device *nd_region_dev(struct nd_region *nd_region)
{
	if (!nd_region)
		return NULL;
	return &nd_region->dev;
}
EXPORT_SYMBOL_GPL(nd_region_dev);

void *nd_region_provider_data(struct nd_region *nd_region)
{
	return nd_region->provider_data;
}
EXPORT_SYMBOL_GPL(nd_region_provider_data);

/**
 * nd_region_to_nstype() - region to an integer namespace type
 * @nd_region: region-device to interrogate
 *
 * This is the 'nstype' attribute of a region as well, an input to the
 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
 * namespace devices with namespace drivers.
 */
int nd_region_to_nstype(struct nd_region *nd_region)
{
	if (is_memory(&nd_region->dev)) {
		u16 i, label;

		for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
			struct nvdimm *nvdimm = nd_mapping->nvdimm;

			if (test_bit(NDD_LABELING, &nvdimm->flags))
				label++;
		}
		if (label)
			return ND_DEVICE_NAMESPACE_PMEM;
		else
			return ND_DEVICE_NAMESPACE_IO;
	}

	return 0;
}
EXPORT_SYMBOL(nd_region_to_nstype);

static unsigned long long region_size(struct nd_region *nd_region)
{
	if (is_memory(&nd_region->dev)) {
		return nd_region->ndr_size;
	} else if (nd_region->ndr_mappings == 1) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[0];

		return nd_mapping->size;
	}

	return 0;
}

static ssize_t size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	return sprintf(buf, "%llu\n", region_size(nd_region));
}
static DEVICE_ATTR_RO(size);

static ssize_t deep_flush_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	/*
	 * NOTE: in the nvdimm_has_flush() error case this attribute is
	 * not visible.
	 */
	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
}

static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
		const char *buf, size_t len)
{
	bool flush;
	int rc = strtobool(buf, &flush);
	struct nd_region *nd_region = to_nd_region(dev);

	if (rc)
		return rc;
	if (!flush)
		return -EINVAL;
	rc = nvdimm_flush(nd_region, NULL);
	if (rc)
		return rc;

	return len;
}
static DEVICE_ATTR_RW(deep_flush);

static ssize_t mappings_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
}
static DEVICE_ATTR_RO(mappings);

static ssize_t nstype_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
}
static DEVICE_ATTR_RO(nstype);

static ssize_t set_cookie_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	struct nd_interleave_set *nd_set = nd_region->nd_set;
	ssize_t rc = 0;

	if (is_memory(dev) && nd_set)
		/* pass, should be precluded by region_visible */;
	else
		return -ENXIO;

	/*
	 * The cookie to show depends on which specification of the
	 * labels we are using. If there are not labels then default to
	 * the v1.1 namespace label cookie definition. To read all this
	 * data we need to wait for probing to settle.
	 */
	device_lock(dev);
	nvdimm_bus_lock(dev);
	wait_nvdimm_bus_probe_idle(dev);
	if (nd_region->ndr_mappings) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);

		if (ndd) {
			struct nd_namespace_index *nsindex;

			nsindex = to_namespace_index(ndd, ndd->ns_current);
			rc = sprintf(buf, "%#llx\n",
					nd_region_interleave_set_cookie(nd_region,
						nsindex));
		}
	}
	nvdimm_bus_unlock(dev);
	device_unlock(dev);

	if (rc)
		return rc;
	return sprintf(buf, "%#llx\n", nd_set->cookie1);
}
static DEVICE_ATTR_RO(set_cookie);

resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
{
	resource_size_t available;
	int i;

	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));

	available = 0;
	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);

		/* if a dimm is disabled the available capacity is zero */
		if (!ndd)
			return 0;

		available += nd_pmem_available_dpa(nd_region, nd_mapping);
	}

	return available;
}

resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
{
	resource_size_t avail = 0;
	int i;

