Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Maxime Ripard | 1320 | 48.30% | 2 | 25.00% |
Samuel Holland | 755 | 27.63% | 3 | 37.50% |
Paul Kocialkowski | 654 | 23.93% | 1 | 12.50% |
Chunfeng Yun | 2 | 0.07% | 1 | 12.50% |
Rikard Falkeborn | 2 | 0.07% | 1 | 12.50% |
Total | 2733 | 8 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2016 Allwinnertech Co., Ltd. * Copyright (C) 2017-2018 Bootlin * * Maxime Ripard <maxime.ripard@free-electrons.com> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/phy/phy.h> #include <linux/phy/phy-mipi-dphy.h> #define SUN6I_DPHY_GCTL_REG 0x00 #define SUN6I_DPHY_GCTL_LANE_NUM(n) ((((n) - 1) & 3) << 4) #define SUN6I_DPHY_GCTL_EN BIT(0) #define SUN6I_DPHY_TX_CTL_REG 0x04 #define SUN6I_DPHY_TX_CTL_HS_TX_CLK_CONT BIT(28) #define SUN6I_DPHY_RX_CTL_REG 0x08 #define SUN6I_DPHY_RX_CTL_EN_DBC BIT(31) #define SUN6I_DPHY_RX_CTL_RX_CLK_FORCE BIT(24) #define SUN6I_DPHY_RX_CTL_RX_D3_FORCE BIT(23) #define SUN6I_DPHY_RX_CTL_RX_D2_FORCE BIT(22) #define SUN6I_DPHY_RX_CTL_RX_D1_FORCE BIT(21) #define SUN6I_DPHY_RX_CTL_RX_D0_FORCE BIT(20) #define SUN6I_DPHY_TX_TIME0_REG 0x10 #define SUN6I_DPHY_TX_TIME0_HS_TRAIL(n) (((n) & 0xff) << 24) #define SUN6I_DPHY_TX_TIME0_HS_PREPARE(n) (((n) & 0xff) << 16) #define SUN6I_DPHY_TX_TIME0_LP_CLK_DIV(n) ((n) & 0xff) #define SUN6I_DPHY_TX_TIME1_REG 0x14 #define SUN6I_DPHY_TX_TIME1_CLK_POST(n) (((n) & 0xff) << 24) #define SUN6I_DPHY_TX_TIME1_CLK_PRE(n) (((n) & 0xff) << 16) #define SUN6I_DPHY_TX_TIME1_CLK_ZERO(n) (((n) & 0xff) << 8) #define SUN6I_DPHY_TX_TIME1_CLK_PREPARE(n) ((n) & 0xff) #define SUN6I_DPHY_TX_TIME2_REG 0x18 #define SUN6I_DPHY_TX_TIME2_CLK_TRAIL(n) ((n) & 0xff) #define SUN6I_DPHY_TX_TIME3_REG 0x1c #define SUN6I_DPHY_TX_TIME4_REG 0x20 #define SUN6I_DPHY_TX_TIME4_HS_TX_ANA1(n) (((n) & 0xff) << 8) #define SUN6I_DPHY_TX_TIME4_HS_TX_ANA0(n) ((n) & 0xff) #define SUN6I_DPHY_RX_TIME0_REG 0x30 #define SUN6I_DPHY_RX_TIME0_HS_RX_SYNC(n) (((n) & 0xff) << 24) #define SUN6I_DPHY_RX_TIME0_HS_RX_CLK_MISS(n) (((n) & 0xff) << 16) #define SUN6I_DPHY_RX_TIME0_LP_RX(n) (((n) & 0xff) << 8) #define SUN6I_DPHY_RX_TIME1_REG 0x34 #define SUN6I_DPHY_RX_TIME1_RX_DLY(n) (((n) & 0xfff) << 20) #define SUN6I_DPHY_RX_TIME1_LP_RX_ULPS_WP(n) ((n) & 0xfffff) #define SUN6I_DPHY_RX_TIME2_REG 0x38 #define SUN6I_DPHY_RX_TIME2_HS_RX_ANA1(n) (((n) & 0xff) << 8) #define SUN6I_DPHY_RX_TIME2_HS_RX_ANA0(n) ((n) & 