Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrey Smirnov | 2232 | 87.74% | 1 | 16.67% |
Lucas Stach | 308 | 12.11% | 2 | 33.33% |
Axel Lin | 2 | 0.08% | 1 | 16.67% |
Chenwandun | 1 | 0.04% | 1 | 16.67% |
Uwe Kleine-König | 1 | 0.04% | 1 | 16.67% |
Total | 2544 | 6 |
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for UCS1002 Programmable USB Port Power Controller * * Copyright (C) 2019 Zodiac Inflight Innovations */ #include <linux/bits.h> #include <linux/freezer.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/device.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/power_supply.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/regulator/of_regulator.h> /* UCS1002 Registers */ #define UCS1002_REG_CURRENT_MEASUREMENT 0x00 /* * The Total Accumulated Charge registers store the total accumulated * charge delivered from the VS source to a portable device. The total * value is calculated using four registers, from 01h to 04h. The bit * weighting of the registers is given in mA/hrs. */ #define UCS1002_REG_TOTAL_ACC_CHARGE 0x01 /* Other Status Register */ #define UCS1002_REG_OTHER_STATUS 0x0f # define F_ADET_PIN BIT(4) # define F_CHG_ACT BIT(3) /* Interrupt Status */ #define UCS1002_REG_INTERRUPT_STATUS 0x10 # define F_ERR BIT(7) # define F_DISCHARGE_ERR BIT(6) # define F_RESET BIT(5) # define F_MIN_KEEP_OUT BIT(4) # define F_TSD BIT(3) # define F_OVER_VOLT BIT(2) # define F_BACK_VOLT BIT(1) # define F_OVER_ILIM BIT(0) /* Pin Status Register */ #define UCS1002_REG_PIN_STATUS 0x14 # define UCS1002_PWR_STATE_MASK 0x03 # define F_PWR_EN_PIN BIT(6) # define F_M2_PIN BIT(5) # define F_M1_PIN BIT(4) # define F_EM_EN_PIN BIT(3) # define F_SEL_PIN BIT(2) # define F_ACTIVE_MODE_MASK GENMASK(5, 3) # define F_ACTIVE_MODE_PASSTHROUGH F_M2_PIN # define F_ACTIVE_MODE_DEDICATED F_EM_EN_PIN # define F_ACTIVE_MODE_BC12_DCP (F_M2_PIN | F_EM_EN_PIN) # define F_ACTIVE_MODE_BC12_SDP F_M1_PIN # define F_ACTIVE_MODE_BC12_CDP (F_M1_PIN | F_M2_PIN | F_EM_EN_PIN) /* General Configuration Register */ #define UCS1002_REG_GENERAL_CFG 0x15 # define F_RATION_EN BIT(3) /* Emulation Configuration Register */ #define UCS1002_REG_EMU_CFG 0x16 /* Switch Configuration Register */ #define UCS1002_REG_SWITCH_CFG 0x17 # define F_PIN_IGNORE BIT(7) # define F_EM_EN_SET BIT(5) # define F_M2_SET BIT(4) # define F_M1_SET BIT(3) # define F_S0_SET BIT(2) # define F_PWR_EN_SET BIT(1) # define F_LATCH_SET BIT(0) # define V_SET_ACTIVE_MODE_MASK GENMASK(5, 3) # define V_SET_ACTIVE_MODE_PASSTHROUGH F_M2_SET # define V_SET_ACTIVE_MODE_DEDICATED F_EM_EN_SET # define V_SET_ACTIVE_MODE_BC12_DCP (F_M2_SET | F_EM_EN_SET) # define V_SET_ACTIVE_MODE_BC12_SDP F_M1_SET # define V_SET_ACTIVE_MODE_BC12_CDP (F_M1_SET | F_M2_SET | F_EM_EN_SET) /* Current Limit Register */ #define UCS1002_REG_ILIMIT 0x19 # define UCS1002_ILIM_SW_MASK GENMASK(3, 0) /* Product ID */ #define UCS1002_REG_PRODUCT_ID 0xfd # define UCS1002_PRODUCT_ID 0x4e /* Manufacture name */ #define UCS1002_MANUFACTURER "SMSC" struct ucs1002_info { struct power_supply *charger; struct i2c_client *client; struct regmap *regmap; struct regulator_desc *regulator_descriptor; struct regulator_dev *rdev; bool present; bool output_disable; struct delayed_work health_poll; int health; }; static enum power_supply_property ucs1002_props[] = { POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_MAX, POWER_SUPPLY_PROP_PRESENT, /* the presence of PED */ POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_USB_TYPE, POWER_SUPPLY_PROP_HEALTH, }; static int ucs1002_get_online(struct ucs1002_info *info, union power_supply_propval *val) { unsigned int reg; int ret; ret = regmap_read(info->regmap, UCS1002_REG_OTHER_STATUS, ®); if (ret) return ret; val->intval = !!