	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];

		avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
						    nd_region, nd_mapping));
	}
	return avail * nd_region->ndr_mappings;
}

static ssize_t available_size_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	unsigned long long available = 0;

	/*
	 * Flush in-flight updates and grab a snapshot of the available
	 * size.  Of course, this value is potentially invalidated the
	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
	 * problem to not race itself.
	 */
	device_lock(dev);
	nvdimm_bus_lock(dev);
	wait_nvdimm_bus_probe_idle(dev);
	available = nd_region_available_dpa(nd_region);
	nvdimm_bus_unlock(dev);
	device_unlock(dev);

	return sprintf(buf, "%llu\n", available);
}
static DEVICE_ATTR_RO(available_size);

static ssize_t max_available_extent_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	unsigned long long available = 0;

	device_lock(dev);
	nvdimm_bus_lock(dev);
	wait_nvdimm_bus_probe_idle(dev);
	available = nd_region_allocatable_dpa(nd_region);
	nvdimm_bus_unlock(dev);
	device_unlock(dev);

	return sprintf(buf, "%llu\n", available);
}
static DEVICE_ATTR_RO(max_available_extent);

static ssize_t init_namespaces_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region_data *ndrd = dev_get_drvdata(dev);
	ssize_t rc;

	nvdimm_bus_lock(dev);
	if (ndrd)
		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
	else
		rc = -ENXIO;
	nvdimm_bus_unlock(dev);

	return rc;
}
static DEVICE_ATTR_RO(init_namespaces);

static ssize_t namespace_seed_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	ssize_t rc;

	nvdimm_bus_lock(dev);
	if (nd_region->ns_seed)
		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
	else
		rc = sprintf(buf, "\n");
	nvdimm_bus_unlock(dev);
	return rc;
}
static DEVICE_ATTR_RO(namespace_seed);

static ssize_t btt_seed_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	ssize_t rc;

	nvdimm_bus_lock(dev);
	if (nd_region->btt_seed)
		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
	else
		rc = sprintf(buf, "\n");
	nvdimm_bus_unlock(dev);

	return rc;
}
static DEVICE_ATTR_RO(btt_seed);

static ssize_t pfn_seed_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	ssize_t rc;

	nvdimm_bus_lock(dev);
	if (nd_region->pfn_seed)
		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
	else
		rc = sprintf(buf, "\n");
	nvdimm_bus_unlock(dev);

	return rc;
}
static DEVICE_ATTR_RO(pfn_seed);

static ssize_t dax_seed_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	ssize_t rc;

	nvdimm_bus_lock(dev);
	if (nd_region->dax_seed)
		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
	else
		rc = sprintf(buf, "\n");
	nvdimm_bus_unlock(dev);

	return rc;
}
static DEVICE_ATTR_RO(dax_seed);

static ssize_t read_only_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	return sprintf(buf, "%d\n", nd_region->ro);
}

static int revalidate_read_only(struct device *dev, void *data)
{
	nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
	return 0;
}

static ssize_t read_only_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	bool ro;
	int rc = strtobool(buf, &ro);
	struct nd_region *nd_region = to_nd_region(dev);

	if (rc)
		return rc;

	nd_region->ro = ro;
	device_for_each_child(dev, NULL, revalidate_read_only);
	return len;
}
static DEVICE_ATTR_RW(read_only);

static ssize_t align_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	return sprintf(buf, "%#lx\n", nd_region->align);
}

static ssize_t align_store(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t len)
{
	struct nd_region *nd_region = to_nd_region(dev);
	unsigned long val, dpa;
	u32 mappings, remainder;
	int rc;

	rc = kstrtoul(buf, 0, &val);
	if (rc)
		return rc;

	/*
	 * Ensure space-align is evenly divisible by the region
	 * interleave-width because the kernel typically has no facility
	 * to determine which DIMM(s), dimm-physical-addresses, would
	 * contribute to the tail capacity in system-physical-address
	 * space for the namespace.
	 */
	mappings = max_t(u32, 1, nd_region->ndr_mappings);
	dpa = div_u64_rem(val, mappings, &remainder);
	if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
			|| val > region_size(nd_region) || remainder)
		return -EINVAL;

