Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Min Li | 6301 | 99.97% | 5 | 83.33% |
Yue haibing | 2 | 0.03% | 1 | 16.67% |
Total | 6303 | 6 |
// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 Integrated Device Technology, Inc // #define pr_fmt(fmt) "IDT_82p33xxx: " fmt #include <linux/firmware.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/timekeeping.h> #include <linux/bitops.h> #include <linux/of.h> #include <linux/mfd/rsmu.h> #include <linux/mfd/idt82p33_reg.h> #include "ptp_private.h" #include "ptp_idt82p33.h" MODULE_DESCRIPTION("Driver for IDT 82p33xxx clock devices"); MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(FW_FILENAME); #define EXTTS_PERIOD_MS (95) /* Module Parameters */ static u32 phase_snap_threshold = SNAP_THRESHOLD_NS; module_param(phase_snap_threshold, uint, 0); MODULE_PARM_DESC(phase_snap_threshold, "threshold (10000ns by default) below which adjtime would use double dco"); static char *firmware; module_param(firmware, charp, 0); static struct ptp_pin_desc pin_config[MAX_PHC_PLL][MAX_TRIG_CLK]; static inline int idt82p33_read(struct idt82p33 *idt82p33, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_read(idt82p33->regmap, regaddr, buf, count); } static inline int idt82p33_write(struct idt82p33 *idt82p33, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_write(idt82p33->regmap, regaddr, buf, count); } static void idt82p33_byte_array_to_timespec(struct timespec64 *ts, u8 buf[TOD_BYTE_COUNT]) { time64_t sec; s32 nsec; u8 i; nsec = buf[3]; for (i = 0; i < 3; i++) { nsec <<= 8; nsec |= buf[2 - i]; } sec = buf[9]; for (i = 0; i < 5; i++) { sec <<= 8; sec |= buf[8 - i]; } ts->tv_sec = sec; ts->tv_nsec = nsec; } static void idt82p33_timespec_to_byte_array(struct timespec64 const *ts, u8 buf[TOD_BYTE_COUNT]) { time64_t sec; s32 nsec; u8 i; nsec = ts->tv_nsec; sec = ts->tv_sec; for (i = 0; i < 4; i++) { buf[i] = nsec & 0xff; nsec >>= 8; } for (i = 4; i < TOD_BYTE_COUNT; i++) { buf[i] = sec & 0xff; sec >>= 8; } } static int idt82p33_dpll_set_mode(struct idt82p33_channel *channel, enum pll_mode mode) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 dpll_mode; int err; if (channel->pll_mode == mode) return 0; err = idt82p33_read(idt82p33, channel->dpll_mode_cnfg, &dpll_mode, sizeof(dpll_mode)); if (err) return err; dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT); dpll_mode |= (mode << PLL_MODE_SHIFT); err = idt82p33_write(idt82p33, channel->dpll_mode_cnfg, &dpll_mode, sizeof(dpll_mode)); if (err) return err; channel->pll_mode = mode; return 0; } static int idt82p33_set_tod_trigger(struct idt82p33_channel *channel, u8 trigger, bool write) { struct idt82p33 *idt82p33 = channel->idt82p33; int err; u8 cfg; if (trigger > WR_TRIG_SEL_MAX) return -EINVAL; err = idt82p33_read(idt82p33, channel->dpll_tod_trigger, &cfg, sizeof(cfg)); if (err) return err; if (write == true) trigger = (trigger << WRITE_TRIGGER_SHIFT) | (cfg & READ_TRIGGER_MASK); else trigger = (trigger << READ_TRIGGER_SHIFT) | (cfg & WRITE_TRIGGER_MASK); return idt82p33_write(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); } static int idt82p33_get_extts(struct idt82p33_channel *channel, struct timespec64 *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; int err; err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf)); if (err) return err; /* Since trigger is not self clearing itself, we have to poll tod_sts */ if (memcmp(buf, channel->extts_tod_sts, TOD_BYTE_COUNT) == 0) return -EAGAIN; memcpy(channel->extts_tod_sts, buf, TOD_BYTE_COUNT); idt82p33_byte_array_to_timespec(ts, buf); if (channel->discard_next_extts) { channel->discard_next_extts = false; return -EAGAIN; } return 