Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vinod Koul | 2765 | 38.76% | 6 | 7.50% |
Pierre-Louis Bossart | 2570 | 36.03% | 54 | 67.50% |
Sanyog Kale | 1290 | 18.08% | 1 | 1.25% |
Rander Wang | 362 | 5.08% | 7 | 8.75% |
Richard Fitzgerald | 52 | 0.73% | 5 | 6.25% |
Bard Liao | 52 | 0.73% | 2 | 2.50% |
Shreyas NC | 25 | 0.35% | 1 | 1.25% |
Simon Trimmer | 11 | 0.15% | 1 | 1.25% |
Jan Kotas | 3 | 0.04% | 1 | 1.25% |
Guennadi Liakhovetski | 2 | 0.03% | 1 | 1.25% |
Peter Ujfalusi | 1 | 0.01% | 1 | 1.25% |
Total | 7133 | 80 |
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) // Copyright(c) 2015-17 Intel Corporation. /* * Cadence SoundWire Master module * Used by Master driver */ #include <linux/delay.h> #include <linux/device.h> #include <linux/debugfs.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/pm_runtime.h> #include <linux/soundwire/sdw_registers.h> #include <linux/soundwire/sdw.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <linux/workqueue.h> #include "bus.h" #include "cadence_master.h" static int interrupt_mask; module_param_named(cnds_mcp_int_mask, interrupt_mask, int, 0444); MODULE_PARM_DESC(cdns_mcp_int_mask, "Cadence MCP IntMask"); #define CDNS_MCP_CONFIG 0x0 #define CDNS_MCP_CONFIG_MCMD_RETRY GENMASK(27, 24) #define CDNS_MCP_CONFIG_MPREQ_DELAY GENMASK(20, 16) #define CDNS_MCP_CONFIG_MMASTER BIT(7) #define CDNS_MCP_CONFIG_BUS_REL BIT(6) #define CDNS_MCP_CONFIG_SNIFFER BIT(5) #define CDNS_MCP_CONFIG_SSPMOD BIT(4) #define CDNS_MCP_CONFIG_CMD BIT(3) #define CDNS_MCP_CONFIG_OP GENMASK(2, 0) #define CDNS_MCP_CONFIG_OP_NORMAL 0 #define CDNS_MCP_CONTROL 0x4 #define CDNS_MCP_CONTROL_RST_DELAY GENMASK(10, 8) #define CDNS_MCP_CONTROL_CMD_RST BIT(7) #define CDNS_MCP_CONTROL_SOFT_RST BIT(6) #define CDNS_MCP_CONTROL_SW_RST BIT(5) #define CDNS_MCP_CONTROL_HW_RST BIT(4) #define CDNS_MCP_CONTROL_CLK_PAUSE BIT(3) #define CDNS_MCP_CONTROL_CLK_STOP_CLR BIT(2) #define CDNS_MCP_CONTROL_CMD_ACCEPT BIT(1) #define CDNS_MCP_CONTROL_BLOCK_WAKEUP BIT(0) #define CDNS_MCP_CMDCTRL 0x8 #define CDNS_MCP_CMDCTRL_INSERT_PARITY_ERR BIT(2) #define CDNS_MCP_SSPSTAT 0xC #define CDNS_MCP_FRAME_SHAPE 0x10 #define CDNS_MCP_FRAME_SHAPE_INIT 0x14 #define CDNS_MCP_FRAME_SHAPE_COL_MASK GENMASK(2, 0) #define CDNS_MCP_FRAME_SHAPE_ROW_MASK GENMASK(7, 3) #define CDNS_MCP_CONFIG_UPDATE 0x18 #define CDNS_MCP_CONFIG_UPDATE_BIT BIT(0) #define CDNS_MCP_PHYCTRL 0x1C #define CDNS_MCP_SSP_CTRL0 0x20 #define CDNS_MCP_SSP_CTRL1 0x28 #define CDNS_MCP_CLK_CTRL0 0x30 #define CDNS_MCP_CLK_CTRL1 0x38 #define CDNS_MCP_CLK_MCLKD_MASK GENMASK(7, 0) #define CDNS_MCP_STAT 0x40 #define CDNS_MCP_STAT_ACTIVE_BANK BIT(20) #define CDNS_MCP_STAT_CLK_STOP BIT(16) #define CDNS_MCP_INTSTAT 0x44 #define CDNS_MCP_INTMASK 0x48 #define CDNS_MCP_INT_IRQ BIT(31) #define