	/*
	 * Given that space allocation consults this value multiple
	 * times ensure it does not change for the duration of the
	 * allocation.
	 */
	nvdimm_bus_lock(dev);
	nd_region->align = val;
	nvdimm_bus_unlock(dev);

	return len;
}
static DEVICE_ATTR_RW(align);

static ssize_t region_badblocks_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);
	ssize_t rc;

	device_lock(dev);
	if (dev->driver)
		rc = badblocks_show(&nd_region->bb, buf, 0);
	else
		rc = -ENXIO;
	device_unlock(dev);

	return rc;
}
static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);

static ssize_t resource_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
}
static DEVICE_ATTR_ADMIN_RO(resource);

static ssize_t persistence_domain_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nd_region *nd_region = to_nd_region(dev);

	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
		return sprintf(buf, "cpu_cache\n");
	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
		return sprintf(buf, "memory_controller\n");
	else
		return sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(persistence_domain);

static struct attribute *nd_region_attributes[] = {
	&dev_attr_size.attr,
	&dev_attr_align.attr,
	&dev_attr_nstype.attr,
	&dev_attr_mappings.attr,
	&dev_attr_btt_seed.attr,
	&dev_attr_pfn_seed.attr,
	&dev_attr_dax_seed.attr,
	&dev_attr_deep_flush.attr,
	&dev_attr_read_only.attr,
	&dev_attr_set_cookie.attr,
	&dev_attr_available_size.attr,
	&dev_attr_max_available_extent.attr,
	&dev_attr_namespace_seed.attr,
	&dev_attr_init_namespaces.attr,
	&dev_attr_badblocks.attr,
	&dev_attr_resource.attr,
	&dev_attr_persistence_domain.attr,
	NULL,
};

static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, typeof(*dev), kobj);
	struct nd_region *nd_region = to_nd_region(dev);
	struct nd_interleave_set *nd_set = nd_region->nd_set;
	int type = nd_region_to_nstype(nd_region);

	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
		return 0;

	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
		return 0;

	if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
		return 0;

	if (a == &dev_attr_resource.attr && !is_memory(dev))
		return 0;

	if (a == &dev_attr_deep_flush.attr) {
		int has_flush = nvdimm_has_flush(nd_region);

		if (has_flush == 1)
			return a->mode;
		else if (has_flush == 0)
			return 0444;
		else
			return 0;
	}

	if (a == &dev_attr_persistence_domain.attr) {
		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
			return 0;
		return a->mode;
	}

	if (a == &dev_attr_align.attr)
		return a->mode;

	if (a != &dev_attr_set_cookie.attr
			&& a != &dev_attr_available_size.attr)
		return a->mode;

	if (type == ND_DEVICE_NAMESPACE_PMEM &&
	    a == &dev_attr_available_size.attr)
		return a->mode;
	else if (is_memory(dev) && nd_set)
		return a->mode;

	return 0;
}

static ssize_t mappingN(struct device *dev, char *buf, int n)
{
	struct nd_region *nd_region = to_nd_region(dev);
	struct nd_mapping *nd_mapping;
	struct nvdimm *nvdimm;

	if (n >= nd_region->ndr_mappings)
		return -ENXIO;
	nd_mapping = &nd_region->mapping[n];
	nvdimm = nd_mapping->nvdimm;

	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
			nd_mapping->start, nd_mapping->size,
			nd_mapping->position);
}

#define REGION_MAPPING(idx) \
static ssize_t mapping##idx##_show(struct device *dev,		\
		struct device_attribute *attr, char *buf)	\
{								\
	return mappingN(dev, buf, idx);				\
}								\
static DEVICE_ATTR_RO(mapping##idx)