0; } static int map_ref_to_tod_trig_sel(int ref, u8 *trigger) { int err = 0; switch (ref) { case 0: *trigger = HW_TOD_TRIG_SEL_IN12; break; case 1: *trigger = HW_TOD_TRIG_SEL_IN13; break; case 2: *trigger = HW_TOD_TRIG_SEL_IN14; break; default: err = -EINVAL; } return err; } static bool is_one_shot(u8 mask) { /* Treat single bit PLL masks as continuous trigger */ if ((mask == 1) || (mask == 2)) return false; else return true; } static int arm_tod_read_with_trigger(struct idt82p33_channel *channel, u8 trigger) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; int err; /* Remember the current tod_sts before setting the trigger */ err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf)); if (err) return err; memcpy(channel->extts_tod_sts, buf, TOD_BYTE_COUNT); err = idt82p33_set_tod_trigger(channel, trigger, false); if (err) dev_err(idt82p33->dev, "%s: err = %d", __func__, err); return err; } static int idt82p33_extts_enable(struct idt82p33_channel *channel, struct ptp_clock_request *rq, int on) { u8 index = rq->extts.index; struct idt82p33 *idt82p33; u8 mask = 1 << index; int err = 0; u8 old_mask; u8 trigger; int ref; idt82p33 = channel->idt82p33; old_mask = idt82p33->extts_mask; /* Reject requests with unsupported flags */ if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; /* Reject requests to enable time stamping on falling edge */ if ((rq->extts.flags & PTP_ENABLE_FEATURE) && (rq->extts.flags & PTP_FALLING_EDGE)) return -EOPNOTSUPP; if (index >= MAX_PHC_PLL) return -EINVAL; if (on) { /* Return if it was already enabled */ if (idt82p33->extts_mask & mask) return 0; /* Use the pin configured for the channel */ ref = ptp_find_pin(channel->ptp_clock, PTP_PF_EXTTS, channel->plln); if (ref < 0) { dev_err(idt82p33->dev, "%s: No valid pin found for Pll%d!\n", __func__, channel->plln); return -EBUSY; } err = map_ref_to_tod_trig_sel(ref, &trigger); if (err) { dev_err(idt82p33->dev, "%s: Unsupported ref %d!\n", __func__, ref); return err; } err = arm_tod_read_with_trigger(&idt82p33->channel[index], trigger); if (err == 0) { idt82p33->extts_mask |= mask; idt82p33->channel[index].tod_trigger = trigger; idt82p33->event_channel[index] = channel; idt82p33->extts_single_shot = is_one_shot(idt82p33->extts_mask); if (old_mask) return 0; schedule_delayed_work(&idt82p33->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); } } else { idt82p33->extts_mask &= ~mask; idt82p33->extts_single_shot = is_one_shot(idt82p33->extts_mask); if (idt82p33->extts_mask == 0) cancel_delayed_work(&idt82p33->extts_work); } return err; } static int idt82p33_extts_check_channel(struct idt82p33 *idt82p33, u8 todn) { struct idt82p33_channel *event_channel; struct ptp_clock_event event; struct timespec64 ts; int err; err = idt82p33_get_extts(&idt82p33->channel[todn], &ts); if (err == 0) { event_channel = idt82p33->event_channel[todn]; event.type = PTP_CLOCK_EXTTS; event.index = todn; event.timestamp = timespec64_to_ns(&ts); ptp_clock_event(event_channel->ptp_clock, &event); } return err; } static u8 idt82p33_extts_enable_mask(struct idt82p33_channel *channel, u8 extts_mask, bool enable) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 trigger = channel->tod_trigger; u8 mask; int err; int i; if (extts_mask == 0) return 0; if (enable == false) cancel_delayed_work_sync(&idt82p33->extts_work); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if ((extts_mask & mask) == 0) continue; if (enable) { err = arm_tod_read_with_trigger(&idt82p33->channel[i], trigger); if (err) dev_err(idt82p33->dev, "%s: Arm ToD read trigger failed, err = %d", __func__, err); } else { err = idt82p33_extts_check_channel(idt82p33, i); if (err == 0 && idt82p33->extts_single_shot) /* trigger happened so we won't re-enable it */ extts_mask &= ~mask; } } if (enable) schedule_delayed_work(&idt82p33->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); return extts_mask; } static int _idt82p33_gettime(struct idt82p33_channel *channel, struct timespec64 *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 old_mask = idt82p33->extts_mask; u8 buf[TOD_BYTE_COUNT]; u8 new_mask = 0; int err; /* Disable extts */ if (old_mask) new_mask = idt82p33_extts_enable_mask(channel, old_mask, false); err = idt82p33_set_tod_trigger(channel, HW_TOD_RD_TRIG_SEL_LSB_TOD_STS, false); if (err) return err; channel->discard_next_extts = true; if (idt82p33->calculate_overhead_flag) idt82p33->start_time = ktime_get_raw(); err = idt82p33_read(idt82p33, channel->dpll_tod_sts, buf, sizeof(buf)); if (err) return err; /* Re-enable extts */ if (new_mask) idt82p33_extts_enable_mask(channel, new_mask, true); idt82p33_byte_array_to_timespec(ts, buf); return 0; } /* * TOD Trigger: * Bits[7:4] Write 0x9, MSB write * Bits[3:0] Read 0x9, LSB read */ static int _idt82p33_settime(struct idt82p33_channel *channel, struct timespec64 const *ts) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 local_ts = *ts; char buf[TOD_BYTE_COUNT]; s64 dynamic_overhead_ns; int err; u8 i; err = idt82p33_set_tod_trigger(channel, HW_TOD_WR_TRIG_SEL_MSB_TOD_CNFG, true); if (err) return err; channel->discard_next_extts = true; if (idt82p33->calculate_overhead_flag) { dynamic_overhead_ns = ktime_to_ns(ktime_get_raw()) - ktime_to_ns(idt82p33->start_time); timespec64_add_ns(&local_ts, dynamic_overhead_ns); idt82p33->calculate_overhead_flag = 0; } idt82p33_timespec_to_byte_array(&local_ts, buf); /* * Store the new time value. */ for (i = 0; i < TOD_BYTE_COUNT; i++) { err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i, &buf[i], sizeof(buf[i])); if (err) return err; } return err; } static int _idt82p33_adjtime_immediate(struct idt82p33_channel *channel, s64 delta_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 ts; s64 now_ns; int err; idt82p33->calculate_overhead_flag = 1; err = _idt82p33_gettime(channel, &ts); if (err) return err; now_ns = timespec64_to_ns(&ts); now_ns += delta_ns + idt82p33->tod_write_overhead_ns; ts = ns_to_timespec64(now_ns); err = _idt82p33_settime(channel, &ts); return err; } static int _idt82p33_adjtime_internal_triggered(struct idt82p33_channel *channel, s64 delta_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; char buf[TOD_BYTE_COUNT]; struct timespec64 ts; const u8 delay_ns = 32; s32 remainder; s64 ns; int err; err = _idt82p33_gettime(channel, &ts); if (err) return err; if (ts.tv_nsec > (NSEC_PER_SEC - 5 * NSEC_PER_MSEC)) { /* Too close to miss next trigger, so skip it */ mdelay(6); ns = (ts.tv_sec + 2) * NSEC_PER_SEC + delta_ns + delay_ns; } else ns = (ts.tv_sec + 1) * NSEC_PER_SEC + delta_ns + delay_ns; ts = ns_to_timespec64(ns); idt82p33_timespec_to_byte_array(&ts, buf); /* * Store the new time value. */ err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg, buf, sizeof(buf)); if (err) return err; /* Schedule to implement the workaround in one second */ (void)div_s64_rem(delta_ns, NSEC_PER_SEC, &remainder); if (remainder != 0) schedule_delayed_work(&channel->adjtime_work, HZ); return idt82p33_set_tod_trigger(channel, HW_TOD_TRIG_SEL_TOD_PPS, true); } static void idt82p33_adjtime_workaround(struct work_struct *work) { struct idt82p33_channel *channel = container_of(work, struct idt82p33_channel, adjtime_work.work); struct idt82p33 *idt82p33 = channel->idt82p33; mutex_lock(idt82p33->lock); /* Workaround for TOD-to-output alignment issue */ _idt82p33_adjtime_internal_triggered(channel, 