Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neil Armstrong | 1810 | 69.94% | 4 | 12.50% |
Martin Blumenstingl | 540 | 20.87% | 16 | 50.00% |
Jerome Brunet | 97 | 3.75% | 3 | 9.38% |
Jian Hu | 88 | 3.40% | 1 | 3.12% |
Uwe Kleine-König | 42 | 1.62% | 5 | 15.62% |
Axel Lin | 8 | 0.31% | 1 | 3.12% |
Yangtao Li | 2 | 0.08% | 1 | 3.12% |
Stephen Boyd | 1 | 0.04% | 1 | 3.12% |
Total | 2588 | 32 |
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * PWM controller driver for Amlogic Meson SoCs. * * This PWM is only a set of Gates, Dividers and Counters: * PWM output is achieved by calculating a clock that permits calculating * two periods (low and high). The counter then has to be set to switch after * N cycles for the first half period. * The hardware has no "polarity" setting. This driver reverses the period * cycles (the low length is inverted with the high length) for * PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity * from the hardware. * Setting the duty cycle will disable and re-enable the PWM output. * Disabling the PWM stops the output immediately (without waiting for the * current period to complete first). * * The public S912 (GXM) datasheet contains some documentation for this PWM * controller starting on page 543: * https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf * An updated version of this IP block is found in S922X (G12B) SoCs. The * datasheet contains the description for this IP block revision starting at * page 1084: * https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf * * Copyright (c) 2016 BayLibre, SAS. * Author: Neil Armstrong <narmstrong@baylibre.com> * Copyright (C) 2014 Amlogic, Inc. */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/spinlock.h> #define REG_PWM_A 0x0 #define REG_PWM_B 0x4 #define PWM_LOW_MASK GENMASK(15, 0) #define PWM_HIGH_MASK GENMASK(31, 16) #define REG_MISC_AB 0x8 #define MISC_B_CLK_EN BIT(23) #define MISC_A_CLK_EN BIT(15) #define MISC_CLK_DIV_MASK 0x7f #define MISC_B_CLK_DIV_SHIFT 16 #define MISC_A_CLK_DIV_SHIFT 8 #define MISC_B_CLK_SEL_SHIFT 6 #define MISC_A_CLK_SEL_SHIFT 4 #define MISC_CLK_SEL_MASK 0x3 #define MISC_B_EN BIT(1) #define MISC_A_EN BIT(0) #define MESON_NUM_PWMS 2 static struct meson_pwm_channel_data { u8 reg_offset; u8 clk_sel_shift; u8 clk_div_shift; u32 clk_en_mask; u32 pwm_en_mask; } meson_pwm_per_channel_data[MESON_NUM_PWMS] = { { .reg_offset = REG_PWM_A, .clk_sel_shift = MISC_A_CLK_SEL_SHIFT, .clk_div_shift = MISC_A_CLK_DIV_SHIFT, .clk_en_mask = MISC_A_CLK_EN, .pwm_en_mask = MISC_A_EN, }, { .reg_offset = REG_PWM_B, .clk_sel_shift = MISC_B_CLK_SEL_SHIFT, .clk_div_shift = MISC_B_CLK_DIV_SHIFT, .clk_en_mask = MISC_B_CLK_EN, .pwm_en_mask = MISC_B_EN, } }; struct meson_pwm_channel { unsigned int hi; unsigned int lo; u8 pre_div; struct clk *clk_parent; struct clk_mux mux; struct clk *clk; }; struct meson_pwm_data { const char * const *parent_names; unsigned int num_parents; }; struct meson_pwm { struct pwm_chip chip; const struct meson_pwm_data *data; struct meson_pwm_channel channels[MESON_NUM_PWMS]; void __iomem *base; /* * Protects register (write) access to the REG_MISC_AB register * that is shared between the two PWMs. */ spinlock_t lock; }; static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip) { return container_of(chip, struct meson_pwm, chip); } static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; struct device *dev = chip->dev; int err; if (channel->clk_parent) { err = clk_set_parent(channel->clk, channel->clk_parent); if (err < 0) { dev_err(dev, "failed to set parent %s for %s: %d\n", __clk_get_name(channel->clk_parent), __clk_get_name(channel->clk), err); return err; } } err = clk_prepare_enable(channel->clk); if (err < 0) { dev_err(dev, "failed to enable clock %s: %d\n", __clk_get_name(channel->clk), err); return err; } return 0; } static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; clk_disable_unprepare(channel->clk); } static int meson_pwm_calc(struct meson_pwm *meson, struct pwm_device *pwm, const struct pwm_state *state) { struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; unsigned int duty, period, pre_div, cnt, duty_cnt; unsigned long fin_freq; duty = state->duty_cycle; period = state->period; if (state->polarity == PWM_POLARITY_INVERSED) duty = period - duty; fin_freq = clk_get_rate(channel->clk); if (fin_freq == 0) { dev_err(meson->chip.dev, "invalid source clock frequency\n"); return -EINVAL; } dev_dbg(meson->chip.dev, "fin_freq: %lu Hz\n", fin_freq); pre_div = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * 0xffffLL); if (pre_div > MISC_CLK_DIV_MASK) { dev_err(meson->chip.dev, "unable to get period pre_div\n"); return -EINVAL; } cnt = div64_u64(fin_freq * (u64)period, NSEC_PER_SEC * (pre_div + 1)); if (cnt > 0xffff) { dev_err(meson->chip.dev, "unable to get period cnt\n"); return -EINVAL; } dev_dbg(meson->chip.dev, "period=%u pre_div=%u cnt=%u\n", period, pre_div, cnt); if (duty == period) { channel->pre_div = pre_div; channel->hi = cnt; channel->lo = 0; } else if (duty == 0) { channel->pre_div = pre_div; channel->hi = 0; channel->lo = cnt; } else { /* Then check is we can have the duty with the same pre_div */ duty_cnt = div64_u64(fin_freq * (u64)duty, NSEC_PER_SEC * (pre_div + 1)); if (duty_cnt > 0xffff) { dev_err(meson->chip.dev, "unable to get duty cycle\n"); return -EINVAL; } dev_dbg(meson->chip.dev, "duty=%u pre_div=%u duty_cnt=%u\n", duty, pre_div, duty_cnt); channel->pre_div = pre_div; channel->hi = duty_cnt; channel->lo = cnt - duty_cnt; } return 0; } static void meson_pwm_enable(struct meson_pwm *meson, struct pwm_device *pwm) { struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; struct meson_pwm_channel_data *channel_data; unsigned long flags; u32 value; channel_data = &meson_pwm_per_channel_data[pwm->hwpwm]; spin_lock_irqsave(&meson->lock, flags); value = readl(meson->base + REG_MISC_AB); value &= ~(MISC_CLK_DIV_MASK << channel_data->clk_div_shift); value |= channel->pre_div << channel_data->clk_div_shift; value |= channel_data->clk_en_mask; writel(value, meson->base + REG_MISC_AB); value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) | FIELD_PREP(PWM_LOW_MASK, channel->lo); writel(value, meson->base + channel_data->reg_offset); value = readl(meson->base + REG_MISC_AB); value |= channel_data->pwm_en_mask; writel(value, meson->base + REG_MISC_AB); spin_unlock_irqrestore(&meson->lock, flags); } static void meson_pwm_disable(struct meson_pwm *meson, struct pwm_device *pwm) { unsigned long flags; u32 value; spin_lock_irqsave(&meson->lock, flags); value = readl(meson->base + REG_MISC_AB); value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask; writel(value, meson->base + REG_MISC_AB); spin_unlock_irqrestore(&meson->lock, flags); } static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; int err = 0; if (!state->enabled) { if (state->polarity == PWM_POLARITY_INVERSED) { /* * This IP block revision doesn't have an "always high" * setting which we can use for "inverted disabled". * Instead we achieve this using the same settings * that we use a pre_div of 0 (to get the shortest * possible duration for one "count") and * "period == duty_cycle". This results in a signal * which is LOW for one "count", while being HIGH for * the rest of the (so the signal is HIGH for slightly * less than 100% of the period, but this is the best * we can achieve). */ channel->pre_div = 0; channel->hi = ~0; channel->lo = 0; meson_pwm_enable(meson, pwm); } else { meson_pwm_disable(meson, pwm); } } else { err = meson_pwm_calc(meson, pwm, state); if (err < 0) return err; meson_pwm_enable(meson, pwm); } return 0; } static unsigned int meson_pwm_cnt_to_ns(struct pwm_chip *chip, struct pwm_device *pwm, u32 cnt) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel; unsigned long fin_freq; u32 fin_ns; /* to_meson_pwm() can only be used after .get_state() is called */ channel = &meson->channels[pwm->hwpwm]; fin_freq = clk_get_rate(channel->clk); if (fin_freq == 0) return 0; fin_ns = div_u64(NSEC_PER_SEC, fin_freq); return cnt * fin_ns * (channel->pre_div + 1); } static int meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel_data *channel_data; struct meson_pwm_channel *channel; u32 value, tmp; if (!state) return 0; channel = &meson->channels[pwm->hwpwm]; channel_data = &meson_pwm_per_channel_data[pwm->hwpwm]; value = readl(meson->base + REG_MISC_AB); tmp = channel_data->pwm_en_mask | channel_data->clk_en_mask; state->enabled = (value & tmp) == tmp; tmp = value >> channel_data->clk_div_shift; channel->pre_div = FIELD_GET(MISC_CLK_DIV_MASK, tmp); value = readl(meson->base + channel_data->reg_offset); channel->lo = FIELD_GET(PWM_LOW_MASK, value); channel->hi = FIELD_GET(PWM_HIGH_MASK, value); if (channel->lo == 0) { state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->hi); state->duty_cycle = state->period; } else if (channel->lo >= channel->hi) { state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->lo + channel->hi); state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm, channel->hi); } else { state->period = 0; state->duty_cycle = 0; } return 0; } static const struct pwm_ops meson_pwm_ops = { .request = meson_pwm_request, .free = meson_pwm_free, .apply = meson_pwm_apply, .get_state = meson_pwm_get_state, .owner = THIS_MODULE, }; static const char * const pwm_meson8b_parent_names[] = { "xtal", "vid_pll", "fclk_div4", "fclk_div3" }; static const struct meson_pwm_data pwm_meson8b_data = { .parent_names = pwm_meson8b_parent_names, .num_parents = ARRAY_SIZE(pwm_meson8b_parent_names), }; static const char * const pwm_gxbb_parent_names[] = { "xtal", "hdmi_pll", "fclk_div4", "fclk_div3" }; static const struct meson_pwm_data pwm_gxbb_data = { .parent_names = pwm_gxbb_parent_names, .num_parents = ARRAY_SIZE(pwm_gxbb_parent_names), }; /* * Only the 2 first inputs of the GXBB AO PWMs are valid * The last 2 are grounded */ static const char * const pwm_gxbb_ao_parent_names[] = { "xtal", "clk81" }; static const struct meson_pwm_data pwm_gxbb_ao_data = { .parent_names = pwm_gxbb_ao_parent_names, .num_parents = ARRAY_SIZE(pwm_gxbb_ao_parent_names), }; static const char * const pwm_axg_ee_parent_names[] = { "xtal", "fclk_div5", "fclk_div4", "fclk_div3" }; static const struct meson_pwm_data pwm_axg_ee_data = { .parent_names = pwm_axg_ee_parent_names, .num_parents = ARRAY_SIZE(pwm_axg_ee_parent_names), }; static const char * const pwm_axg_ao_parent_names[] = { "aoclk81", "xtal", "fclk_div4", "fclk_div5" }; static const struct meson_pwm_data pwm_axg_ao_data = { .parent_names = pwm_axg_ao_parent_names, .num_parents = ARRAY_SIZE(pwm_axg_ao_parent_names), }; static const char * const pwm_g12a_ao_ab_parent_names[] = { "xtal", "aoclk81", "fclk_div4", "fclk_div5" }; static