/*
 * 32 should be enough for a while, even in the presence of socket
 * interleave a 32-way interleave set is a degenerate case.
 */
REGION_MAPPING(0);
REGION_MAPPING(1);
REGION_MAPPING(2);
REGION_MAPPING(3);
REGION_MAPPING(4);
REGION_MAPPING(5);
REGION_MAPPING(6);
REGION_MAPPING(7);
REGION_MAPPING(8);
REGION_MAPPING(9);
REGION_MAPPING(10);
REGION_MAPPING(11);
REGION_MAPPING(12);
REGION_MAPPING(13);
REGION_MAPPING(14);
REGION_MAPPING(15);
REGION_MAPPING(16);
REGION_MAPPING(17);
REGION_MAPPING(18);
REGION_MAPPING(19);
REGION_MAPPING(20);
REGION_MAPPING(21);
REGION_MAPPING(22);
REGION_MAPPING(23);
REGION_MAPPING(24);
REGION_MAPPING(25);
REGION_MAPPING(26);
REGION_MAPPING(27);
REGION_MAPPING(28);
REGION_MAPPING(29);
REGION_MAPPING(30);
REGION_MAPPING(31);

static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
{
	struct device *dev = container_of(kobj, struct device, kobj);
	struct nd_region *nd_region = to_nd_region(dev);

	if (n < nd_region->ndr_mappings)
		return a->mode;
	return 0;
}

static struct attribute *mapping_attributes[] = {
	&dev_attr_mapping0.attr,
	&dev_attr_mapping1.attr,
	&dev_attr_mapping2.attr,
	&dev_attr_mapping3.attr,
	&dev_attr_mapping4.attr,
	&dev_attr_mapping5.attr,
	&dev_attr_mapping6.attr,
	&dev_attr_mapping7.attr,
	&dev_attr_mapping8.attr,
	&dev_attr_mapping9.attr,
	&dev_attr_mapping10.attr,
	&dev_attr_mapping11.attr,
	&dev_attr_mapping12.attr,
	&dev_attr_mapping13.attr,
	&dev_attr_mapping14.attr,
	&dev_attr_mapping15.attr,
	&dev_attr_mapping16.attr,
	&dev_attr_mapping17.attr,
	&dev_attr_mapping18.attr,
	&dev_attr_mapping19.attr,
	&dev_attr_mapping20.attr,
	&dev_attr_mapping21.attr,
	&dev_attr_mapping22.attr,
	&dev_attr_mapping23.attr,
	&dev_attr_mapping24.attr,
	&dev_attr_mapping25.attr,
	&dev_attr_mapping26.attr,
	&dev_attr_mapping27.attr,
	&dev_attr_mapping28.attr,
	&dev_attr_mapping29.attr,
	&dev_attr_mapping30.attr,
	&dev_attr_mapping31.attr,
	NULL,
};

static const struct attribute_group nd_mapping_attribute_group = {
	.is_visible = mapping_visible,
	.attrs = mapping_attributes,
};

static const struct attribute_group nd_region_attribute_group = {
	.attrs = nd_region_attributes,
	.is_visible = region_visible,
};

static const struct attribute_group *nd_region_attribute_groups[] = {
	&nd_device_attribute_group,
	&nd_region_attribute_group,
	&nd_numa_attribute_group,
	&nd_mapping_attribute_group,
	NULL,
};

static const struct device_type nd_pmem_device_type = {
	.name = "nd_pmem",
	.release = nd_region_release,
	.groups = nd_region_attribute_groups,
};

static const struct device_type nd_volatile_device_type = {
	.name = "nd_volatile",
	.release = nd_region_release,
	.groups = nd_region_attribute_groups,
};

bool is_nd_pmem(struct device *dev)
{
	return dev ? dev->type == &nd_pmem_device_type : false;
}

bool is_nd_volatile(struct device *dev)
{
	return dev ? dev->type == &nd_volatile_device_type : false;
}