CDNS_MCP_INT_RESERVED1 GENMASK(30, 17) #define CDNS_MCP_INT_WAKEUP BIT(16) #define CDNS_MCP_INT_SLAVE_RSVD BIT(15) #define CDNS_MCP_INT_SLAVE_ALERT BIT(14) #define CDNS_MCP_INT_SLAVE_ATTACH BIT(13) #define CDNS_MCP_INT_SLAVE_NATTACH BIT(12) #define CDNS_MCP_INT_SLAVE_MASK GENMASK(15, 12) #define CDNS_MCP_INT_DPINT BIT(11) #define CDNS_MCP_INT_CTRL_CLASH BIT(10) #define CDNS_MCP_INT_DATA_CLASH BIT(9) #define CDNS_MCP_INT_PARITY BIT(8) #define CDNS_MCP_INT_CMD_ERR BIT(7) #define CDNS_MCP_INT_RESERVED2 GENMASK(6, 4) #define CDNS_MCP_INT_RX_NE BIT(3) #define CDNS_MCP_INT_RX_WL BIT(2) #define CDNS_MCP_INT_TXE BIT(1) #define CDNS_MCP_INT_TXF BIT(0) #define CDNS_MCP_INT_RESERVED (CDNS_MCP_INT_RESERVED1 | CDNS_MCP_INT_RESERVED2) #define CDNS_MCP_INTSET 0x4C #define CDNS_MCP_SLAVE_STAT 0x50 #define CDNS_MCP_SLAVE_STAT_MASK GENMASK(1, 0) #define CDNS_MCP_SLAVE_INTSTAT0 0x54 #define CDNS_MCP_SLAVE_INTSTAT1 0x58 #define CDNS_MCP_SLAVE_INTSTAT_NPRESENT BIT(0) #define CDNS_MCP_SLAVE_INTSTAT_ATTACHED BIT(1) #define CDNS_MCP_SLAVE_INTSTAT_ALERT BIT(2) #define CDNS_MCP_SLAVE_INTSTAT_RESERVED BIT(3) #define CDNS_MCP_SLAVE_STATUS_BITS GENMASK(3, 0) #define CDNS_MCP_SLAVE_STATUS_NUM 4 #define CDNS_MCP_SLAVE_INTMASK0 0x5C #define CDNS_MCP_SLAVE_INTMASK1 0x60 #define CDNS_MCP_SLAVE_INTMASK0_MASK GENMASK(31, 0) #define CDNS_MCP_SLAVE_INTMASK1_MASK GENMASK(15, 0) #define CDNS_MCP_PORT_INTSTAT 0x64 #define CDNS_MCP_PDI_STAT 0x6C #define CDNS_MCP_FIFOLEVEL 0x78 #define CDNS_MCP_FIFOSTAT 0x7C #define CDNS_MCP_RX_FIFO_AVAIL GENMASK(5, 0) #define CDNS_MCP_CMD_BASE 0x80 #define CDNS_MCP_RESP_BASE 0x80 #define CDNS_MCP_CMD_LEN 0x20 #define CDNS_MCP_CMD_WORD_LEN 0x4 #define CDNS_MCP_CMD_SSP_TAG BIT(31) #define CDNS_MCP_CMD_COMMAND GENMASK(30, 28) #define CDNS_MCP_CMD_DEV_ADDR GENMASK(27, 24) #define CDNS_MCP_CMD_REG_ADDR GENMASK(23, 8) #define CDNS_MCP_CMD_REG_DATA GENMASK(7, 0) #define CDNS_MCP_CMD_READ 2 #define CDNS_MCP_CMD_WRITE 3 #define CDNS_MCP_RESP_RDATA GENMASK(15, 8) #define CDNS_MCP_RESP_ACK BIT(0) #define CDNS_MCP_RESP_NACK BIT(1) #define CDNS_DP_SIZE 128 #define CDNS_DPN_B0_CONFIG(n) (0x100 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B0_CH_EN(n) (0x104 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B0_SAMPLE_CTRL(n) (0x108 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B0_OFFSET_CTRL(n) (0x10C + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B0_HCTRL(n) (0x110 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B0_ASYNC_CTRL(n) (0x114 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B1_CONFIG(n) (0x118 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B1_CH_EN(n) (0x11C + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B1_SAMPLE_CTRL(n) (0x120 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B1_OFFSET_CTRL(n) (0x124 