0xff) #define SUN6I_DPHY_RX_TIME3_REG 0x40 #define SUN6I_DPHY_RX_TIME3_LPRST_DLY(n) (((n) & 0xffff) << 16) #define SUN6I_DPHY_ANA0_REG 0x4c #define SUN6I_DPHY_ANA0_REG_PWS BIT(31) #define SUN6I_DPHY_ANA0_REG_PWEND BIT(30) #define SUN6I_DPHY_ANA0_REG_PWENC BIT(29) #define SUN6I_DPHY_ANA0_REG_DMPC BIT(28) #define SUN6I_DPHY_ANA0_REG_DMPD(n) (((n) & 0xf) << 24) #define SUN6I_DPHY_ANA0_REG_SRXDT(n) (((n) & 0xf) << 20) #define SUN6I_DPHY_ANA0_REG_SRXCK(n) (((n) & 0xf) << 16) #define SUN6I_DPHY_ANA0_REG_SDIV2 BIT(15) #define SUN6I_DPHY_ANA0_REG_SLV(n) (((n) & 7) << 12) #define SUN6I_DPHY_ANA0_REG_DEN(n) (((n) & 0xf) << 8) #define SUN6I_DPHY_ANA0_REG_PLR(n) (((n) & 0xf) << 4) #define SUN6I_DPHY_ANA0_REG_SFB(n) (((n) & 3) << 2) #define SUN6I_DPHY_ANA0_REG_RSD BIT(1) #define SUN6I_DPHY_ANA0_REG_SELSCK BIT(0) #define SUN6I_DPHY_ANA1_REG 0x50 #define SUN6I_DPHY_ANA1_REG_VTTMODE BIT(31) #define SUN6I_DPHY_ANA1_REG_CSMPS(n) (((n) & 3) << 28) #define SUN6I_DPHY_ANA1_REG_SVTT(n) (((n) & 0xf) << 24) #define SUN6I_DPHY_ANA2_REG 0x54 #define SUN6I_DPHY_ANA2_EN_P2S_CPU(n) (((n) & 0xf) << 24) #define SUN6I_DPHY_ANA2_EN_P2S_CPU_MASK GENMASK(27, 24) #define SUN6I_DPHY_ANA2_EN_CK_CPU BIT(4) #define SUN6I_DPHY_ANA2_REG_ENIB BIT(1) #define SUN6I_DPHY_ANA3_REG 0x58 #define SUN6I_DPHY_ANA3_EN_VTTD(n) (((n) & 0xf) << 28) #define SUN6I_DPHY_ANA3_EN_VTTD_MASK GENMASK(31, 28) #define SUN6I_DPHY_ANA3_EN_VTTC BIT(27) #define SUN6I_DPHY_ANA3_EN_DIV BIT(26) #define SUN6I_DPHY_ANA3_EN_LDOC BIT(25) #define SUN6I_DPHY_ANA3_EN_LDOD BIT(24) #define SUN6I_DPHY_ANA3_EN_LDOR BIT(18) #define SUN6I_DPHY_ANA4_REG 0x5c #define SUN6I_DPHY_ANA4_REG_EN_MIPI BIT(31) #define SUN6I_DPHY_ANA4_REG_EN_COMTEST BIT(30) #define SUN6I_DPHY_ANA4_REG_COMTEST(n) (((n) & 3) << 28) #define SUN6I_DPHY_ANA4_REG_IB(n) (((n) & 3) << 25) #define SUN6I_DPHY_ANA4_REG_DMPLVC BIT(24) #define SUN6I_DPHY_ANA4_REG_DMPLVD(n) (((n) & 0xf) << 20) #define SUN6I_DPHY_ANA4_REG_VTT_SET(n) (((n) & 0x7) << 17) #define SUN6I_DPHY_ANA4_REG_CKDV(n) (((n) & 0x1f) << 12) #define SUN6I_DPHY_ANA4_REG_TMSC(n) (((n) & 3) << 10) #define SUN6I_DPHY_ANA4_REG_TMSD(n) (((n) & 3) << 8) #define SUN6I_DPHY_ANA4_REG_TXDNSC(n) (((n) & 3) << 6) #define SUN6I_DPHY_ANA4_REG_TXDNSD(n) (((n) & 3) << 4) #define SUN6I_DPHY_ANA4_REG_TXPUSC(n) (((n) & 3) << 2) #define SUN6I_DPHY_ANA4_REG_TXPUSD(n) ((n) & 3) #define SUN6I_DPHY_DBG5_REG 0xf4 #define