u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
		struct nd_namespace_index *nsindex)
{
	struct nd_interleave_set *nd_set = nd_region->nd_set;

	if (!nd_set)
		return 0;

	if (nsindex && __le16_to_cpu(nsindex->major) == 1
			&& __le16_to_cpu(nsindex->minor) == 1)
		return nd_set->cookie1;
	return nd_set->cookie2;
}

u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
{
	struct nd_interleave_set *nd_set = nd_region->nd_set;

	if (nd_set)
		return nd_set->altcookie;
	return 0;
}

void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
{
	struct nd_label_ent *label_ent, *e;

	lockdep_assert_held(&nd_mapping->lock);
	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
		list_del(&label_ent->list);
		kfree(label_ent);
	}
}

/*
 * When a namespace is activated create new seeds for the next
 * namespace, or namespace-personality to be configured.
 */
void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
{
	nvdimm_bus_lock(dev);
	if (nd_region->ns_seed == dev) {
		nd_region_create_ns_seed(nd_region);
	} else if (is_nd_btt(dev)) {
		struct nd_btt *nd_btt = to_nd_btt(dev);

		if (nd_region->btt_seed == dev)
			nd_region_create_btt_seed(nd_region);
		if (nd_region->ns_seed == &nd_btt->ndns->dev)
			nd_region_create_ns_seed(nd_region);
	} else if (is_nd_pfn(dev)) {
		struct nd_pfn *nd_pfn = to_nd_pfn(dev);

		if (nd_region->pfn_seed == dev)
			nd_region_create_pfn_seed(nd_region);
		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
			nd_region_create_ns_seed(nd_region);
	} else if (is_nd_dax(dev)) {
		struct nd_dax *nd_dax = to_nd_dax(dev);

		if (nd_region->dax_seed == dev)
			nd_region_create_dax_seed(nd_region);
		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
			nd_region_create_ns_seed(nd_region);
	}
	nvdimm_bus_unlock(dev);
}

/**
 * nd_region_acquire_lane - allocate and lock a lane
 * @nd_region: region id and number of lanes possible
 *
 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
 * We optimize for the common case where there are 256 lanes, one
 * per-cpu.  For larger systems we need to lock to share lanes.  For now
 * this implementation assumes the cost of maintaining an allocator for
 * free lanes is on the order of the lock hold time, so it implements a
 * static lane = cpu % num_lanes mapping.
 *
 * In the case of a BTT instance on top of a BLK namespace a lane may be
 * acquired recursively.  We lock on the first instance.
 *
 * In the case of a BTT instance on top of PMEM, we only acquire a lane
 * for the BTT metadata updates.
 */
unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
{
	unsigned int cpu, lane;

	cpu = get_cpu();
	if (nd_region->num_lanes < nr_cpu_ids) {
		struct nd_percpu_lane *ndl_lock, *ndl_count;

		lane = cpu % nd_region->num_lanes;
		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
		if (ndl_count->count++ == 0)
			spin_lock(&ndl_lock->lock);
	} else
		lane = cpu;

	return lane;
}
EXPORT_SYMBOL(nd_region_acquire_lane);

void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
{
	if (nd_region->num_lanes < nr_cpu_ids) {
		unsigned int cpu = get_cpu();
		struct nd_percpu_lane *ndl_lock, *ndl_count;

		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
		if (--ndl_count->count == 0)
			spin_unlock(&ndl_lock->lock);
		put_cpu();
	}
	put_cpu();
}
EXPORT_SYMBOL(nd_region_release_lane);