(reg & F_CHG_ACT); return 0; } static int ucs1002_get_charge(struct ucs1002_info *info, union power_supply_propval *val) { /* * To fit within 32 bits some values are rounded (uA/h) * * For Total Accumulated Charge Middle Low Byte register, addr * 03h, byte 2 * * B0: 0.01084 mA/h rounded to 11 uA/h * B1: 0.02169 mA/h rounded to 22 uA/h * B2: 0.04340 mA/h rounded to 43 uA/h * B3: 0.08676 mA/h rounded to 87 uA/h * B4: 0.17350 mA/h rounded to 173 uÁ/h * * For Total Accumulated Charge Low Byte register, addr 04h, * byte 3 * * B6: 0.00271 mA/h rounded to 3 uA/h * B7: 0.005422 mA/h rounded to 5 uA/h */ static const int bit_weights_uAh[BITS_PER_TYPE(u32)] = { /* * Bit corresponding to low byte (offset 0x04) * B0 B1 B2 B3 B4 B5 B6 B7 */ 0, 0, 0, 0, 0, 0, 3, 5, /* * Bit corresponding to middle low byte (offset 0x03) * B0 B1 B2 B3 B4 B5 B6 B7 */ 11, 22, 43, 87, 173, 347, 694, 1388, /* * Bit corresponding to middle high byte (offset 0x02) * B0 B1 B2 B3 B4 B5 B6 B7 */ 2776, 5552, 11105, 22210, 44420, 88840, 177700, 355400, /* * Bit corresponding to high byte (offset 0x01) * B0 B1 B2 B3 B4 B5 B6 B7 */ 710700, 1421000, 2843000, 5685000, 11371000, 22742000, 45484000, 90968000, }; unsigned long total_acc_charger; unsigned int reg; int i, ret; ret = regmap_bulk_read(info->regmap, UCS1002_REG_TOTAL_ACC_CHARGE, ®, sizeof(u32)); if (ret) return ret; total_acc_charger = be32_to_cpu(reg); /* BE as per offsets above */ val->intval = 0; for_each_set_bit(i, &total_acc_charger, ARRAY_SIZE(bit_weights_uAh)) val->intval += bit_weights_uAh[i]; return 0; } static int ucs1002_get_current(struct ucs1002_info *info, union power_supply_propval *val) { /* * The Current Measurement register stores the measured * current value delivered to the portable device. The range * is from 9.76 mA to 2.5 A. */ static const int bit_weights_uA[BITS_PER_TYPE(u8)] = { 9760, 19500, 39000, 78100, 156200, 312300, 624600, 1249300, }; unsigned long current_measurement; unsigned int reg; int i, ret; ret = regmap_read(info->regmap, UCS1002_REG_CURRENT_MEASUREMENT, ®); if (ret) return ret; current_measurement = reg; val->intval = 0; for_each_set_bit(i, ¤t_measurement, ARRAY_SIZE(bit_weights_uA)) val->intval += bit_weights_uA[i]; return 0; } /* * The Current Limit register stores the maximum current used by the * port switch. The range is from 500mA to 2.5 A. */ static const u32 ucs1002_current_limit_uA[] = { 500000, 900000, 1000000, 1200000, 1500000, 1800000, 2000000, 2500000, }; static int ucs1002_get_max_current(struct ucs1002_info *info, union power_supply_propval *val) { unsigned int reg; int ret; if (info->output_disable) { val->intval = 0; return 0; } ret = regmap_read(info->regmap, UCS1002_REG_ILIMIT, ®); if (ret) return ret; val->intval = ucs1002_current_limit_uA[reg & UCS1002_ILIM_SW_MASK]; return 0; } static int ucs1002_set_max_current(struct ucs1002_info *info, u32 val) { unsigned int reg; int ret, idx; if (val == 0) { info->output_disable = true; regulator_disable_regmap(info->rdev); return 