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B1_HCTRL(n) (0x128 + CDNS_DP_SIZE * (n)) #define CDNS_DPN_B1_ASYNC_CTRL(n) (0x12C + CDNS_DP_SIZE * (n)) #define CDNS_DPN_CONFIG_BPM BIT(18) #define CDNS_DPN_CONFIG_BGC GENMASK(17, 16) #define CDNS_DPN_CONFIG_WL GENMASK(12, 8) #define CDNS_DPN_CONFIG_PORT_DAT GENMASK(3, 2) #define CDNS_DPN_CONFIG_PORT_FLOW GENMASK(1, 0) #define CDNS_DPN_SAMPLE_CTRL_SI GENMASK(15, 0) #define CDNS_DPN_OFFSET_CTRL_1 GENMASK(7, 0) #define CDNS_DPN_OFFSET_CTRL_2 GENMASK(15, 8) #define CDNS_DPN_HCTRL_HSTOP GENMASK(3, 0) #define CDNS_DPN_HCTRL_HSTART GENMASK(7, 4) #define CDNS_DPN_HCTRL_LCTRL GENMASK(10, 8) #define CDNS_PORTCTRL 0x130 #define CDNS_PORTCTRL_TEST_FAILED BIT(1) #define CDNS_PORTCTRL_DIRN BIT(7) #define CDNS_PORTCTRL_BANK_INVERT BIT(8) #define CDNS_PORT_OFFSET 0x80 #define CDNS_PDI_CONFIG(n) (0x1100 + (n) * 16) #define CDNS_PDI_CONFIG_SOFT_RESET BIT(24) #define CDNS_PDI_CONFIG_CHANNEL GENMASK(15, 8) #define CDNS_PDI_CONFIG_PORT GENMASK(4, 0) /* Driver defaults */ #define CDNS_TX_TIMEOUT 500 #define CDNS_SCP_RX_FIFOLEVEL 0x2 /* * register accessor helpers */ static inline u32 cdns_readl(struct sdw_cdns *cdns, int offset) { return readl(cdns->registers + offset); } static inline void cdns_writel(struct sdw_cdns *cdns, int offset, u32 value) { writel(value, cdns->registers + offset); } static inline void cdns_updatel(struct sdw_cdns *cdns, int offset, u32 mask, u32 val) { u32 tmp; tmp = cdns_readl(cdns, offset); tmp = (tmp & ~mask) | val; cdns_writel(cdns, offset, tmp); } static int cdns_set_wait(struct sdw_cdns *cdns, int offset, u32 mask, u32 value) { int timeout = 10; u32 reg_read; /* Wait for bit to be set */ do { reg_read = readl(cdns->registers + offset); if ((reg_read & mask) == value) return 0; timeout--; usleep_range(50, 100); } while (timeout != 0); return -ETIMEDOUT; } static int cdns_clear_bit(struct sdw_cdns *cdns, int offset, u32 value) { writel(value, cdns->registers + offset); /* Wait for bit to be self cleared */ return cdns_set_wait(cdns, offset, value, 0); } /* * all changes to the MCP_CONFIG, MCP_CONTROL, MCP_CMDCTRL and MCP_PHYCTRL * need to be confirmed with a write to MCP_CONFIG_UPDATE */ static int cdns_config_update(struct sdw_cdns *cdns) { int ret; if (sdw_cdns_is_clock_stop(cdns)) { dev_err(cdns->dev, "Cannot program MCP_CONFIG_UPDATE in ClockStopMode\n"); return -EINVAL; } ret = cdns_clear_bit(cdns, CDNS_MCP_CONFIG_UPDATE, CDNS_MCP_CONFIG_UPDATE_BIT); if (ret < 0) dev_err(cdns->dev, "Config update timedout\n"); return ret; } /* * debugfs */ #ifdef CONFIG_DEBUG_FS #define RD_BUF (2 * PAGE_SIZE) static ssize_t cdns_sprintf(struct sdw_cdns *cdns, char *buf, size_t pos, unsigned int reg) { return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%8x\n", reg, cdns_readl(cdns, reg)); } static