Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Viresh Kumar | 3953 | 67.55% | 85 | 61.15% |
Georgi Djakov | 493 | 8.42% | 2 | 1.44% |
Lukasz Luba | 322 | 5.50% | 7 | 5.04% |
Quentin Perret | 296 | 5.06% | 1 | 0.72% |
Shawn Guo | 130 | 2.22% | 2 | 1.44% |
Sibi Sankar | 127 | 2.17% | 1 | 0.72% |
Nishanth Menon | 97 | 1.66% | 6 | 4.32% |
Yangtao Li | 59 | 1.01% | 1 | 0.72% |
Saravana Kannan | 54 | 0.92% | 1 | 0.72% |
Dave Gerlach | 51 | 0.87% | 3 | 2.16% |
James Calligeros | 40 | 0.68% | 1 | 0.72% |
Dmitry Osipenko | 40 | 0.68% | 3 | 2.16% |
Liang He | 33 | 0.56% | 2 | 1.44% |
MyungJoo Ham | 20 | 0.34% | 1 | 0.72% |
Sudeep Holla | 16 | 0.27% | 2 | 1.44% |
Anson Huang | 14 | 0.24% | 1 | 0.72% |
Nicola Mazzucato | 12 | 0.21% | 1 | 0.72% |
Liam Girdwood | 11 | 0.19% | 1 | 0.72% |
Waldemar Rymarkiewicz | 11 | 0.19% | 1 | 0.72% |
Arnd Bergmann | 11 | 0.19% | 1 | 0.72% |
Michał Mirosław | 10 | 0.17% | 1 | 0.72% |
Pi-Cheng Chen | 10 | 0.17% | 1 | 0.72% |
Dmitry Torokhov | 8 | 0.14% | 1 | 0.72% |
Stephan Gerhold | 7 | 0.12% | 1 | 0.72% |
Yue haibing | 4 | 0.07% | 1 | 0.72% |
Vincent Guittot | 4 | 0.07% | 1 | 0.72% |
Langsdorf, Mark | 4 | 0.07% | 1 | 0.72% |
Paul Gortmaker | 3 | 0.05% | 1 | 0.72% |
Rajendra Nayak | 2 | 0.03% | 1 | 0.72% |
Dan Carpenter | 2 | 0.03% | 1 | 0.72% |
Pavankumar Kondeti | 2 | 0.03% | 1 | 0.72% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.72% |
Yang Yingliang | 1 | 0.02% | 1 | 0.72% |
Walter Lozano | 1 | 0.02% | 1 | 0.72% |
Masahiro Yamada | 1 | 0.02% | 1 | 0.72% |
Bartlomiej Zolnierkiewicz | 1 | 0.02% | 1 | 0.72% |
Total | 5852 | 139 |
// SPDX-License-Identifier: GPL-2.0-only /* * Generic OPP OF helpers * * Copyright (C) 2009-2010 Texas Instruments Incorporated. * Nishanth Menon * Romit Dasgupta * Kevin Hilman */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cpu.h> #include <linux/errno.h> #include <linux/device.h> #include <linux/of_device.h> #include <linux/pm_domain.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/energy_model.h> #include "opp.h" /* * Returns opp descriptor node for a device node, caller must * do of_node_put(). */ static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, int index) { /* "operating-points-v2" can be an array for power domain providers */ return of_parse_phandle(np, "operating-points-v2", index); } /* Returns opp descriptor node for a device, caller must do of_node_put() */ struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) { return _opp_of_get_opp_desc_node(dev->of_node, 0); } EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); struct opp_table *_managed_opp(struct device *dev, int index) { struct opp_table *opp_table, *managed_table = NULL; struct device_node *np; np = _opp_of_get_opp_desc_node(dev->of_node, index); if (!np) return NULL; list_for_each_entry(opp_table, &opp_tables, node) { if (opp_table->np == np) { /* * Multiple devices can point to the same OPP table and * so will have same node-pointer, np. * * But the OPPs will be considered as shared only if the * OPP table contains a "opp-shared" property. */ if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { _get_opp_table_kref(opp_table); managed_table = opp_table; } break; } } of_node_put(np); return managed_table; } /* The caller must call dev_pm_opp_put() after the OPP is used */ static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, struct device_node *opp_np) { struct dev_pm_opp *opp; mutex_lock(&opp_table->lock); list_for_each_entry(opp, &opp_table->opp_list, node) { if (opp->np == opp_np) { dev_pm_opp_get(opp); mutex_unlock(&opp_table->lock); return opp; } } mutex_unlock(&opp_table->lock); return NULL; } static struct device_node *of_parse_required_opp(struct device_node *np, int index) { return of_parse_phandle(np, "required-opps", index); } /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) { struct opp_table *opp_table; struct device_node *opp_table_np; opp_table_np = of_get_parent(opp_np); if (!opp_table_np) goto err; /* It is safe to put the node now as all we need now is its address */ of_node_put(opp_table_np); mutex_lock(&opp_table_lock); list_for_each_entry(opp_table, &opp_tables, node) { if (opp_table_np == opp_table->np) { _get_opp_table_kref(opp_table); mutex_unlock(&opp_table_lock); return opp_table; } } mutex_unlock(&opp_table_lock); err: return ERR_PTR(-ENODEV); } /* Free resources previously acquired by _opp_table_alloc_required_tables() */ static void _opp_table_free_required_tables(struct opp_table *opp_table) { struct opp_table **required_opp_tables = opp_table->required_opp_tables; int i; if (!required_opp_tables) return; for (i = 0; i < opp_table->required_opp_count; i++) { if (IS_ERR_OR_NULL(required_opp_tables[i])) continue; dev_pm_opp_put_opp_table(required_opp_tables[i]); } kfree(required_opp_tables); opp_table->required_opp_count = 0; opp_table->required_opp_tables = NULL; list_del(&opp_table->lazy); } /* * Populate all devices and opp tables which are part of "required-opps" list. * Checking only the first OPP node should be enough. */ static void _opp_table_alloc_required_tables(struct opp_table *opp_table, struct device *dev, struct device_node *opp_np) { struct opp_table **required_opp_tables; struct device_node *required_np, *np; bool lazy = false; int count, i; /* Traversing the first OPP node is all we need */ np = of_get_next_available_child(opp_np, NULL); if (!np) { dev_warn(dev, "Empty OPP table\n"); return; } count = of_count_phandle_with_args(np, "required-opps", NULL); if (count <= 0) goto put_np; required_opp_tables = kcalloc(count, sizeof(*required_opp_tables), GFP_KERNEL); if (!required_opp_tables) goto put_np; opp_table->required_opp_tables = required_opp_tables; opp_table->required_opp_count = count; for (i = 0; i < count; i++) { required_np = of_parse_required_opp(np, i); if (!required_np) goto free_required_tables; required_opp_tables[i] = _find_table_of_opp_np(required_np); of_node_put(required_np); if (IS_ERR(required_opp_tables[i])) lazy = true; } /* Let's do the linking later on */ if (lazy) list_add(&opp_table->lazy, &lazy_opp_tables); goto put_np; free_required_tables: _opp_table_free_required_tables(opp_table); put_np: of_node_put(np); } void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, int index) { struct device_node *np, *opp_np; u32 val; /* * Only required for backward compatibility with v1 bindings, but isn't * harmful for other cases. And so we do it unconditionally. */ np = of_node_get(dev->of_node); if (!np) return; if (!of_property_read_u32(np, "clock-latency", &val)) opp_table->clock_latency_ns_max = val; of_property_read_u32(np, "voltage-tolerance", &opp_table->voltage_tolerance_v1); if (of_find_property(np, "#power-domain-cells", NULL)) opp_table->is_genpd = true; /* Get OPP table node */ opp_np = _opp_of_get_opp_desc_node(np, index); of_node_put(np); if (!opp_np) return; if (of_property_read_bool(opp_np, "opp-shared")) opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; else opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; opp_table->np = opp_np; _opp_table_alloc_required_tables(opp_table, dev, opp_np); } void _of_clear_opp_table(struct opp_table *opp_table) { _opp_table_free_required_tables(opp_table); of_node_put(opp_table->np); } /* * Release all resources previously acquired with a call to * _of_opp_alloc_required_opps(). */ static void _of_opp_free_required_opps(struct opp_table *opp_table, struct dev_pm_opp *opp) { struct dev_pm_opp **required_opps = opp->required_opps; int i; if (!required_opps) return; for (i = 0; i < opp_table->required_opp_count; i++) { if (!required_opps[i]) continue; /* Put the reference back */ dev_pm_opp_put(required_opps[i]); } opp->required_opps = NULL; kfree(required_opps); } void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp) { _of_opp_free_required_opps(opp_table, opp); of_node_put(opp->np); } /* Populate all required OPPs which are part of "required-opps" list */ static int _of_opp_alloc_required_opps(struct opp_table *opp_table, struct dev_pm_opp *opp) { struct dev_pm_opp **required_opps; struct opp_table *required_table; struct device_node *np; int i, ret, count = opp_table->required_opp_count; if (!count) return 0; required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL); if (!required_opps) return -ENOMEM; opp->required_opps = required_opps; for (i = 0; i < count; i++) { required_table = opp_table->required_opp_tables[i]; /* Required table not added yet, we will link later */ if (IS_ERR_OR_NULL(required_table)) continue; np = of_parse_required_opp(opp->np, i); if (unlikely(!np)) { ret = -ENODEV; goto free_required_opps; } required_opps[i] = _find_opp_of_np(required_table, np); of_node_put(np); if (!required_opps[i]) { pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", __func__, opp->np, i); ret = -ENODEV; goto free_required_opps; } } return 0; free_required_opps: _of_opp_free_required_opps(opp_table, opp); return ret; } /* Link required OPPs for an individual OPP */ static int lazy_link_required_opps(struct opp_table *opp_table, struct opp_table *new_table, int index) { struct device_node *required_np; struct dev_pm_opp *opp; list_for_each_entry(opp, &opp_table->opp_list, node) { required_np = of_parse_required_opp(opp->np, index); if (unlikely(!required_np)) return -ENODEV; opp->required_opps[index] = _find_opp_of_np(new_table, required_np); of_node_put(required_np); if (!opp->required_opps[index]) { pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", __func__, opp->np, index); return -ENODEV; } } return 0; } /* Link required OPPs for all OPPs of the newly added OPP table */ static void lazy_link_required_opp_table(struct opp_table *new_table) { struct opp_table *opp_table, *temp, **required_opp_tables; struct device_node *required_np, *opp_np, *required_table_np; struct dev_pm_opp *opp; int i, ret; mutex_lock(&opp_table_lock); list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { bool lazy = false; /* opp_np can't be invalid here */ opp_np = of_get_next_available_child(opp_table->np, NULL); for (i = 0; i < opp_table->required_opp_count; i++) { required_opp_tables = opp_table->required_opp_tables; /* Required opp-table is already parsed */ if (!IS_ERR(required_opp_tables[i])) continue; /* required_np can't be invalid here */ required_np = of_parse_required_opp(opp_np, i); required_table_np = of_get_parent(required_np); of_node_put(required_table_np); of_node_put(required_np); /* * Newly added table isn't the required opp-table for * opp_table. */ if (required_table_np != new_table->np) { lazy = true; continue; } required_opp_tables[i] = new_table; _get_opp_table_kref(new_table); /* Link OPPs now */ ret = lazy_link_required_opps(opp_table, new_table, i); if (ret) { /* The OPPs will be marked unusable */ lazy = false; break; } } of_node_put(opp_np); /* All required opp-tables found, remove from lazy list */ if (!lazy) { list_del_init(&opp_table->lazy); list_for_each_entry(opp, &opp_table->opp_list, node) _required_opps_available(opp, opp_table->required_opp_count); } } mutex_unlock(&opp_table_lock); } static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) { struct device_node *np, *opp_np; struct property *prop; if (!opp_table) { np = of_node_get(dev->of_node); if (!np) return -ENODEV; opp_np = _opp_of_get_opp_desc_node(np, 0); of_node_put(np); } else { opp_np = of_node_get(opp_table->np); } /* Lets not fail in case we are parsing opp-v1 bindings */ if (!opp_np) return 0; /* Checking only first OPP is sufficient */ np = of_get_next_available_child(opp_np, NULL); of_node_put(opp_np); if (!np) { dev_err(dev, "OPP table empty\n"); return -EINVAL; } prop = of_find_property(np, "opp-peak-kBps", NULL); of_node_put(np); if (!prop || !prop->length) return 0; return 1; } int dev_pm_opp_of_find_icc_paths(struct device *dev, struct opp_table *opp_table) { struct device_node *np; int ret, i, count, num_paths; struct icc_path **paths; ret = _bandwidth_supported(dev, opp_table); if (ret == -EINVAL) return 0; /* Empty OPP table is a valid corner-case, let's not fail */ else if (ret <= 0) return ret; ret = 0; np = of_node_get(dev->of_node); if (!np) return 0; count = of_count_phandle_with_args(np, "interconnects", "#interconnect-cells"); of_node_put(np); if (count < 0) return 0; /* two phandles when #interconnect-cells = <1> */ if (count % 2) { dev_err(dev, "%s: Invalid interconnects values\n", __func__); return -EINVAL; } num_paths = count / 2; paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); if (!paths) return -ENOMEM; for (i = 0; i < num_paths; i++) { paths[i] = of_icc_get_by_index(dev, i); if (IS_ERR(paths[i])) { ret = PTR_ERR(paths[i]); if (ret != -EPROBE_DEFER) { dev_err(dev, "%s: Unable to get path%d: %d\n", __func__, i, ret); } goto err; } } if (opp_table) { opp_table->paths = paths; opp_table->path_count = num_paths; return 0; } err: while (i--) icc_put(paths[i]); kfree(paths); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, struct device_node *np) { unsigned int levels = opp_table->supported_hw_count; int count, versions, ret, i, j; u32 val; if (!opp_table->supported_hw) { /* * In the case that no supported_hw has been set by the * platform but there is an opp-supported-hw value set for * an OPP then the OPP should not be enabled as there is * no way to see if the hardware supports it. */ if (of_find_property(np, "opp-supported-hw", NULL)) return false; else return true; } count = of_property_count_u32_elems(np, "opp-supported-hw"); if (count <= 0 || count % levels) { dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", __func__, count); return false; } versions = count / levels; /* All levels in at least one of the versions should match */ for (i = 0; i < versions; i++) { bool supported = true; for (j = 0; j < levels; j++) { ret = of_property_read_u32_index(np, "opp-supported-hw", i * levels + j, &val); if (ret) { dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", __func__, i * levels + j, ret); return false; } /* Check if the level is supported */ if (!