/*
 * PowerPC requires this alignment for memremap_pages(). All other archs
 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
 */
#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M

static unsigned long default_align(struct nd_region *nd_region)
{
	unsigned long align;
	u32 remainder;
	int mappings;

	align = MEMREMAP_COMPAT_ALIGN_MAX;
	if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
		align = PAGE_SIZE;

	mappings = max_t(u16, 1, nd_region->ndr_mappings);
	div_u64_rem(align, mappings, &remainder);
	if (remainder)
		align *= mappings;

	return align;
}

static struct lock_class_key nvdimm_region_key;

static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
		struct nd_region_desc *ndr_desc,
		const struct device_type *dev_type, const char *caller)
{
	struct nd_region *nd_region;
	struct device *dev;
	unsigned int i;
	int ro = 0;

	for (i = 0; i < ndr_desc->num_mappings; i++) {
		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
		struct nvdimm *nvdimm = mapping->nvdimm;

		if ((mapping->start | mapping->size) % PAGE_SIZE) {
			dev_err(&nvdimm_bus->dev,
				"%s: %s mapping%d is not %ld aligned\n",
				caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
			return NULL;
		}

		if (test_bit(NDD_UNARMED, &nvdimm->flags))
			ro = 1;

	}

	nd_region =
		kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
			GFP_KERNEL);

	if (!nd_region)
		return NULL;
	/* CXL pre-assigns memregion ids before creating nvdimm regions */
	if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
		nd_region->id = ndr_desc->memregion;
	} else {
		nd_region->id = memregion_alloc(GFP_KERNEL);
		if (nd_region->id < 0)
			goto err_id;
	}

	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
	if (!nd_region->lane)
		goto err_percpu;

        for (i = 0; i < nr_cpu_ids; i++) {
		struct nd_percpu_lane *ndl;

		ndl = per_cpu_ptr(nd_region->lane, i);
		spin_lock_init(&ndl->lock);
		ndl->count = 0;
	}

	for (i = 0; i < ndr_desc->num_mappings; i++) {
		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
		struct nvdimm *nvdimm = mapping->nvdimm;

		nd_region->mapping[i].nvdimm = nvdimm;
		nd_region->mapping[i].start = mapping->start;
		nd_region->mapping[i].size = mapping->size;
		nd_region->mapping[i].position = mapping->position;
		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
		mutex_init(&nd_region->mapping[i].lock);

		get_device(&nvdimm->dev);
	}
	nd_region->ndr_mappings = ndr_desc->num_mappings;
	nd_region->provider_data = ndr_desc->provider_data;
	nd_region->nd_set = ndr_desc->nd_set;
	nd_region->num_lanes = ndr_desc->num_lanes;
	nd_region->flags = ndr_desc->flags;
	nd_region->ro = ro;
	nd_region->numa_node = ndr_desc->numa_node;
	nd_region->target_node = ndr_desc->target_node;
	ida_init(&nd_region->ns_ida);
	ida_init(&nd_region->btt_ida);
	ida_init(&nd_region->pfn_ida);
	ida_init(&nd_region->dax_ida);
	dev = &nd_region->dev;
	dev_set_name(dev, "region%d", nd_region->id);
	dev->parent = &nvdimm_bus->dev;
	dev->type = dev_type;
	dev->groups = ndr_desc->attr_groups;
	dev->of_node = ndr_desc->of_node;
	nd_region->ndr_size = resource_size(ndr_desc->res);
	nd_region->ndr_start = ndr_desc->res->start;
	nd_region->align = default_align(nd_region);
	if (ndr_desc->flush)
		nd_region->flush = ndr_desc->flush;
	else
		nd_region->flush = NULL;

	device_initialize(dev);
	lockdep_set_class(&dev->mutex, &nvdimm_region_key);
	nd_device_register(dev);

	return nd_region;

err_percpu:
	if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
		memregion_free(nd_region->id);
err_id:
	kfree(nd_region);
	return NULL;
}

struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
		struct nd_region_desc *ndr_desc)
{
	ndr_desc->num_lanes = ND_MAX_LANES;
	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
			__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);

struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
		struct nd_region_desc *ndr_desc)
{
	ndr_desc->num_lanes = ND_MAX_LANES;
	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
			__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);