int cdns_reg_show(struct seq_file *s, void *data) { struct sdw_cdns *cdns = s->private; char *buf; ssize_t ret; int num_ports; int i, j; buf = kzalloc(RD_BUF, GFP_KERNEL); if (!buf) return -ENOMEM; ret = scnprintf(buf, RD_BUF, "Register Value\n"); ret += scnprintf(buf + ret, RD_BUF - ret, "\nMCP Registers\n"); /* 8 MCP registers */ for (i = CDNS_MCP_CONFIG; i <= CDNS_MCP_PHYCTRL; i += sizeof(u32)) ret += cdns_sprintf(cdns, buf, ret, i); ret += scnprintf(buf + ret, RD_BUF - ret, "\nStatus & Intr Registers\n"); /* 13 Status & Intr registers (offsets 0x70 and 0x74 not defined) */ for (i = CDNS_MCP_STAT; i <= CDNS_MCP_FIFOSTAT; i += sizeof(u32)) ret += cdns_sprintf(cdns, buf, ret, i); ret += scnprintf(buf + ret, RD_BUF - ret, "\nSSP & Clk ctrl Registers\n"); ret += cdns_sprintf(cdns, buf, ret, CDNS_MCP_SSP_CTRL0); ret += cdns_sprintf(cdns, buf, ret, CDNS_MCP_SSP_CTRL1); ret += cdns_sprintf(cdns, buf, ret, CDNS_MCP_CLK_CTRL0); ret += cdns_sprintf(cdns, buf, ret, CDNS_MCP_CLK_CTRL1); ret += scnprintf(buf + ret, RD_BUF - ret, "\nDPn B0 Registers\n"); num_ports = cdns->num_ports; for (i = 0; i < num_ports; i++) { ret += scnprintf(buf + ret, RD_BUF - ret, "\nDP-%d\n", i); for (j = CDNS_DPN_B0_CONFIG(i); j < CDNS_DPN_B0_ASYNC_CTRL(i); j += sizeof(u32)) ret += cdns_sprintf(cdns, buf, ret, j); } ret += scnprintf(buf + ret, RD_BUF - ret, "\nDPn B1 Registers\n"); for (i = 0; i < num_ports; i++) { ret += scnprintf(buf + ret, RD_BUF - ret, "\nDP-%d\n", i); for (j = CDNS_DPN_B1_CONFIG(i); j < CDNS_DPN_B1_ASYNC_CTRL(i); j += sizeof(u32)) ret += cdns_sprintf(cdns, buf, ret, j); } ret += scnprintf(buf + ret, RD_BUF - ret, "\nDPn Control Registers\n"); for (i = 0; i < num_ports; i++) ret += cdns_sprintf(cdns, buf, ret, CDNS_PORTCTRL + i * CDNS_PORT_OFFSET); ret += scnprintf(buf + ret, RD_BUF - ret, "\nPDIn Config Registers\n"); /* number of PDI and ports is interchangeable */ for (i = 0; i < num_ports; i++) ret += cdns_sprintf(cdns, buf, ret, CDNS_PDI_CONFIG(i)); seq_printf(s, "%s", buf); kfree(buf); return 0; } DEFINE_SHOW_ATTRIBUTE(cdns_reg); static int cdns_hw_reset(void *data, u64 value) { struct sdw_cdns *cdns = data; int ret; if (value != 1) return -EINVAL; /* Userspace changed the hardware state behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_STILL_OK); ret = sdw_cdns_exit_reset(cdns); dev_dbg(cdns->dev, "link hw_reset done: %d\n", ret); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(cdns_hw_reset_fops, NULL, cdns_hw_reset, "%llu\n"); static int cdns_parity_error_injection(void *data, u64 value) { struct sdw_cdns *cdns = data; struct sdw_bus *bus; int ret; if (value != 1) return -EINVAL; bus = &cdns->bus; /* * Resume Master device. If this results in a bus reset, the * Slave devices will re-attach