(val & opp_table->supported_hw[j])) { supported = false; break; } } if (supported) return true; } return false; } static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev, struct opp_table *opp_table, const char *prop_type, bool *triplet) { struct property *prop = NULL; char name[NAME_MAX]; int count, ret; u32 *out; /* Search for "opp-<prop_type>-<name>" */ if (opp_table->prop_name) { snprintf(name, sizeof(name), "opp-%s-%s", prop_type, opp_table->prop_name); prop = of_find_property(opp->np, name, NULL); } if (!prop) { /* Search for "opp-<prop_type>" */ snprintf(name, sizeof(name), "opp-%s", prop_type); prop = of_find_property(opp->np, name, NULL); if (!prop) return NULL; } count = of_property_count_u32_elems(opp->np, name); if (count < 0) { dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name, count); return ERR_PTR(count); } /* * Initialize regulator_count, if regulator information isn't provided * by the platform. Now that one of the properties is available, fix the * regulator_count to 1. */ if (unlikely(opp_table->regulator_count == -1)) opp_table->regulator_count = 1; if (count != opp_table->regulator_count && (!triplet || count != opp_table->regulator_count * 3)) { dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n", __func__, prop_type, count, opp_table->regulator_count); return ERR_PTR(-EINVAL); } out = kmalloc_array(count, sizeof(*out), GFP_KERNEL); if (!out) return ERR_PTR(-EINVAL); ret = of_property_read_u32_array(opp->np, name, out, count); if (ret) { dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); kfree(out); return ERR_PTR(-EINVAL); } if (triplet) *triplet = count != opp_table->regulator_count; return out; } static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev, struct opp_table *opp_table, bool *triplet) { u32 *microvolt; microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet); if (IS_ERR(microvolt)) return microvolt; if (!microvolt) { /* * Missing property isn't a problem, but an invalid * entry is. This property isn't optional if regulator * information is provided. Check only for the first OPP, as * regulator_count may get initialized after that to a valid * value. */ if (list_empty(&opp_table->opp_list) && opp_table->regulator_count > 0) { dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", __func__); return ERR_PTR(-EINVAL); } } return microvolt; } static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, struct opp_table *opp_table) { u32 *microvolt, *microamp, *microwatt; int ret = 0, i, j; bool triplet; microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet); if (IS_ERR(microvolt)) return PTR_ERR(microvolt); microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL); if (IS_ERR(microamp)) { ret = PTR_ERR(microamp); goto free_microvolt; } microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL); if (IS_ERR(microwatt)) { ret = PTR_ERR(microwatt); goto free_microamp; } /* * Initialize regulator_count if it is uninitialized and no properties * are found. */ if (unlikely(opp_table->regulator_count == -1)) { opp_table->regulator_count = 0; return 0; } for (i = 0, j = 0; i < opp_table->regulator_count; i++) { if (microvolt) { opp->supplies[i].u_volt = microvolt[j++]; if (triplet) { opp->supplies[i].u_volt_min = microvolt[j++]; opp->supplies[i].u_volt_max = microvolt[j++]; } else { opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; } } if (microamp) opp->supplies[i].u_amp = microamp[i]; if (microwatt) opp->supplies[i].u_watt = microwatt[i]; } kfree(microwatt); free_microamp: kfree(microamp); free_microvolt: kfree(microvolt); return ret; } /** * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT * entries * @dev: device pointer used to lookup OPP table. * * Free OPPs created using static entries present in DT. */ void dev_pm_opp_of_remove_table(struct device *dev) { dev_pm_opp_remove_table(dev); } EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table, struct device_node *np) { struct property *prop; int i, count, ret; u64 *rates; prop = of_find_property(np, "opp-hz", NULL); if (!prop) return -ENODEV; count = prop->length / sizeof(u64); if (opp_table->clk_count != count) { pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n", __func__, count, opp_table->clk_count); return -EINVAL; } rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL); if (!rates) return -ENOMEM; ret = of_property_read_u64_array(np, "opp-hz", rates, count); if (ret) { pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret); } else { /* * Rate is defined as an unsigned long in clk API, and so * casting explicitly to its type. Must be fixed once rate is 64 * bit guaranteed in clk API. */ for (i = 0; i < count; i++) { new_opp->rates[i] = (unsigned long)rates[i]; /* This will happen for frequencies > 4.29 GHz */ WARN_ON(new_opp->rates[i] != rates[i]); } } kfree(rates); return ret; } static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table, struct device_node *np, bool