SUN50I_DPHY_TX_SLEW_REG0 0xf8 #define SUN50I_DPHY_TX_SLEW_REG1 0xfc #define SUN50I_DPHY_TX_SLEW_REG2 0x100 #define SUN50I_DPHY_PLL_REG0 0x104 #define SUN50I_DPHY_PLL_REG0_CP36_EN BIT(23) #define SUN50I_DPHY_PLL_REG0_LDO_EN BIT(22) #define SUN50I_DPHY_PLL_REG0_EN_LVS BIT(21) #define SUN50I_DPHY_PLL_REG0_PLL_EN BIT(20) #define SUN50I_DPHY_PLL_REG0_P(n) (((n) & 0xf) << 16) #define SUN50I_DPHY_PLL_REG0_N(n) (((n) & 0xff) << 8) #define SUN50I_DPHY_PLL_REG0_NDET BIT(7) #define SUN50I_DPHY_PLL_REG0_TDIV BIT(6) #define SUN50I_DPHY_PLL_REG0_M0(n) (((n) & 3) << 4) #define SUN50I_DPHY_PLL_REG0_M1(n) ((n) & 0xf) #define SUN50I_DPHY_PLL_REG1 0x108 #define SUN50I_DPHY_PLL_REG1_UNLOCK_MDSEL(n) (((n) & 3) << 14) #define SUN50I_DPHY_PLL_REG1_LOCKMDSEL BIT(13) #define SUN50I_DPHY_PLL_REG1_LOCKDET_EN BIT(12) #define SUN50I_DPHY_PLL_REG1_VSETA(n) (((n) & 0x7) << 9) #define SUN50I_DPHY_PLL_REG1_VSETD(n) (((n) & 0x7) << 6) #define SUN50I_DPHY_PLL_REG1_LPF_SW BIT(5) #define SUN50I_DPHY_PLL_REG1_ICP_SEL(n) (((n) & 3) << 3) #define SUN50I_DPHY_PLL_REG1_ATEST_SEL(n) (((n) & 3) << 1) #define SUN50I_DPHY_PLL_REG1_TEST_EN BIT(0) #define SUN50I_DPHY_PLL_REG2 0x10c #define SUN50I_DPHY_PLL_REG2_SDM_EN BIT(31) #define SUN50I_DPHY_PLL_REG2_FF_EN BIT(30) #define SUN50I_DPHY_PLL_REG2_SS_EN BIT(29) #define SUN50I_DPHY_PLL_REG2_SS_FRAC(n) (((n) & 0x1ff) << 20) #define SUN50I_DPHY_PLL_REG2_SS_INT(n) (((n) & 0xff) << 12) #define SUN50I_DPHY_PLL_REG2_FRAC(n) ((n) & 0xfff) #define SUN50I_COMBO_PHY_REG0 0x110 #define SUN50I_COMBO_PHY_REG0_EN_TEST_COMBOLDO BIT(5) #define SUN50I_COMBO_PHY_REG0_EN_TEST_0P8 BIT(4) #define SUN50I_COMBO_PHY_REG0_EN_MIPI BIT(3) #define SUN50I_COMBO_PHY_REG0_EN_LVDS BIT(2) #define SUN50I_COMBO_PHY_REG0_EN_COMBOLDO BIT(1) #define SUN50I_COMBO_PHY_REG0_EN_CP BIT(0) #define SUN50I_COMBO_PHY_REG1 0x114 #define SUN50I_COMBO_PHY_REG2_REG_VREF1P6(n) (((n) & 0x7) << 4) #define SUN50I_COMBO_PHY_REG2_REG_VREF0P8(n) ((n) & 0x7) #define SUN50I_COMBO_PHY_REG2 0x118 #define SUN50I_COMBO_PHY_REG2_HS_STOP_DLY(n) ((n) & 0xff) enum sun6i_dphy_direction { SUN6I_DPHY_DIRECTION_TX, SUN6I_DPHY_DIRECTION_RX, }; struct sun6i_dphy; struct sun6i_dphy_variant { void (*tx_power_on)(struct sun6i_dphy *dphy); bool rx_supported; }; struct sun6i_dphy { struct clk *bus_clk; struct clk *mod_clk; struct regmap *regs; struct reset_control *reset; struct phy *phy; struct phy_configure_opts_mipi_dphy