void nvdimm_region_delete(struct nd_region *nd_region)
{
	if (nd_region)
		nd_device_unregister(&nd_region->dev, ND_SYNC);
}
EXPORT_SYMBOL_GPL(nvdimm_region_delete);

int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
{
	int rc = 0;

	if (!nd_region->flush)
		rc = generic_nvdimm_flush(nd_region);
	else {
		if (nd_region->flush(nd_region, bio))
			rc = -EIO;
	}

	return rc;
}
/**
 * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
 * @nd_region: interleaved pmem region
 */
int generic_nvdimm_flush(struct nd_region *nd_region)
{
	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
	int i, idx;

	/*
	 * Try to encourage some diversity in flush hint addresses
	 * across cpus assuming a limited number of flush hints.
	 */
	idx = this_cpu_read(flush_idx);
	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));

	/*
	 * The pmem_wmb() is needed to 'sfence' all
	 * previous writes such that they are architecturally visible for
	 * the platform buffer flush. Note that we've already arranged for pmem
	 * writes to avoid the cache via memcpy_flushcache().  The final
	 * wmb() ensures ordering for the NVDIMM flush write.
	 */
	pmem_wmb();
	for (i = 0; i < nd_region->ndr_mappings; i++)
		if (ndrd_get_flush_wpq(ndrd, i, 0))
			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
	wmb();

	return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_flush);

/**
 * nvdimm_has_flush - determine write flushing requirements
 * @nd_region: interleaved pmem region
 *
 * Returns 1 if writes require flushing
 * Returns 0 if writes do not require flushing
 * Returns -ENXIO if flushing capability can not be determined
 */
int nvdimm_has_flush(struct nd_region *nd_region)
{
	int i;

	/* no nvdimm or pmem api == flushing capability unknown */
	if (nd_region->ndr_mappings == 0
			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
		return -ENXIO;

	/* Test if an explicit flush function is defined */
	if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
		return 1;

	/* Test if any flush hints for the region are available */
	for (i = 0; i < nd_region->ndr_mappings; i++) {
		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
		struct nvdimm *nvdimm = nd_mapping->nvdimm;

		/* flush hints present / available */
		if (nvdimm->num_flush)
			return 1;
	}

	/*
	 * The platform defines dimm devices without hints nor explicit flush,
	 * assume platform persistence mechanism like ADR
	 */
	return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_has_flush);

int nvdimm_has_cache(struct nd_region *nd_region)
{
	return is_nd_pmem(&nd_region->dev) &&
		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
}
EXPORT_SYMBOL_GPL(nvdimm_has_cache);

bool is_nvdimm_sync(struct nd_region *nd_region)
{
	if (is_nd_volatile(&nd_region->dev))
		return true;

	return is_nd_pmem(&nd_region->dev) &&
		!test_bit(ND_REGION_ASYNC, &nd_region->flags);
}
EXPORT_SYMBOL_GPL(is_nvdimm_sync);

struct conflict_context {
	struct nd_region *nd_region;
	resource_size_t start, size;
};

static int region_conflict(struct device *dev, void *data)
{
	struct nd_region *nd_region;
	struct conflict_context *ctx = data;
	resource_size_t res_end, region_end, region_start;

	if (!is_memory(dev))
		return 0;

	nd_region = to_nd_region(dev);
	if (nd_region == ctx->nd_region)
		return 0;

	res_end = ctx->start + ctx->size;
	region_start = nd_region->ndr_start;
	region_end = region_start + nd_region->ndr_size;
	if (ctx->start >= region_start && ctx->start < region_end)
		return -EBUSY;
	if (res_end > region_start && res_end <= region_end)
		return -EBUSY;
	return 0;
}

int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
		resource_size_t size)
{
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
	struct conflict_context ctx = {
		.nd_region = nd_region,
		.start = start,
		.size = size,
	};

	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
}

MODULE_IMPORT_NS(DEVMEM);