0); mutex_unlock(idt82p33->lock); } static int _idt82p33_adjfine(struct idt82p33_channel *channel, long scaled_ppm) { struct idt82p33 *idt82p33 = channel->idt82p33; unsigned char buf[5] = {0}; int err, i; s64 fcw; /* * Frequency Control Word unit is: 1.6861512 * 10^-10 ppm * * adjfreq: * ppb * 10^14 * FCW = ----------- * 16861512 * * adjfine: * scaled_ppm * 5^12 * 10^5 * FCW = ------------------------ * 16861512 * 2^4 */ fcw = scaled_ppm * 762939453125ULL; fcw = div_s64(fcw, 8430756LL); for (i = 0; i < 5; i++) { buf[i] = fcw & 0xff; fcw >>= 8; } err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO); if (err) return err; err = idt82p33_write(idt82p33, channel->dpll_freq_cnfg, buf, sizeof(buf)); return err; } /* ppb = scaled_ppm * 125 / 2^13 */ static s32 idt82p33_ddco_scaled_ppm(long current_ppm, s32 ddco_ppb) { s64 scaled_ppm = div_s64(((s64)ddco_ppb << 13), 125); s64 max_scaled_ppm = div_s64(((s64)DCO_MAX_PPB << 13), 125); current_ppm += scaled_ppm; if (current_ppm > max_scaled_ppm) current_ppm = max_scaled_ppm; else if (current_ppm < -max_scaled_ppm) current_ppm = -max_scaled_ppm; return (s32)current_ppm; } static int idt82p33_stop_ddco(struct idt82p33_channel *channel) { int err; err = _idt82p33_adjfine(channel, channel->current_freq); if (err) return err; channel->ddco = false; return 0; } static int idt82p33_start_ddco(struct idt82p33_channel *channel, s32 delta_ns) { s32 current_ppm = channel->current_freq; u32 duration_ms = MSEC_PER_SEC; s32 ppb; int err; /* If the ToD correction is less than 5 nanoseconds, then skip it. * The error introduced by the ToD adjustment procedure would be bigger * than the required ToD correction */ if (abs(delta_ns) < DDCO_THRESHOLD_NS) return 0; /* For most cases, keep ddco duration 1 second */ ppb = delta_ns; while (abs(ppb) > DCO_MAX_PPB) { duration_ms *= 2; ppb /= 2; } err = _idt82p33_adjfine(channel, idt82p33_ddco_scaled_ppm(current_ppm, ppb)); if (err) return err; /* schedule the worker to cancel ddco */ ptp_schedule_worker(channel->ptp_clock, msecs_to_jiffies(duration_ms) - 1); channel->ddco = true; return 0; } static int idt82p33_measure_one_byte_write_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; ktime_t start, stop; u8 trigger = 0; s64 total_ns; int err; u8 i; total_ns = 0; *overhead_ns = 0; for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); err = idt82p33_write(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); stop = ktime_get_raw(); if (err) return err; total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } *overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_one_byte_read_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct idt82p33 *idt82p33 = channel->idt82p33; ktime_t start, stop; u8 trigger = 0; s64 total_ns; int err; u8 i; total_ns = 0; *overhead_ns = 0; for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); err = idt82p33_read(idt82p33, channel->dpll_tod_trigger, &trigger, sizeof(trigger)); stop = ktime_get_raw(); if (err) return err; total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } *overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_tod_write_9_byte_overhead( struct idt82p33_channel *channel) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 buf[TOD_BYTE_COUNT]; ktime_t start, stop; s64 total_ns; int err = 0; u8 i, j; total_ns = 0; idt82p33->tod_write_overhead_ns = 0; for (i = 0; i < MAX_MEASURMENT_COUNT; i++) { start = ktime_get_raw(); /* Need one less byte for applicable overhead */ for (j = 0; j < (TOD_BYTE_COUNT - 1); j++) { err = idt82p33_write(idt82p33, channel->dpll_tod_cnfg + i, &buf[i], sizeof(buf[i])); if (err) return err; } stop = ktime_get_raw(); total_ns += ktime_to_ns(stop) - ktime_to_ns(start); } idt82p33->tod_write_overhead_ns = div_s64(total_ns, MAX_MEASURMENT_COUNT); return err; } static int idt82p33_measure_settime_gettime_gap_overhead( struct idt82p33_channel *channel, s64 *overhead_ns) { struct timespec64 ts1 = {0, 0}; struct timespec64 ts2; int err; *overhead_ns = 0; err = _idt82p33_settime(channel, &ts1); if (err) return err; err = _idt82p33_gettime(channel, &ts2); if (!err) *overhead_ns = timespec64_to_ns(&ts2) - timespec64_to_ns(&ts1); return err; } static int idt82p33_measure_tod_write_overhead(struct idt82p33_channel *channel) { s64 trailing_overhead_ns, one_byte_write_ns, gap_ns, one_byte_read_ns; struct idt82p33 *idt82p33 = channel->idt82p33; int err; idt82p33->tod_write_overhead_ns = 0; err = idt82p33_measure_settime_gettime_gap_overhead(channel, &gap_ns); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } err = idt82p33_measure_one_byte_write_overhead(channel, &one_byte_write_ns); if (err) return err; err = idt82p33_measure_one_byte_read_overhead(channel, &one_byte_read_ns); if (err) return err; err = idt82p33_measure_tod_write_9_byte_overhead(channel); if (err) return err; trailing_overhead_ns = gap_ns - 2 * one_byte_write_ns - one_byte_read_ns; idt82p33->tod_write_overhead_ns -= trailing_overhead_ns; return err; } static int idt82p33_check_and_set_masks(struct idt82p33 *idt82p33, u8 page, u8 offset, u8 val) { int err = 0; if (page == PLLMASK_ADDR_HI && offset == PLLMASK_ADDR_LO) { if ((val & 0xfc) || !(val & 0x3)) { dev_err(idt82p33->dev, "Invalid PLL mask 0x%x\n", val); err = -EINVAL; } else { idt82p33->pll_mask = val; } } else if (page == PLL0_OUTMASK_ADDR_HI && offset == PLL0_OUTMASK_ADDR_LO) { idt82p33->channel[0].output_mask = val; } else if (page == PLL1_OUTMASK_ADDR_HI && offset == PLL1_OUTMASK_ADDR_LO) { idt82p33->channel[1].output_mask = val; } return err; } static void idt82p33_display_masks(struct idt82p33 *idt82p33) { u8 mask, i; dev_info(idt82p33->dev, "pllmask = 0x%02x\n", idt82p33->pll_mask); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if (mask & idt82p33->pll_mask) dev_info(idt82p33->dev, "PLL%d output_mask = 0x%04x\n", i, idt82p33->channel[i].output_mask); } } static int idt82p33_sync_tod(struct idt82p33_channel *channel, bool enable) { struct idt82p33 *idt82p33 = channel->idt82p33; u8 sync_cnfg; int err; err = idt82p33_read(idt82p33, channel->dpll_sync_cnfg, &sync_cnfg, sizeof(sync_cnfg)); if (err) return err; sync_cnfg &= ~SYNC_TOD; if (enable) sync_cnfg |= SYNC_TOD; return idt82p33_write(idt82p33, channel->dpll_sync_cnfg, &sync_cnfg, sizeof(sync_cnfg)); } static long idt82p33_work_handler(struct ptp_clock_info *ptp) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; mutex_lock(idt82p33->lock); (void)idt82p33_stop_ddco(channel); mutex_unlock(idt82p33->lock); /* Return a negative value here to not reschedule */ return -1; } static int idt82p33_output_enable(struct idt82p33_channel *channel, bool enable, unsigned int outn) { struct idt82p33 *idt82p33 = channel->idt82p33; int err; u8 val; err = idt82p33_read(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val)); if (err) return err; if (enable) val &= ~SQUELCH_ENABLE; else val |= SQUELCH_ENABLE; return idt82p33_write(idt82p33, OUT_MUX_CNFG(outn), &val, sizeof(val)); } static int idt82p33_perout_enable(struct idt82p33_channel *channel, bool enable, struct ptp_perout_request *perout) { /* Enable/disable individual output instead */ return idt82p33_output_enable(channel, enable, perout->index); } static int idt82p33_enable_tod(struct idt82p33_channel *channel) { struct idt82p33 *idt82p33 = channel->idt82p33; struct timespec64 ts = {0, 0}; int