peak) { const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; struct property *prop; int i, count, ret; u32 *bw; prop = of_find_property(np, name, NULL); if (!prop) return -ENODEV; count = prop->length / sizeof(u32); if (opp_table->path_count != count) { pr_err("%s: Mismatch between %s and paths (%d %d)\n", __func__, name, count, opp_table->path_count); return -EINVAL; } bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); if (!bw) return -ENOMEM; ret = of_property_read_u32_array(np, name, bw, count); if (ret) { pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); goto out; } for (i = 0; i < count; i++) { if (peak) new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); else new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); } out: kfree(bw); return ret; } static int _read_opp_key(struct dev_pm_opp *new_opp, struct opp_table *opp_table, struct device_node *np) { bool found = false; int ret; ret = _read_rate(new_opp, opp_table, np); if (!ret) found = true; else if (ret != -ENODEV) return ret; /* * Bandwidth consists of peak and average (optional) values: * opp-peak-kBps = <path1_value path2_value>; * opp-avg-kBps = <path1_value path2_value>; */ ret = _read_bw(new_opp, opp_table, np, true); if (!ret) { found = true; ret = _read_bw(new_opp, opp_table, np, false); } /* The properties were found but we failed to parse them */ if (ret && ret != -ENODEV) return ret; if (!of_property_read_u32(np, "opp-level", &new_opp->level)) found = true; if (found) return 0; return ret; } /** * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) * @opp_table: OPP table * @dev: device for which we do this operation * @np: device node * * This function adds an opp definition to the opp table and returns status. The * opp can be controlled using dev_pm_opp_enable/disable functions and may be * removed by dev_pm_opp_remove. * * Return: * Valid OPP pointer: * On success * NULL: * Duplicate OPPs (both freq and volt are same) and opp->available * OR if the OPP is not supported by hardware. * ERR_PTR(-EEXIST): * Freq are same and volt are different OR * Duplicate OPPs (both freq and volt are same) and !opp->available * ERR_PTR(-ENOMEM): * Memory allocation failure * ERR_PTR(-EINVAL): * Failed parsing the OPP node */ static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, struct device *dev, struct device_node *np) { struct dev_pm_opp *new_opp; u32 val; int ret; new_opp = _opp_allocate(opp_table); if (!new_opp) return ERR_PTR(-ENOMEM); ret = _read_opp_key(new_opp, opp_table, np); if (ret < 0) { dev_err(dev, "%s: opp key field not found\n", __func__); goto free_opp; } /* Check if the OPP supports hardware's hierarchy of versions or not */ if (!_opp_is_supported(dev, opp_table, np)) { dev_dbg(dev, "OPP not supported by hardware: %s\n", of_node_full_name(np)); goto free_opp; } new_opp->turbo = of_property_read_bool(np, "turbo-mode"); new_opp->np = of_node_get(np); new_opp->dynamic = false; new_opp->available = true; ret = _of_opp_alloc_required_opps(opp_table, new_opp); if (ret) goto free_opp; if (!of_property_read_u32(np, "clock-latency-ns", &val)) new_opp->clock_latency_ns = val; ret = opp_parse_supplies(new_opp, dev, opp_table); if (ret) goto free_required_opps; if (opp_table->is_genpd) new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp); ret = _opp_add(dev, new_opp, opp_table); if (ret) { /* Don't return error for duplicate OPPs */ if (ret == -EBUSY) ret = 0; goto free_required_opps; } /* OPP to select on device suspend */ if (of_property_read_bool(np, "opp-suspend")) { if (opp_table->suspend_opp) { /* Pick the OPP with higher rate/bw/level as suspend OPP */ if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) { opp_table->suspend_opp->suspend = false; new_opp->suspend = true; opp_table->suspend_opp = new_opp; } } else { new_opp->suspend = true; opp_table->suspend_opp = new_opp; } } if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", __func__, new_opp->turbo, new_opp->rates[0], new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, new_opp->level); /* * Notify the changes in the availability of the operable * frequency/voltage list. */ blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); return new_opp; free_required_opps: _of_opp_free_required_opps(opp_table, new_opp); free_opp: _opp_free(new_opp); return ret ? ERR_PTR(ret) : NULL; } /* Initializes OPP tables based on new bindings */ static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) { struct device_node *np; int ret, count = 0; struct dev_pm_opp *opp; /* OPP table is already initialized for the device */ mutex_lock(&opp_table->lock); if (opp_table->parsed_static_opps) { opp_table->parsed_static_opps++; mutex_unlock(&opp_table->lock); return 0; } opp_table->parsed_static_opps = 