config; const struct sun6i_dphy_variant *variant; enum sun6i_dphy_direction direction; }; static int sun6i_dphy_init(struct phy *phy) { struct sun6i_dphy *dphy = phy_get_drvdata(phy); reset_control_deassert(dphy->reset); clk_prepare_enable(dphy->mod_clk); clk_set_rate_exclusive(dphy->mod_clk, 150000000); return 0; } static int sun6i_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct sun6i_dphy *dphy = phy_get_drvdata(phy); int ret; ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); if (ret) return ret; memcpy(&dphy->config, opts, sizeof(dphy->config)); return 0; } static void sun6i_a31_mipi_dphy_tx_power_on(struct sun6i_dphy *dphy) { u8 lanes_mask = GENMASK(dphy->config.lanes - 1, 0); regmap_write(dphy->regs, SUN6I_DPHY_ANA0_REG, SUN6I_DPHY_ANA0_REG_PWS | SUN6I_DPHY_ANA0_REG_DMPC | SUN6I_DPHY_ANA0_REG_SLV(7) | SUN6I_DPHY_ANA0_REG_DMPD(lanes_mask) | SUN6I_DPHY_ANA0_REG_DEN(lanes_mask)); regmap_write(dphy->regs, SUN6I_DPHY_ANA1_REG, SUN6I_DPHY_ANA1_REG_CSMPS(1) | SUN6I_DPHY_ANA1_REG_SVTT(7)); regmap_write(dphy->regs, SUN6I_DPHY_ANA4_REG, SUN6I_DPHY_ANA4_REG_CKDV(1) | SUN6I_DPHY_ANA4_REG_TMSC(1) | SUN6I_DPHY_ANA4_REG_TMSD(1) | SUN6I_DPHY_ANA4_REG_TXDNSC(1) | SUN6I_DPHY_ANA4_REG_TXDNSD(1) | SUN6I_DPHY_ANA4_REG_TXPUSC(1) | SUN6I_DPHY_ANA4_REG_TXPUSD(1) | SUN6I_DPHY_ANA4_REG_DMPLVC | SUN6I_DPHY_ANA4_REG_DMPLVD(lanes_mask)); regmap_write(dphy->regs, SUN6I_DPHY_ANA2_REG, SUN6I_DPHY_ANA2_REG_ENIB); udelay(5); regmap_write(dphy->regs, SUN6I_DPHY_ANA3_REG, SUN6I_DPHY_ANA3_EN_LDOR | SUN6I_DPHY_ANA3_EN_LDOC | SUN6I_DPHY_ANA3_EN_LDOD); udelay(1); } static void sun50i_a100_mipi_dphy_tx_power_on(struct sun6i_dphy *dphy) { unsigned long mipi_symbol_rate = dphy->config.hs_clk_rate; unsigned int div, n; regmap_write(dphy->regs, SUN6I_DPHY_ANA4_REG, SUN6I_DPHY_ANA4_REG_IB(2) | SUN6I_DPHY_ANA4_REG_DMPLVD(4) | SUN6I_DPHY_ANA4_REG_VTT_SET(3) | SUN6I_DPHY_ANA4_REG_CKDV(3) | SUN6I_DPHY_ANA4_REG_TMSD(1) | SUN6I_DPHY_ANA4_REG_TMSC(1) | SUN6I_DPHY_ANA4_REG_TXPUSD(2) | SUN6I_DPHY_ANA4_REG_TXPUSC(3) | SUN6I_DPHY_ANA4_REG_TXDNSD(2) | SUN6I_DPHY_ANA4_REG_TXDNSC(3)); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA2_REG, SUN6I_DPHY_ANA2_EN_CK_CPU, SUN6I_DPHY_ANA2_EN_CK_CPU); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA2_REG, SUN6I_DPHY_ANA2_REG_ENIB, SUN6I_DPHY_ANA2_REG_ENIB); regmap_write(dphy->regs, SUN6I_DPHY_ANA3_REG, SUN6I_DPHY_ANA3_EN_LDOR | SUN6I_DPHY_ANA3_EN_LDOC | SUN6I_DPHY_ANA3_EN_LDOD); regmap_write(dphy->regs, SUN6I_DPHY_ANA0_REG, SUN6I_DPHY_ANA0_REG_PLR(4) | SUN6I_DPHY_ANA0_REG_SFB(1)); regmap_write(dphy->regs, SUN50I_COMBO_PHY_REG0, SUN50I_COMBO_PHY_REG0_EN_CP); /* Choose a divider to limit the VCO frequency to around 2 GHz. */ div = 16 >> order_base_2(DIV_ROUND_UP(mipi_symbol_rate, 264000000)); n = mipi_symbol_rate * div / 24000000; regmap_write(dphy->regs, SUN50I_DPHY_PLL_REG0, SUN50I_DPHY_PLL_REG0_CP36_EN | SUN50I_DPHY_PLL_REG0_LDO_EN | SUN50I_DPHY_PLL_REG0_EN_LVS | SUN50I_DPHY_PLL_REG0_PLL_EN | SUN50I_DPHY_PLL_REG0_NDET | SUN50I_DPHY_PLL_REG0_P((div - 1) % 8) | SUN50I_DPHY_PLL_REG0_N(n) | SUN50I_DPHY_PLL_REG0_M0((div - 1) / 8) | SUN50I_DPHY_PLL_REG0_M1(2)); /* Disable sigma-delta modulation. */ regmap_write(dphy->regs, SUN50I_DPHY_PLL_REG2, 0); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA4_REG, SUN6I_DPHY_ANA4_REG_EN_MIPI, SUN6I_DPHY_ANA4_REG_EN_MIPI); regmap_update_bits(dphy->regs, SUN50I_COMBO_PHY_REG0, SUN50I_COMBO_PHY_REG0_EN_MIPI | SUN50I_COMBO_PHY_REG0_EN_COMBOLDO, SUN50I_COMBO_PHY_REG0_EN_MIPI | SUN50I_COMBO_PHY_REG0_EN_COMBOLDO); regmap_write(dphy->regs, SUN50I_COMBO_PHY_REG2, SUN50I_COMBO_PHY_REG2_HS_STOP_DLY(20)); udelay(1); } static int sun6i_dphy_tx_power_on(struct sun6i_dphy *dphy) { u8 lanes_mask = GENMASK(dphy->config.lanes - 1, 0); regmap_write(dphy->regs, SUN6I_DPHY_TX_CTL_REG, SUN6I_DPHY_TX_CTL_HS_TX_CLK_CONT); regmap_write(dphy->regs, SUN6I_DPHY_TX_TIME0_REG, SUN6I_DPHY_TX_TIME0_LP_CLK_DIV(14) | SUN6I_DPHY_TX_TIME0_HS_PREPARE(6) | SUN6I_DPHY_TX_TIME0_HS_TRAIL(10)); regmap_write(dphy->regs, SUN6I_DPHY_TX_TIME1_REG, SUN6I_DPHY_TX_TIME1_CLK_PREPARE(7) | SUN6I_DPHY_TX_TIME1_CLK_ZERO(50) | SUN6I_DPHY_TX_TIME1_CLK_PRE(3) | SUN6I_DPHY_TX_TIME1_CLK_POST(10)); regmap_write(dphy->regs, SUN6I_DPHY_TX_TIME2_REG, SUN6I_DPHY_TX_TIME2_CLK_TRAIL(30)); regmap_write(dphy->regs, SUN6I_DPHY_TX_TIME3_REG, 0); regmap_write(dphy->regs, SUN6I_DPHY_TX_TIME4_REG, SUN6I_DPHY_TX_TIME4_HS_TX_ANA0(3) | SUN6I_DPHY_TX_TIME4_HS_TX_ANA1(3)); dphy->variant->tx_power_on(dphy); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA3_REG, SUN6I_DPHY_ANA3_EN_VTTC | SUN6I_DPHY_ANA3_EN_VTTD_MASK, SUN6I_DPHY_ANA3_EN_VTTC | SUN6I_DPHY_ANA3_EN_VTTD(lanes_mask)); udelay(1); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA3_REG, SUN6I_DPHY_ANA3_EN_DIV, SUN6I_DPHY_ANA3_EN_DIV); udelay(1); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA2_REG, SUN6I_DPHY_ANA2_EN_CK_CPU, SUN6I_DPHY_ANA2_EN_CK_CPU); udelay(1); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA1_REG, SUN6I_DPHY_ANA1_REG_VTTMODE, SUN6I_DPHY_ANA1_REG_VTTMODE); regmap_update_bits(dphy->regs, SUN6I_DPHY_ANA2_REG, SUN6I_DPHY_ANA2_EN_P2S_CPU_MASK, SUN6I_DPHY_ANA2_EN_P2S_CPU(lanes_mask)); regmap_write(dphy->regs, SUN6I_DPHY_GCTL_REG, SUN6I_DPHY_GCTL_LANE_NUM(dphy->config.lanes) | SUN6I_DPHY_GCTL_EN); return 0; } static int sun6i_dphy_rx_power_on(struct sun6i_dphy *dphy) { /* Physical clock rate is actually half of symbol rate with DDR. */ unsigned long mipi_symbol_rate = dphy->config.hs_clk_rate; unsigned long dphy_clk_rate; unsigned int rx_dly; unsigned int lprst_dly; u32 value; dphy_clk_rate = clk_get_rate(dphy->mod_clk); if (!dphy_clk_rate) return -EINVAL; /* Hardcoded timing parameters from the Allwinner BSP. */ regmap_write(dphy->regs, SUN6I_DPHY_RX_TIME0_REG, SUN6I_DPHY_RX_TIME0_HS_RX_SYNC(255) | SUN6I_DPHY_RX_TIME0_HS_RX_CLK_MISS(255) | SUN6I_DPHY_RX_TIME0_LP_RX(255)); /* * Formula from the Allwinner BSP, with hardcoded coefficients * (probably internal divider/multiplier). */ rx_dly = 8 * (unsigned int)(dphy_clk_rate / (mipi_symbol_rate / 8)); /* * The Allwinner BSP has an alternative formula for LP_RX_ULPS_WP: * lp_ulps_wp_cnt = lp_ulps_wp_ms * lp_clk / 1000 * but does not use it and hardcodes 255 instead. */ regmap_write(dphy->regs, SUN6I_DPHY_RX_TIME1_REG, SUN6I_DPHY_RX_TIME1_RX_DLY(rx_dly) | SUN6I_DPHY_RX_TIME1_LP_RX_ULPS_WP(255)); /* HS_RX_ANA0 value is hardcoded in the Allwinner BSP. */ regmap_write(dphy->regs, SUN6I_DPHY_RX_TIME2_REG, SUN6I_DPHY_RX_TIME2_HS_RX_ANA0(4)); /* * Formula from the Allwinner BSP, with hardcoded coefficients * (probably internal divider/multiplier). */ lprst_dly = 4 * (unsigned int)(dphy_clk_rate / (mipi_symbol_rate / 2)); regmap_write(dphy->regs, SUN6I_DPHY_RX_TIME3_REG, SUN6I_DPHY_RX_TIME3_LPRST_DLY(lprst_dly)); /* Analog parameters are hardcoded in the Allwinner BSP. */ regmap_write(dphy->regs, SUN6I_DPHY_ANA0_REG, SUN6I_DPHY_ANA0_REG_PWS | SUN6I_DPHY_ANA0_REG_SLV(7) | SUN6I_DPHY_ANA0_REG_SFB(2)); regmap_write(dphy->regs, SUN6I_DPHY_ANA1_REG, SUN6I_DPHY_ANA1_REG_SVTT(4)); regmap_write(dphy->regs, SUN6I_DPHY_ANA4_REG, SUN6I_DPHY_ANA4_REG_DMPLVC | SUN6I_DPHY_ANA4_REG_DMPLVD(1)); regmap_write(dphy->regs, SUN6I_DPHY_ANA2_REG, SUN6I_DPHY_ANA2_REG_ENIB); regmap_write(dphy->regs, SUN6I_DPHY_ANA3_REG, SUN6I_DPHY_ANA3_EN_LDOR | SUN6I_DPHY_ANA3_EN_LDOC | SUN6I_DPHY_ANA3_EN_LDOD); /* * Delay comes from the Allwinner BSP, likely for internal regulator * ramp-up. */ udelay(3); value = SUN6I_DPHY_RX_CTL_EN_DBC | SUN6I_DPHY_RX_CTL_RX_CLK_FORCE; /* * Rx data lane force-enable bits are used as regular RX enable by the * Allwinner BSP. */ if (dphy->config.lanes >= 1) value |= SUN6I_DPHY_RX_CTL_RX_D0_FORCE; if (dphy->config.lanes >= 2) value |= SUN6I_DPHY_RX_CTL_RX_D1_FORCE; if (dphy->config.lanes >= 3) value |= SUN6I_DPHY_RX_CTL_RX_D2_FORCE; if (dphy->config.lanes == 4) value |= SUN6I_DPHY_RX_CTL_RX_D3_FORCE; regmap_write(dphy->regs, SUN6I_DPHY_RX_CTL_REG, value); regmap_write(dphy->regs, SUN6I_DPHY_GCTL_REG, SUN6I_DPHY_GCTL_LANE_NUM(dphy->config.lanes) | SUN6I_DPHY_GCTL_EN); return 0; } static int sun6i_dphy_power_on(struct phy *phy) { struct sun6i_dphy *dphy = phy_get_drvdata(phy); switch (dphy->direction) { case SUN6I_DPHY_DIRECTION_TX: return sun6i_dphy_tx_power_on(dphy); case SUN6I_DPHY_DIRECTION_RX: return sun6i_dphy_rx_power_on(dphy); default: return -EINVAL; } } static int sun6i_dphy_power_off(struct phy *phy) { struct sun6i_dphy *dphy = phy_get_drvdata(phy); regmap_write(dphy->regs, SUN6I_DPHY_GCTL_REG, 0); regmap_write(dphy->regs, SUN6I_DPHY_ANA0_REG, 0); regmap_write(dphy->regs, SUN6I_DPHY_ANA1_REG, 0); regmap_write(dphy->regs, SUN6I_DPHY_ANA2_REG, 0); regmap_write(dphy->regs, SUN6I_DPHY_ANA3_REG, 0); regmap_write(dphy->regs, SUN6I_DPHY_ANA4_REG, 0); return 0; } static int sun6i_dphy_exit(struct phy *phy) { struct sun6i_dphy *dphy = phy_get_drvdata(phy); clk_rate_exclusive_put(dphy->mod_clk); clk_disable_unprepare(dphy->mod_clk); reset_control_assert(dphy->reset); return 0; } static const struct phy_ops sun6i_dphy_ops = { .configure = sun6i_dphy_configure, .power_on = sun6i_dphy_power_on, .power_off = sun6i_dphy_power_off, .init = sun6i_dphy_init, .exit = sun6i_dphy_exit, }; static const struct regmap_config sun6i_dphy_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = SUN50I_COMBO_PHY_REG2, .name = "mipi-dphy", }; static int sun6i_dphy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct sun6i_dphy *dphy; const char *direction; void __iomem *regs; int ret; dphy = devm_kzalloc(&pdev->dev, sizeof(*dphy), GFP_KERNEL); if (!dphy) return -ENOMEM; dphy->variant = device_get_match_data(&pdev->dev); if (!dphy->variant) return -EINVAL; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) { dev_err(&pdev->dev, "Couldn't map the DPHY encoder registers\n"); return PTR_ERR(regs); } dphy->regs = devm_regmap_init_mmio_clk(&pdev->dev, "bus", regs, &sun6i_dphy_regmap_config); if (IS_ERR(dphy->regs)) { dev_err(&pdev->dev, "Couldn't create the DPHY encoder regmap\n"); return PTR_ERR(dphy->regs); } dphy->reset = devm_reset_control_get_shared(&pdev->dev, NULL); if (IS_ERR(dphy->reset)) { dev_err(&pdev->dev, "Couldn't get our reset line\n"); return PTR_ERR(dphy->reset); } dphy->mod_clk = devm_clk_get(&pdev->dev, "mod"); if (IS_ERR(dphy->mod_clk)) { dev_err(&pdev->dev, "Couldn't get the DPHY mod clock\n"); return PTR_ERR(dphy->mod_clk); } dphy->phy = devm_phy_create(&pdev->dev, NULL, &sun6i_dphy_ops); if (IS_ERR(dphy->phy)) { dev_err(&pdev->dev, "failed to create PHY\n"); return PTR_ERR(dphy->phy); } dphy->direction = SUN6I_DPHY_DIRECTION_TX; ret = of_property_read_string(pdev->dev.of_node, "allwinner,direction", &direction); if (!ret && !strncmp(direction, "rx", 2)) { if (!dphy->variant->rx_supported) { dev_err(&pdev->dev, "RX not supported on this variant\n"); return -EOPNOTSUPP; } dphy->direction = SUN6I_DPHY_DIRECTION_RX; } phy_set_drvdata(dphy->phy, dphy); phy_provider = devm_of_phy_provider_register(&pdev->dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct sun6i_dphy_variant sun6i_a31_mipi_dphy_variant = { .tx_power_on = sun6i_a31_mipi_dphy_tx_power_on, .rx_supported = true, }; static const struct sun6i_dphy_variant sun50i_a100_mipi_dphy_variant = { .tx_power_on = sun50i_a100_mipi_dphy_tx_power_on, }; static const struct of_device_id sun6i_dphy_of_table[] = { { .compatible = "allwinner,sun6i-a31-mipi-dphy", .data = &sun6i_a31_mipi_dphy_variant, }, { .compatible = "allwinner,sun50i-a100-mipi-dphy", .data = &sun50i_a100_mipi_dphy_variant, }, { } }; MODULE_DEVICE_TABLE(of, sun6i_dphy_of_table); static struct platform_driver sun6i_dphy_platform_driver = { .probe = sun6i_dphy_probe, .driver = { .name = "sun6i-mipi-dphy", .of_match_table = sun6i_dphy_of_table, }, }; module_platform_driver(sun6i_dphy_platform_driver); MODULE_AUTHOR("Maxime Ripard <maxime.ripard@bootlin>"); MODULE_DESCRIPTION("Allwinner A31 MIPI D-PHY Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1