err; err = idt82p33_measure_tod_write_overhead(channel); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } err = _idt82p33_settime(channel, &ts); if (err) return err; return idt82p33_sync_tod(channel, true); } static void idt82p33_ptp_clock_unregister_all(struct idt82p33 *idt82p33) { struct idt82p33_channel *channel; u8 i; for (i = 0; i < MAX_PHC_PLL; i++) { channel = &idt82p33->channel[i]; cancel_delayed_work_sync(&channel->adjtime_work); if (channel->ptp_clock) ptp_clock_unregister(channel->ptp_clock); } } static int idt82p33_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err = -EOPNOTSUPP; mutex_lock(idt82p33->lock); switch (rq->type) { case PTP_CLK_REQ_PEROUT: if (!on) err = idt82p33_perout_enable(channel, false, &rq->perout); /* Only accept a 1-PPS aligned to the second. */ else if (rq->perout.start.nsec || rq->perout.period.sec != 1 || rq->perout.period.nsec) err = -ERANGE; else err = idt82p33_perout_enable(channel, true, &rq->perout); break; case PTP_CLK_REQ_EXTTS: err = idt82p33_extts_enable(channel, rq, on); break; default: break; } mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_adjwritephase(struct ptp_clock_info *ptp, s32 offset_ns) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; s64 offset_regval, offset_fs; u8 val[4] = {0}; int err; offset_fs = (s64)(-offset_ns) * 1000000; if (offset_fs > WRITE_PHASE_OFFSET_LIMIT) offset_fs = WRITE_PHASE_OFFSET_LIMIT; else if (offset_fs < -WRITE_PHASE_OFFSET_LIMIT) offset_fs = -WRITE_PHASE_OFFSET_LIMIT; /* Convert from phaseoffset_fs to register value */ offset_regval = div_s64(offset_fs * 1000, IDT_T0DPLL_PHASE_RESOL); val[0] = offset_regval & 0xFF; val[1] = (offset_regval >> 8) & 0xFF; val[2] = (offset_regval >> 16) & 0xFF; val[3] = (offset_regval >> 24) & 0x1F; val[3] |= PH_OFFSET_EN; mutex_lock(idt82p33->lock); err = idt82p33_dpll_set_mode(channel, PLL_MODE_WPH); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); goto out; } err = idt82p33_write(idt82p33, channel->dpll_phase_cnfg, val, sizeof(val)); out: mutex_unlock(idt82p33->lock); return err; } static int idt82p33_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; if (channel->ddco == true) return 0; if (scaled_ppm == channel->current_freq) return 0; mutex_lock(idt82p33->lock); err = _idt82p33_adjfine(channel, scaled_ppm); if (err == 0) channel->current_freq = scaled_ppm; mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_adjtime(struct ptp_clock_info *ptp, s64 delta_ns) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; if (channel->ddco == true) return -EBUSY; mutex_lock(idt82p33->lock); if (abs(delta_ns) < phase_snap_threshold) { err = idt82p33_start_ddco(channel, delta_ns); mutex_unlock(idt82p33->lock); return err; } /* Use more accurate internal 1pps triggered write first */ err = _idt82p33_adjtime_internal_triggered(channel, delta_ns); if (err && delta_ns > IMMEDIATE_SNAP_THRESHOLD_NS) err = _idt82p33_adjtime_immediate(channel, delta_ns); mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(idt82p33->lock); err = _idt82p33_gettime(channel, ts); mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idt82p33_channel *channel = container_of(ptp, struct idt82p33_channel, caps); struct idt82p33 *idt82p33 = channel->idt82p33; int err; mutex_lock(idt82p33->lock); err = _idt82p33_settime(channel, ts); mutex_unlock(idt82p33->lock); if (err) dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } static int idt82p33_channel_init(struct idt82p33 *idt82p33, u32 index) { struct idt82p33_channel *channel = &idt82p33->channel[index]; switch (index) { case 0: channel->dpll_tod_cnfg = DPLL1_TOD_CNFG; channel->dpll_tod_trigger = DPLL1_TOD_TRIGGER; channel->dpll_tod_sts = DPLL1_TOD_STS; channel->dpll_mode_cnfg = DPLL1_OPERATING_MODE_CNFG; channel->dpll_freq_cnfg = DPLL1_HOLDOVER_FREQ_CNFG; channel->dpll_phase_cnfg = DPLL1_PHASE_OFFSET_CNFG; channel->dpll_sync_cnfg = DPLL1_SYNC_EDGE_CNFG; channel->dpll_input_mode_cnfg = DPLL1_INPUT_MODE_CNFG; break; case 1: channel->dpll_tod_cnfg = DPLL2_TOD_CNFG; channel->dpll_tod_trigger = DPLL2_TOD_TRIGGER; channel->dpll_tod_sts = DPLL2_TOD_STS; channel->dpll_mode_cnfg = DPLL2_OPERATING_MODE_CNFG; channel->dpll_freq_cnfg = DPLL2_HOLDOVER_FREQ_CNFG; channel->dpll_phase_cnfg = DPLL2_PHASE_OFFSET_CNFG; channel->dpll_sync_cnfg = DPLL2_SYNC_EDGE_CNFG; channel->dpll_input_mode_cnfg = DPLL2_INPUT_MODE_CNFG; break; default: return -EINVAL; } channel->plln = index; channel->current_freq = 0; channel->idt82p33 = idt82p33; INIT_DELAYED_WORK(&channel->adjtime_work, idt82p33_adjtime_workaround); return 0; } static int idt82p33_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: break; case PTP_PF_PEROUT: case PTP_PF_PHYSYNC: return -1; } return 0; } static void idt82p33_caps_init(u32 index, struct ptp_clock_info *caps, struct ptp_pin_desc *pin_cfg, u8 max_pins) { struct ptp_pin_desc *ppd; int i; caps->owner = THIS_MODULE; caps->max_adj = DCO_MAX_PPB; caps->n_per_out = MAX_PER_OUT; caps->n_ext_ts = MAX_PHC_PLL, caps->n_pins = max_pins, caps->adjphase = idt82p33_adjwritephase, caps->adjfine = idt82p33_adjfine; caps->adjtime = idt82p33_adjtime; caps->gettime64 = idt82p33_gettime; caps->settime64 = idt82p33_settime; caps->enable = idt82p33_enable; caps->verify = idt82p33_verify_pin; caps->do_aux_work = idt82p33_work_handler; snprintf(caps->name, sizeof(caps->name), "IDT 82P33 PLL%u", index); caps->pin_config = pin_cfg; for (i = 0; i < max_pins; ++i) { ppd = &pin_cfg[i]; ppd->index = i; ppd->func = PTP_PF_NONE; ppd->chan = index; snprintf(ppd->name, sizeof(ppd->name), "in%d", 12 + i); } } static int idt82p33_enable_channel(struct idt82p33 *idt82p33, u32 index) { struct idt82p33_channel *channel; int err; if (!(index < MAX_PHC_PLL)) return -EINVAL; channel = &idt82p33->channel[index]; err = idt82p33_channel_init(idt82p33, index); if (err) { dev_err(idt82p33->dev, "Channel_init failed in %s with err %d!\n", __func__, err); return err; } idt82p33_caps_init(index, &channel->caps, pin_config[index], MAX_TRIG_CLK); channel->ptp_clock = ptp_clock_register(&channel->caps, NULL); if (IS_ERR(channel->ptp_clock)) { err = PTR_ERR(channel->ptp_clock); channel->ptp_clock = NULL; return err; } if (!channel->ptp_clock) return -ENOTSUPP; err = idt82p33_dpll_set_mode(channel, PLL_MODE_DCO); if (err) { dev_err(idt82p33->dev, "Dpll_set_mode failed in %s with err %d!\n", __func__, err); return err; } err = idt82p33_enable_tod(channel); if (err) { dev_err(idt82p33->dev, "Enable_tod failed in %s with err %d!\n", __func__, err); return err; } dev_info(idt82p33->dev, "PLL%d registered as ptp%d\n", index, channel->ptp_clock->index); return 0; } static int idt82p33_reset(struct idt82p33 *idt82p33, bool cold) { int err; u8 cfg = SOFT_RESET_EN; if (cold == true) goto cold_reset; err = idt82p33_read(idt82p33, REG_SOFT_RESET, &cfg, sizeof(cfg)); if (err) { dev_err(idt82p33->dev, "Soft reset failed with err %d!\n", err); return err; } cfg |= SOFT_RESET_EN; cold_reset: err = idt82p33_write(idt82p33, REG_SOFT_RESET, &cfg, sizeof(cfg)); if (err) dev_err(idt82p33->dev, "Cold reset failed with err %d!