Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Pervushin | 801 | 50.44% | 1 | 3.45% |
Wolfram Sang | 332 | 20.91% | 5 | 17.24% |
Uwe Kleine-König | 174 | 10.96% | 2 | 6.90% |
Lothar Waßmann | 55 | 3.46% | 1 | 3.45% |
Jingoo Han | 54 | 3.40% | 3 | 10.34% |
Alexandre Belloni | 50 | 3.15% | 4 | 13.79% |
Marek Vašut | 33 | 2.08% | 1 | 3.45% |
Harald Geyer | 30 | 1.89% | 1 | 3.45% |
Sudip Mukherjee | 22 | 1.39% | 1 | 3.45% |
Fabio Estevam | 14 | 0.88% | 1 | 3.45% |
linyujun | 9 | 0.57% | 1 | 3.45% |
Shawn Guo | 5 | 0.31% | 2 | 6.90% |
Axel Lin | 2 | 0.13% | 1 | 3.45% |
Gustavo A. R. Silva | 2 | 0.13% | 1 | 3.45% |
Linus Torvalds (pre-git) | 2 | 0.13% | 1 | 3.45% |
Linus Torvalds | 1 | 0.06% | 1 | 3.45% |
Bartosz Golaszewski | 1 | 0.06% | 1 | 3.45% |
Julia Lawall | 1 | 0.06% | 1 | 3.45% |
Total | 1588 | 29 |
// SPDX-License-Identifier: GPL-2.0+ /* * Freescale STMP37XX/STMP378X Real Time Clock driver * * Copyright (c) 2007 Sigmatel, Inc. * Peter Hartley, <peter.hartley@sigmatel.com> * * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. * Copyright 2011 Wolfram Sang, Pengutronix e.K. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/io.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/rtc.h> #include <linux/slab.h> #include <linux/of_device.h> #include <linux/of.h> #include <linux/stmp_device.h> #include <linux/stmp3xxx_rtc_wdt.h> #define STMP3XXX_RTC_CTRL 0x0 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN 0x00000001 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN 0x00000002 #define STMP3XXX_RTC_CTRL_ALARM_IRQ 0x00000004 #define STMP3XXX_RTC_CTRL_WATCHDOGEN 0x00000010 #define STMP3XXX_RTC_STAT 0x10 #define STMP3XXX_RTC_STAT_STALE_SHIFT 16 #define STMP3XXX_RTC_STAT_RTC_PRESENT 0x80000000 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT 0x10000000 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT 0x08000000 #define STMP3XXX_RTC_SECONDS 0x30 #define STMP3XXX_RTC_ALARM 0x40 #define STMP3XXX_RTC_WATCHDOG 0x50 #define STMP3XXX_RTC_PERSISTENT0 0x60 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE (1 << 0) #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN (1 << 1) #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN (1 << 2) #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP (1 << 4) #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP (1 << 5) #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ (1 << 6) #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE (1 << 7) #define STMP3XXX_RTC_PERSISTENT1 0x70 /* missing bitmask in headers */ #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER 0x80000000 struct stmp3xxx_rtc_data { struct rtc_device *rtc; void __iomem *io; int irq_alarm; }; #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG) /** * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC * @dev: the parent device of the watchdog (= the RTC) * @timeout: the desired value for the timeout register of the watchdog. * 0 disables the watchdog * * The watchdog needs one register and two bits which are in the RTC domain. * To handle the resource conflict, the RTC driver will create another * platform_device for the watchdog driver as a child of the RTC device. * The watchdog driver is passed the below accessor function via platform_data * to configure the watchdog. Locking is not needed because accessing SET/CLR * registers is atomic. */ static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout) { struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); if (timeout) { writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG); writel(STMP3XXX_RTC_CTRL_WATCHDOGEN, rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET); writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER, rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET); } else { writel(STMP3XXX_RTC_CTRL_WATCHDOGEN, rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER, rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR); } } static struct stmp3xxx_wdt_pdata wdt_pdata = { .wdt_set_timeout = stmp3xxx_wdt_set_timeout, }; static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev) { int rc = -1; struct platform_device *wdt_pdev = platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id); if (wdt_pdev) { wdt_pdev->dev.parent = &rtc_pdev->dev; wdt_pdev->dev.platform_data = &wdt_pdata; rc = platform_device_add(wdt_pdev); if (rc) platform_device_put(wdt_pdev); } if (rc) dev_err(&rtc_pdev->dev, "failed to register stmp3xxx_rtc_wdt\n"); } #else static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev) { } #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */ static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data) { int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */ /* * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010 * states: * | The order in which registers are updated is * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds. * | (This list is in bitfield order, from LSB to MSB, as they would * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT * | register. For example, the Seconds register corresponds to * | STALE_REGS or NEW_REGS containing 0x80.) */ do { if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) & (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT))) return 0; udelay(1); } while (--timeout > 0); return (readl(rtc_data->io + STMP3XXX_RTC_STAT) & (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0; } /* Time read/write */ static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) { int ret; struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); ret = stmp3xxx_wait_time(rtc_data); if (ret) return ret; rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm); return 0; } static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) { struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS); return