0; } for (idx = 0; idx < ARRAY_SIZE(ucs1002_current_limit_uA); idx++) { if (val == ucs1002_current_limit_uA[idx]) break; } if (idx == ARRAY_SIZE(ucs1002_current_limit_uA)) return -EINVAL; ret = regmap_write(info->regmap, UCS1002_REG_ILIMIT, idx); if (ret) return ret; /* * Any current limit setting exceeding the one set via ILIM * pin will be rejected, so we read out freshly changed limit * to make sure that it took effect. */ ret = regmap_read(info->regmap, UCS1002_REG_ILIMIT, ®); if (ret) return ret; if (reg != idx) return -EINVAL; info->output_disable = false; if (info->rdev && info->rdev->use_count && !regulator_is_enabled_regmap(info->rdev)) regulator_enable_regmap(info->rdev); return 0; } static enum power_supply_usb_type ucs1002_usb_types[] = { POWER_SUPPLY_USB_TYPE_PD, POWER_SUPPLY_USB_TYPE_SDP, POWER_SUPPLY_USB_TYPE_DCP, POWER_SUPPLY_USB_TYPE_CDP, POWER_SUPPLY_USB_TYPE_UNKNOWN, }; static int ucs1002_set_usb_type(struct ucs1002_info *info, int val) { unsigned int mode; if (val < 0 || val >= ARRAY_SIZE(ucs1002_usb_types)) return -EINVAL; switch (ucs1002_usb_types[val]) { case POWER_SUPPLY_USB_TYPE_PD: mode = V_SET_ACTIVE_MODE_DEDICATED; break; case POWER_SUPPLY_USB_TYPE_SDP: mode = V_SET_ACTIVE_MODE_BC12_SDP; break; case POWER_SUPPLY_USB_TYPE_DCP: mode = V_SET_ACTIVE_MODE_BC12_DCP; break; case POWER_SUPPLY_USB_TYPE_CDP: mode = V_SET_ACTIVE_MODE_BC12_CDP; break; default: return -EINVAL; } return regmap_update_bits(info->regmap, UCS1002_REG_SWITCH_CFG, V_SET_ACTIVE_MODE_MASK, mode); } static int ucs1002_get_usb_type(struct ucs1002_info *info, union power_supply_propval *val) { enum power_supply_usb_type type; unsigned int reg; int ret; ret = regmap_read(info->regmap, UCS1002_REG_PIN_STATUS, ®); if (ret) return ret; switch (reg & F_ACTIVE_MODE_MASK) { default: type = POWER_SUPPLY_USB_TYPE_UNKNOWN; break; case F_ACTIVE_MODE_DEDICATED: type = POWER_SUPPLY_USB_TYPE_PD; break; case F_ACTIVE_MODE_BC12_SDP: type = POWER_SUPPLY_USB_TYPE_SDP; break; case F_ACTIVE_MODE_BC12_DCP: type = POWER_SUPPLY_USB_TYPE_DCP; break; case F_ACTIVE_MODE_BC12_CDP: type = POWER_SUPPLY_USB_TYPE_CDP; break; } val->intval = type; return 0; } static int ucs1002_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ucs1002_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_ONLINE: return ucs1002_get_online(info, val); case POWER_SUPPLY_PROP_CHARGE_NOW: return ucs1002_get_charge(info, val); case POWER_SUPPLY_PROP_CURRENT_NOW: return ucs1002_get_current(info, val); case POWER_SUPPLY_PROP_CURRENT_MAX: return ucs1002_get_max_current(info, val); case POWER_SUPPLY_PROP_USB_TYPE: return ucs1002_get_usb_type(info, val); case POWER_SUPPLY_PROP_HEALTH: return val->intval = info->health; case POWER_SUPPLY_PROP_PRESENT: val->intval = info->present; return 0; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = UCS1002_MANUFACTURER; return 0; default: return -EINVAL; } } static int ucs1002_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct ucs1002_info *info = power_supply_get_drvdata(psy); switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: return ucs1002_set_max_current(info, val->intval); case POWER_SUPPLY_PROP_USB_TYPE: return ucs1002_set_usb_type(info, val->intval); default: return -EINVAL; } } static int ucs1002_property_is_writeable(struct power_supply *psy, enum power_supply_property psp) { switch (psp) { case POWER_SUPPLY_PROP_CURRENT_MAX: case POWER_SUPPLY_PROP_USB_TYPE: return true; default: return false; } } static const struct power_supply_desc ucs1002_charger_desc = { .name = "ucs1002", .type = POWER_SUPPLY_TYPE_USB, .usb_types = ucs1002_usb_types, .num_usb_types = ARRAY_SIZE(ucs1002_usb_types), .get_property = ucs1002_get_property, .set_property = ucs1002_set_property, .property_is_writeable = ucs1002_property_is_writeable, .properties = ucs1002_props, .num_properties = ARRAY_SIZE(ucs1002_props), }; static void ucs1002_health_poll(struct work_struct *work) { struct ucs1002_info *info = container_of(work, struct ucs1002_info, health_poll.work); int ret; u32 reg; ret = regmap_read(info->regmap, UCS1002_REG_INTERRUPT_STATUS, ®); if (ret) return; /* bad health and no status change, just schedule us again in a while */ if ((reg & F_ERR) && info->health != POWER_SUPPLY_HEALTH_GOOD) { schedule_delayed_work(&info->health_poll, msecs_to_jiffies(2000)); return; } if (reg & F_TSD) info->health = POWER_SUPPLY_HEALTH_OVERHEAT; else if (reg & (F_OVER_VOLT | F_BACK_VOLT)) info->health = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (reg & F_OVER_ILIM) info->health = POWER_SUPPLY_HEALTH_OVERCURRENT; else if (reg & (F_DISCHARGE_ERR | F_MIN_KEEP_OUT)) info->health = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; else info->health = POWER_SUPPLY_HEALTH_GOOD; sysfs_notify(&info->charger->dev.kobj, NULL, "health"); } static irqreturn_t ucs1002_charger_irq(int irq, void *data) { int ret, regval; bool present; struct ucs1002_info *info = data; present = info->present; ret = regmap_read(info->regmap, UCS1002_REG_OTHER_STATUS, ®val); if (ret) return IRQ_HANDLED; /* update attached status */ info->present = regval & F_ADET_PIN; /* notify the change */ if (present != info->present) power_supply_changed(info->charger); return IRQ_HANDLED; } static irqreturn_t ucs1002_alert_irq(int irq, void *data) { struct ucs1002_info *info = data; mod_delayed_work(system_wq, &info->health_poll, 0); return IRQ_HANDLED; } static int ucs1002_regulator_enable(struct regulator_dev *rdev) { struct ucs1002_info *info = rdev_get_drvdata(rdev); /* * If the output is disabled due to 0 maximum current, just pretend the * enable did work. The regulator will be enabled as soon as we get a * a non-zero maximum current budget. */ if (info->output_disable) return 0; return regulator_enable_regmap(rdev); } static const struct regulator_ops ucs1002_regulator_ops = { .is_enabled = regulator_is_enabled_regmap, .enable = ucs1002_regulator_enable, .disable = regulator_disable_regmap, }; static const struct regulator_desc ucs1002_regulator_descriptor = { .name = "ucs1002-vbus", .ops = &ucs1002_regulator_ops, .type = REGULATOR_VOLTAGE, .owner = THIS_MODULE, .enable_reg = UCS1002_REG_SWITCH_CFG, .enable_mask = F_PWR_EN_SET, .enable_val = F_PWR_EN_SET, .fixed_uV = 5000000, .n_voltages = 1, }; static int ucs1002_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct power_supply_config charger_config = {}; const struct regmap_config regmap_config = { .reg_bits = 8, .val_bits = 8, }; struct regulator_config regulator_config = {}; int irq_a_det, irq_alert, ret; struct ucs1002_info *info; unsigned int regval; info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->regmap = devm_regmap_init_i2c(client, ®map_config); ret = PTR_ERR_OR_ZERO(info->regmap); if (ret) { dev_err(dev, "Regmap