\n", err); return err; } static int idt82p33_load_firmware(struct idt82p33 *idt82p33) { char fname[128] = FW_FILENAME; const struct firmware *fw; struct idt82p33_fwrc *rec; u8 loaddr, page, val; int err; s32 len; if (firmware) /* module parameter */ snprintf(fname, sizeof(fname), "%s", firmware); dev_info(idt82p33->dev, "requesting firmware '%s'\n", fname); err = request_firmware(&fw, fname, idt82p33->dev); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); return err; } dev_dbg(idt82p33->dev, "firmware size %zu bytes\n", fw->size); rec = (struct idt82p33_fwrc *) fw->data; for (len = fw->size; len > 0; len -= sizeof(*rec)) { if (rec->reserved) { dev_err(idt82p33->dev, "bad firmware, reserved field non-zero\n"); err = -EINVAL; } else { val = rec->value; loaddr = rec->loaddr; page = rec->hiaddr; rec++; err = idt82p33_check_and_set_masks(idt82p33, page, loaddr, val); } if (err == 0) { /* Page size 128, last 4 bytes of page skipped */ if (loaddr > 0x7b) continue; err = idt82p33_write(idt82p33, REG_ADDR(page, loaddr), &val, sizeof(val)); } if (err) goto out; } idt82p33_display_masks(idt82p33); out: release_firmware(fw); return err; } static void idt82p33_extts_check(struct work_struct *work) { struct idt82p33 *idt82p33 = container_of(work, struct idt82p33, extts_work.work); struct idt82p33_channel *channel; int err; u8 mask; int i; if (idt82p33->extts_mask == 0) return; mutex_lock(idt82p33->lock); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if ((idt82p33->extts_mask & mask) == 0) continue; err = idt82p33_extts_check_channel(idt82p33, i); if (err == 0) { /* trigger clears itself, so clear the mask */ if (idt82p33->extts_single_shot) { idt82p33->extts_mask &= ~mask; } else { /* Re-arm */ channel = &idt82p33->channel[i]; arm_tod_read_with_trigger(channel, channel->tod_trigger); } } } if (idt82p33->extts_mask) schedule_delayed_work(&idt82p33->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); mutex_unlock(idt82p33->lock); } static int idt82p33_probe(struct platform_device *pdev) { struct rsmu_ddata *ddata = dev_get_drvdata(pdev->dev.parent); struct idt82p33 *idt82p33; int err; u8 i; idt82p33 = devm_kzalloc(&pdev->dev, sizeof(struct idt82p33), GFP_KERNEL); if (!idt82p33) return -ENOMEM; idt82p33->dev = &pdev->dev; idt82p33->mfd = pdev->dev.parent; idt82p33->lock = &ddata->lock; idt82p33->regmap = ddata->regmap; idt82p33->tod_write_overhead_ns = 0; idt82p33->calculate_overhead_flag = 0; idt82p33->pll_mask = DEFAULT_PLL_MASK; idt82p33->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0; idt82p33->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1; idt82p33->extts_mask = 0; INIT_DELAYED_WORK(&idt82p33->extts_work, idt82p33_extts_check); mutex_lock(idt82p33->lock); /* cold reset before loading firmware */ idt82p33_reset(idt82p33, true); err = idt82p33_load_firmware(idt82p33); if (err) dev_warn(idt82p33->dev, "loading firmware failed with %d\n", err); /* soft reset after loading firmware */ idt82p33_reset(idt82p33, false); if (idt82p33->pll_mask) { for (i = 0; i < MAX_PHC_PLL; i++) { if (idt82p33->pll_mask & (1 << i)) err = idt82p33_enable_channel(idt82p33, i); else err = idt82p33_channel_init(idt82p33, i); if (err) { dev_err(idt82p33->dev, "Failed in %s with err %d!\n", __func__, err); break; } } } else { dev_err(idt82p33->dev, "no PLLs flagged as PHCs, nothing to do\n"); err = -ENODEV; } mutex_unlock(idt82p33->lock); if (err) { idt82p33_ptp_clock_unregister_all(idt82p33); return err; } platform_set_drvdata(pdev, idt82p33); return 0; } static int idt82p33_remove(struct platform_device *pdev) { struct idt82p33 *idt82p33 = platform_get_drvdata(pdev); cancel_delayed_work_sync(&idt82p33->extts_work); idt82p33_ptp_clock_unregister_all(idt82p33); return 0; } static struct platform_driver idt82p33_driver = { .driver = { .name = "82p33x1x-phc", }, .probe = idt82p33_probe, .remove = idt82p33_remove, }; module_platform_driver(idt82p33_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1