stmp3xxx_wait_time(rtc_data); } /* interrupt(s) handler */ static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id) { struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id); u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL); if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) { writel(STMP3XXX_RTC_CTRL_ALARM_IRQ, rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF); return IRQ_HANDLED; } return IRQ_NONE; } static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); if (enabled) { writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_SET); writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET); } else { writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR); writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); } return 0; } static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time); return 0; } static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM); stmp3xxx_alarm_irq_enable(dev, alm->enabled); return 0; } static const struct rtc_class_ops stmp3xxx_rtc_ops = { .alarm_irq_enable = stmp3xxx_alarm_irq_enable, .read_time = stmp3xxx_rtc_gettime, .set_time = stmp3xxx_rtc_settime, .read_alarm = stmp3xxx_rtc_read_alarm, .set_alarm = stmp3xxx_rtc_set_alarm, }; static int stmp3xxx_rtc_remove(struct platform_device *pdev) { struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev); if (!rtc_data) return 0; writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); return 0; } static int stmp3xxx_rtc_probe(struct platform_device *pdev) { struct stmp3xxx_rtc_data *rtc_data; struct resource *r; u32 rtc_stat; u32 pers0_set, pers0_clr; u32 crystalfreq = 0; int err; rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL); if (!rtc_data) return -ENOMEM; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "failed to get resource\n"); return -ENXIO; } rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r)); if (!rtc_data->io) { dev_err(&pdev->dev, "ioremap failed\n"); return -EIO; } rtc_data->irq_alarm = platform_get_irq(pdev, 0); rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT); if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) { dev_err(&pdev->dev, "no device onboard\n"); return -ENODEV; } platform_set_drvdata(pdev, rtc_data); /* * Resetting the rtc stops the watchdog timer that is potentially * running. So (assuming it is running on purpose) don't reset if the * watchdog is enabled. */ if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) & STMP3XXX_RTC_CTRL_WATCHDOGEN) { dev_info(&pdev->dev, "Watchdog is running, skip resetting rtc\n"); } else { err = stmp_reset_block(rtc_data->io); if (err) { dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err); return err; } } /* * Obviously the rtc needs a clock input to be able to run. * This clock can be provided by an external 32k crystal. If that one is * missing XTAL must not be disabled in suspend which consumes a * lot of power. Normally the presence and exact frequency (supported * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality * proves these fuses are not blown correctly on all machines, so the * frequency can be overridden in the device tree. */ if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT) crystalfreq = 32000; else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT) crystalfreq = 32768; of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq", &crystalfreq); switch (crystalfreq) { case 32000: /* keep 32kHz crystal running in low-power mode */ pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ | STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP; break; case 32768: /* keep 32.768kHz crystal running in low-power mode */ pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP | STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ; break; default: dev_warn(&pdev->dev, "invalid crystal-freq specified in device-tree. Assuming no crystal\n"); fallthrough; case 0: /* keep XTAL on in low-power mode */ pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP; pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; } writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_SET); writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN | STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR); writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN | STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(rtc_data->rtc)) return PTR_ERR(rtc_data->rtc); err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm, stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev); if (err) { dev_err(&pdev->dev, "Cannot claim IRQ%d\n", rtc_data->irq_alarm); return err; } rtc_data->rtc->ops = &stmp3xxx_rtc_ops; rtc_data->rtc->range_max = U32_MAX; err = devm_rtc_register_device(rtc_data->rtc); if (err) return err; stmp3xxx_wdt_register(pdev); return 0; } #ifdef CONFIG_PM_SLEEP static int stmp3xxx_rtc_suspend(struct device *dev) { return 0; } static int stmp3xxx_rtc_resume(struct device *dev) { struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); stmp_reset_block(rtc_data->io); writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN | STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR); return 0; } #endif static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend, stmp3xxx_rtc_resume); static const struct of_device_id rtc_dt_ids[] = { { .compatible = "fsl,stmp3xxx-rtc", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, rtc_dt_ids); static struct platform_driver stmp3xxx_rtcdrv = { .probe = stmp3xxx_rtc_probe, .remove = stmp3xxx_rtc_remove, .driver = { .name = "stmp3xxx-rtc", .pm = &stmp3xxx_rtc_pm_ops, .of_match_table = rtc_dt_ids, }, }; module_platform_driver(stmp3xxx_rtcdrv); MODULE_DESCRIPTION("STMP3xxx RTC Driver"); MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and " "Wolfram Sang <kernel@pengutronix.de>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1