1; mutex_unlock(&opp_table->lock); /* We have opp-table node now, iterate over it and add OPPs */ for_each_available_child_of_node(opp_table->np, np) { opp = _opp_add_static_v2(opp_table, dev, np); if (IS_ERR(opp)) { ret = PTR_ERR(opp); dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, ret); of_node_put(np); goto remove_static_opp; } else if (opp) { count++; } } /* There should be one or more OPPs defined */ if (!count) { dev_err(dev, "%s: no supported OPPs", __func__); ret = -ENOENT; goto remove_static_opp; } list_for_each_entry(opp, &opp_table->opp_list, node) { /* Any non-zero performance state would enable the feature */ if (opp->pstate) { opp_table->genpd_performance_state = true; break; } } lazy_link_required_opp_table(opp_table); return 0; remove_static_opp: _opp_remove_all_static(opp_table); return ret; } /* Initializes OPP tables based on old-deprecated bindings */ static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) { const struct property *prop; const __be32 *val; int nr, ret = 0; mutex_lock(&opp_table->lock); if (opp_table->parsed_static_opps) { opp_table->parsed_static_opps++; mutex_unlock(&opp_table->lock); return 0; } opp_table->parsed_static_opps = 1; mutex_unlock(&opp_table->lock); prop = of_find_property(dev->of_node, "operating-points", NULL); if (!prop) { ret = -ENODEV; goto remove_static_opp; } if (!prop->value) { ret = -ENODATA; goto remove_static_opp; } /* * Each OPP is a set of tuples consisting of frequency and * voltage like <freq-kHz vol-uV>. */ nr = prop->length / sizeof(u32); if (nr % 2) { dev_err(dev, "%s: Invalid OPP table\n", __func__); ret = -EINVAL; goto remove_static_opp; } val = prop->value; while (nr) { unsigned long freq = be32_to_cpup(val++) * 1000; unsigned long volt = be32_to_cpup(val++); ret = _opp_add_v1(opp_table, dev, freq, volt, false); if (ret) { dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", __func__, freq, ret); goto remove_static_opp; } nr -= 2; } return 0; remove_static_opp: _opp_remove_all_static(opp_table); return ret; } static int _of_add_table_indexed(struct device *dev, int index) { struct opp_table *opp_table; int ret, count; if (index) { /* * If only one phandle is present, then the same OPP table * applies for all index requests. */ count = of_count_phandle_with_args(dev->of_node, "operating-points-v2", NULL); if (count == 1) index = 0; } opp_table = _add_opp_table_indexed(dev, index, true); if (IS_ERR(opp_table)) return PTR_ERR(opp_table); /* * OPPs have two version of bindings now. Also try the old (v1) * bindings for backward compatibility with older dtbs. */ if (opp_table->np) ret = _of_add_opp_table_v2(dev, opp_table); else ret = _of_add_opp_table_v1(dev, opp_table); if (ret) dev_pm_opp_put_opp_table(opp_table); return ret; } static void devm_pm_opp_of_table_release(void *data) { dev_pm_opp_of_remove_table(data); } static int _devm_of_add_table_indexed(struct device *dev, int index) { int ret; ret = _of_add_table_indexed(dev, index); if (ret) return ret; return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); } /** * devm_pm_opp_of_add_table() - Initialize opp table from device tree * @dev: device pointer used to lookup OPP table. * * Register the initial OPP table with the OPP library for given device. * * The opp_table structure will be freed after the device is destroyed. * * Return: * 0 On success OR * Duplicate OPPs (both freq and volt are same) and opp->available * -EEXIST Freq are same and volt are different OR * Duplicate OPPs (both freq and volt are same) and !opp->available * -ENOMEM Memory allocation failure * -ENODEV when 'operating-points' property is not found or is invalid data * in device node. * -ENODATA when empty 'operating-points' property is found * -EINVAL when invalid entries are found in opp-v2 table */ int devm_pm_opp_of_add_table(struct device *dev) { return _devm_of_add_table_indexed(dev, 0); } EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); /** * dev_pm_opp_of_add_table() - Initialize opp table from device tree * @dev: device pointer used to lookup OPP table. * * Register the initial OPP table with the OPP library for given device. * * Return: * 0 On success OR * Duplicate OPPs (both freq and volt are same) and opp->available * -EEXIST Freq are same and volt are different OR * Duplicate OPPs (both freq and volt are same) and !opp->available * -ENOMEM Memory allocation failure * -ENODEV when 'operating-points' property is not found or is invalid data * in device node. * -ENODATA when empty 'operating-points' property is found * -EINVAL when invalid entries are found in opp-v2 table */ int dev_pm_opp_of_add_table(struct device *dev) { return _of_add_table_indexed(dev, 0); } EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); /** * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree * @dev: device pointer used to lookup OPP table. * @index: Index number. * * Register the initial OPP table with the OPP library for given device only * using the "operating-points-v2" property. * * Return: Refer to dev_pm_opp_of_add_table() for return values. */ int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) { return _of_add_table_indexed(dev, index); } EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); /** * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree * @dev: device pointer used to lookup OPP table. * @index: Index number. * * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). */ int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) { return _devm_of_add_table_indexed(dev, index); } EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); /* CPU device specific helpers */ /** * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask * @cpumask: cpumask for which OPP table needs to be removed * * This removes the OPP tables for CPUs present in the @cpumask. * This should be used only to remove static entries created from DT. */ void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) { _dev_pm_opp_cpumask_remove_table(cpumask, -1); } EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); /** * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask * @cpumask: cpumask for which OPP table needs to be added. * * This adds the OPP tables for CPUs present in the @cpumask. */ int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) { struct device *cpu_dev; int cpu, ret; if (WARN_ON(cpumask_empty(cpumask))) return -ENODEV; for_each_cpu(cpu, cpumask) { cpu_dev = get_cpu_device(cpu); if (!cpu_dev) { pr_err("%s: failed to get cpu%d device\n", __func__, cpu); ret = -ENODEV; goto remove_table; } ret = dev_pm_opp_of_add_table(cpu_dev); if (ret) { /* * OPP may get registered dynamically, don't print error * message here. */ pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", __func__, cpu, ret); goto remove_table; } } return 0; remove_table: /* Free all other OPPs */ _dev_pm_opp_cpumask_remove_table(cpumask, cpu); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); /* * Works only for OPP v2 bindings. * * Returns -ENOENT if operating-points-v2 bindings aren't supported. */ /** * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with * @cpu_dev using operating-points-v2 * bindings. * * @cpu_dev: CPU device for which we do this operation * @cpumask: cpumask to update with information of sharing CPUs * * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. * * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. */ int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, struct cpumask *cpumask) { struct device_node *np, *tmp_np, *cpu_np; int cpu, ret = 0; /* Get OPP descriptor node */ np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); if (!np) { dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); return -ENOENT; } cpumask_set_cpu(cpu_dev->id, cpumask); /* OPPs are shared ? */ if (!of_property_read_bool(np, "opp-shared")) goto put_cpu_node; for_each_possible_cpu(cpu) { if (cpu == cpu_dev->id) continue; cpu_np = of_cpu_device_node_get(cpu); if (!cpu_np) { dev_err(cpu_dev, "%s: failed to get cpu%d node\n", __func__, cpu); ret = -ENOENT; goto put_cpu_node; } /* Get OPP descriptor node */ tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); of_node_put(cpu_np); if (!tmp_np) { pr_err("%pOF: Couldn't find opp node\n", cpu_np); ret = -ENOENT; goto put_cpu_node; } /* CPUs are sharing opp node */ if (np == tmp_np) cpumask_set_cpu(cpu, cpumask); of_node_put(tmp_np); } put_cpu_node: of_node_put(np); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); /** * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. * @np: Node that contains the "required-opps" property. * @index: Index of the phandle to parse. * * Returns the performance state of the OPP pointed out by the "required-opps" * property at @index in @np. * * Return: Zero or positive performance state on success, otherwise negative * value on errors. */ int of_get_required_opp_performance_state(struct device_node *np, int index) { struct dev_pm_opp *opp; struct device_node *required_np; struct opp_table *opp_table; int pstate = -EINVAL; required_np = of_parse_required_opp(np, index); if (!required_np) return -ENODEV; opp_table = _find_table_of_opp_np(required_np); if (IS_ERR(opp_table)) { pr_err("%s: Failed to find required OPP table %pOF: %ld\n", __func__, np, PTR_ERR(opp_table)); goto put_required_np; } opp = _find_opp_of_np(opp_table, required_np); if (opp) { pstate = opp->pstate; dev_pm_opp_put(opp); } dev_pm_opp_put_opp_table(opp_table); put_required_np: of_node_put(required_np); return pstate; } EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); /** * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp * @opp: opp for which DT node has to be returned for * * Return: DT node corresponding to the opp, else 0 on success. * * The caller needs to put the node with of_node_put() after using it. */ struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) { if (IS_ERR_OR_NULL(opp)) { pr_err("%s: Invalid parameters\n", __func__); return NULL; } return of_node_get(opp->np); } EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); /* * Callback function provided to the Energy Model framework upon registration. * It provides the power used by @dev at @kHz if it is the frequency of an * existing OPP, or at the frequency of the first OPP above @kHz otherwise * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled * frequency and @uW to the associated power. * * Returns 0 on success or a proper -EINVAL value in case of error. */ static int __maybe_unused _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz) { struct dev_pm_opp *opp; unsigned long opp_freq, opp_power; /* Find the right frequency and related OPP */ opp_freq = *kHz * 1000; opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq); if (IS_ERR(opp)) return -EINVAL; opp_power = dev_pm_opp_get_power(opp); dev_pm_opp_put(opp); if (!opp_power) return -EINVAL; *kHz = opp_freq / 1000; *uW = opp_power; return 0; } /* * Callback function provided to the Energy Model framework upon registration. * This computes the power estimated by @dev at @kHz if it is the frequency * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled * frequency and @uW to the associated power. The power is estimated as * P = C * V^2 * f with C being the device's capacitance and V and f * respectively the voltage and frequency of the OPP. * * Returns -EINVAL if the power calculation failed because of missing * parameters, 0 otherwise. */ static int __maybe_unused _get_power(struct device *dev, unsigned long *uW, unsigned long *kHz) { struct dev_pm_opp *opp; struct device_node *np; unsigned long mV, Hz; u32 cap; u64 tmp; int ret; np = of_node_get(dev->of_node); if (!np) return -EINVAL; ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); of_node_put(np); if (ret) return -EINVAL; Hz = *kHz * 1000; opp = dev_pm_opp_find_freq_ceil(dev, &Hz); if (IS_ERR(opp)) return -EINVAL; mV = dev_pm_opp_get_voltage(opp) / 1000; dev_pm_opp_put(opp); if (!mV) return -EINVAL; tmp = (u64)cap * mV * mV * (Hz / 1000000); /* Provide power in micro-Watts */ do_div(tmp, 1000000); *uW = (unsigned long)tmp; *kHz = Hz / 1000; return 0; } static bool _of_has_opp_microwatt_property(struct device *dev) { unsigned long power, freq = 0; struct dev_pm_opp *opp; /* Check if at least one OPP has needed property */ opp = dev_pm_opp_find_freq_ceil(dev, &freq); if (IS_ERR(opp)) return false; power = dev_pm_opp_get_power(opp); dev_pm_opp_put(opp); if (!power) return false; return true; } /** * dev_pm_opp_of_register_em() - Attempt to register an Energy Model * @dev : Device for which an Energy Model has to be registered * @cpus : CPUs for which an Energy Model has to be registered. For * other type of devices it should be set to NULL. * * This checks whether the "dynamic-power-coefficient" devicetree property has * been specified, and tries to register an Energy Model with it if it has. * Having this property means the voltages are known for OPPs and the EM * might be calculated. */ int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) { struct em_data_callback em_cb; struct device_node *np; int ret, nr_opp; u32 cap; if (IS_ERR_OR_NULL(dev)) { ret = -EINVAL; goto failed; } nr_opp = dev_pm_opp_get_opp_count(dev); if (nr_opp <= 0) { ret = -EINVAL; goto failed; } /* First, try to find more precised Energy Model in DT */ if (_of_has_opp_microwatt_property(dev)) { EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); goto register_em; } np = of_node_get(dev->of_node); if (!np) { ret = -EINVAL; goto failed; } /* * Register an EM only if the 'dynamic-power-coefficient' property is * set in devicetree. It is assumed the voltage values are known if that * property is set since it is useless otherwise. If voltages are not * known, just let the EM registration fail with an error to alert the * user about the inconsistent configuration. */ ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); of_node_put(np); if (ret || !cap) { dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); ret = -EINVAL; goto failed; } EM_SET_ACTIVE_POWER_CB(em_cb, _get_power); register_em: ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); if (ret) goto failed; return 0; failed: dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1