const struct meson_pwm_data pwm_g12a_ao_ab_data = { .parent_names = pwm_g12a_ao_ab_parent_names, .num_parents = ARRAY_SIZE(pwm_g12a_ao_ab_parent_names), }; static const char * const pwm_g12a_ao_cd_parent_names[] = { "xtal", "aoclk81", }; static const struct meson_pwm_data pwm_g12a_ao_cd_data = { .parent_names = pwm_g12a_ao_cd_parent_names, .num_parents = ARRAY_SIZE(pwm_g12a_ao_cd_parent_names), }; static const char * const pwm_g12a_ee_parent_names[] = { "xtal", "hdmi_pll", "fclk_div4", "fclk_div3" }; static const struct meson_pwm_data pwm_g12a_ee_data = { .parent_names = pwm_g12a_ee_parent_names, .num_parents = ARRAY_SIZE(pwm_g12a_ee_parent_names), }; static const struct of_device_id meson_pwm_matches[] = { { .compatible = "amlogic,meson8b-pwm", .data = &pwm_meson8b_data }, { .compatible = "amlogic,meson-gxbb-pwm", .data = &pwm_gxbb_data }, { .compatible = "amlogic,meson-gxbb-ao-pwm", .data = &pwm_gxbb_ao_data }, { .compatible = "amlogic,meson-axg-ee-pwm", .data = &pwm_axg_ee_data }, { .compatible = "amlogic,meson-axg-ao-pwm", .data = &pwm_axg_ao_data }, { .compatible = "amlogic,meson-g12a-ee-pwm", .data = &pwm_g12a_ee_data }, { .compatible = "amlogic,meson-g12a-ao-pwm-ab", .data = &pwm_g12a_ao_ab_data }, { .compatible = "amlogic,meson-g12a-ao-pwm-cd", .data = &pwm_g12a_ao_cd_data }, {}, }; MODULE_DEVICE_TABLE(of, meson_pwm_matches); static int meson_pwm_init_channels(struct meson_pwm *meson) { struct device *dev = meson->chip.dev; struct clk_init_data init; unsigned int i; char name[255]; int err; for (i = 0; i < meson->chip.npwm; i++) { struct meson_pwm_channel *channel = &meson->channels[i]; snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i); init.name = name; init.ops = &clk_mux_ops; init.flags = 0; init.parent_names = meson->data->parent_names; init.num_parents = meson->data->num_parents; channel->mux.reg = meson->base + REG_MISC_AB; channel->mux.shift = meson_pwm_per_channel_data[i].clk_sel_shift; channel->mux.mask = MISC_CLK_SEL_MASK; channel->mux.flags = 0; channel->mux.lock = &meson->lock; channel->mux.table = NULL; channel->mux.hw.init = &init; channel->clk = devm_clk_register(dev, &channel->mux.hw); if (IS_ERR(channel->clk)) { err = PTR_ERR(channel->clk); dev_err(dev, "failed to register %s: %d\n", name, err); return err; } snprintf(name, sizeof(name), "clkin%u", i); channel->clk_parent = devm_clk_get_optional(dev, name); if (IS_ERR(channel->clk_parent)) return PTR_ERR(channel->clk_parent); } return 0; } static int meson_pwm_probe(struct platform_device *pdev) { struct meson_pwm *meson; int err; meson = devm_kzalloc(&pdev->dev, sizeof(*meson), GFP_KERNEL); if (!meson) return -ENOMEM; meson->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(meson->base)) return PTR_ERR(meson->base); spin_lock_init(&meson->lock); meson->chip.dev = &pdev->dev; meson->chip.ops = &meson_pwm_ops; meson->chip.npwm = MESON_NUM_PWMS; meson->data = of_device_get_match_data(&pdev->dev); err = meson_pwm_init_channels(meson); if (err < 0) return err; err = devm_pwmchip_add(&pdev->dev, &meson->chip); if (err < 0) { dev_err(&pdev->dev, "failed to register PWM chip: %d\n", err); return err; } return 0; } static struct platform_driver meson_pwm_driver = { .driver = { .name = "meson-pwm", .of_match_table = meson_pwm_matches, }, .probe = meson_pwm_probe, }; module_platform_driver(meson_pwm_driver); MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver"); MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>"); MODULE_LICENSE("Dual BSD/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1