initialization failed: %d\n", ret); return ret; } info->client = client; irq_a_det = of_irq_get_byname(dev->of_node, "a_det"); irq_alert = of_irq_get_byname(dev->of_node, "alert"); charger_config.of_node = dev->of_node; charger_config.drv_data = info; ret = regmap_read(info->regmap, UCS1002_REG_PRODUCT_ID, ®val); if (ret) { dev_err(dev, "Failed to read product ID: %d\n", ret); return ret; } if (regval != UCS1002_PRODUCT_ID) { dev_err(dev, "Product ID does not match (0x%02x != 0x%02x)\n", regval, UCS1002_PRODUCT_ID); return -ENODEV; } /* Enable charge rationing by default */ ret = regmap_update_bits(info->regmap, UCS1002_REG_GENERAL_CFG, F_RATION_EN, F_RATION_EN); if (ret) { dev_err(dev, "Failed to read general config: %d\n", ret); return ret; } /* * Ignore the M1, M2, PWR_EN, and EM_EN pin states. Set active * mode selection to BC1.2 CDP. */ ret = regmap_update_bits(info->regmap, UCS1002_REG_SWITCH_CFG, V_SET_ACTIVE_MODE_MASK | F_PIN_IGNORE, V_SET_ACTIVE_MODE_BC12_CDP | F_PIN_IGNORE); if (ret) { dev_err(dev, "Failed to configure default mode: %d\n", ret); return ret; } /* * Be safe and set initial current limit to 500mA */ ret = ucs1002_set_max_current(info, 500000); if (ret) { dev_err(dev, "Failed to set max current default: %d\n", ret); return ret; } info->charger = devm_power_supply_register(dev, &ucs1002_charger_desc, &charger_config); ret = PTR_ERR_OR_ZERO(info->charger); if (ret) { dev_err(dev, "Failed to register power supply: %d\n", ret); return ret; } ret = regmap_read(info->regmap, UCS1002_REG_PIN_STATUS, ®val); if (ret) { dev_err(dev, "Failed to read pin status: %d\n", ret); return ret; } info->regulator_descriptor = devm_kmemdup(dev, &ucs1002_regulator_descriptor, sizeof(ucs1002_regulator_descriptor), GFP_KERNEL); if (!info->regulator_descriptor) return -ENOMEM; info->regulator_descriptor->enable_is_inverted = !(regval & F_SEL_PIN); regulator_config.dev = dev; regulator_config.of_node = dev->of_node; regulator_config.regmap = info->regmap; regulator_config.driver_data = info; info->rdev = devm_regulator_register(dev, info->regulator_descriptor, ®ulator_config); ret = PTR_ERR_OR_ZERO(info->rdev); if (ret) { dev_err(dev, "Failed to register VBUS regulator: %d\n", ret); return ret; } info->health = POWER_SUPPLY_HEALTH_GOOD; INIT_DELAYED_WORK(&info->health_poll, ucs1002_health_poll); if (irq_a_det > 0) { ret = devm_request_threaded_irq(dev, irq_a_det, NULL, ucs1002_charger_irq, IRQF_ONESHOT, "ucs1002-a_det", info); if (ret) { dev_err(dev, "Failed to request A_DET threaded irq: %d\n", ret); return ret; } } if (irq_alert > 0) { ret = devm_request_irq(dev, irq_alert, ucs1002_alert_irq, 0,"ucs1002-alert", info); if (ret) { dev_err(dev, "Failed to request ALERT threaded irq: %d\n", ret); return ret; } } return 0; } static const struct of_device_id ucs1002_of_match[] = { { .compatible = "microchip,ucs1002", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ucs1002_of_match); static struct i2c_driver ucs1002_driver = { .driver = { .name = "ucs1002", .of_match_table = ucs1002_of_match, }, .probe_new = ucs1002_probe, }; module_i2c_driver(ucs1002_driver); MODULE_DESCRIPTION("Microchip UCS1002 Programmable USB Port Power Controller"); MODULE_AUTHOR("Enric Balletbo Serra <enric.balletbo@collabora.com>"); MODULE_AUTHOR("Andrey Smirnov <andrew.smirnov@gmail.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1