and be re-enumerated. */ ret = pm_runtime_resume_and_get(bus->dev); if (ret < 0 && ret != -EACCES) { dev_err_ratelimited(cdns->dev, "pm_runtime_resume_and_get failed in %s, ret %d\n", __func__, ret); return ret; } /* * wait long enough for Slave(s) to be in steady state. This * does not need to be super precise. */ msleep(200); /* * Take the bus lock here to make sure that any bus transactions * will be queued while we inject a parity error on a dummy read */ mutex_lock(&bus->bus_lock); /* program hardware to inject parity error */ cdns_updatel(cdns, CDNS_MCP_CMDCTRL, CDNS_MCP_CMDCTRL_INSERT_PARITY_ERR, CDNS_MCP_CMDCTRL_INSERT_PARITY_ERR); /* commit changes */ cdns_updatel(cdns, CDNS_MCP_CONFIG_UPDATE, CDNS_MCP_CONFIG_UPDATE_BIT, CDNS_MCP_CONFIG_UPDATE_BIT); /* do a broadcast dummy read to avoid bus clashes */ ret = sdw_bread_no_pm_unlocked(&cdns->bus, 0xf, SDW_SCP_DEVID_0); dev_info(cdns->dev, "parity error injection, read: %d\n", ret); /* program hardware to disable parity error */ cdns_updatel(cdns, CDNS_MCP_CMDCTRL, CDNS_MCP_CMDCTRL_INSERT_PARITY_ERR, 0); /* commit changes */ cdns_updatel(cdns, CDNS_MCP_CONFIG_UPDATE, CDNS_MCP_CONFIG_UPDATE_BIT, CDNS_MCP_CONFIG_UPDATE_BIT); /* Continue bus operation with parity error injection disabled */ mutex_unlock(&bus->bus_lock); /* Userspace changed the hardware state behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_STILL_OK); /* * allow Master device to enter pm_runtime suspend. This may * also result in Slave devices suspending. */ pm_runtime_mark_last_busy(bus->dev); pm_runtime_put_autosuspend(bus->dev); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(cdns_parity_error_fops, NULL, cdns_parity_error_injection, "%llu\n"); static int cdns_set_pdi_loopback_source(void *data, u64 value) { struct sdw_cdns *cdns = data; unsigned int pdi_out_num = cdns->pcm.num_bd + cdns->pcm.num_out; if (value > pdi_out_num) return -EINVAL; /* Userspace changed the hardware state behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_STILL_OK); cdns->pdi_loopback_source = value; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(cdns_pdi_loopback_source_fops, NULL, cdns_set_pdi_loopback_source, "%llu\n"); static int cdns_set_pdi_loopback_target(void *data, u64 value) { struct sdw_cdns *cdns = data; unsigned int pdi_in_num = cdns->pcm.num_bd + cdns->pcm.num_in; if (value > pdi_in_num) return -EINVAL; /* Userspace changed the hardware state behind the kernel's back */ add_taint(TAINT_USER, LOCKDEP_STILL_OK); cdns->pdi_loopback_target = value; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(cdns_pdi_loopback_target_fops, NULL, cdns_set_pdi_loopback_target, "%llu\n"); /** * sdw_cdns_debugfs_init() - Cadence debugfs init * @cdns: Cadence instance * @root: debugfs root */ void sdw_cdns_debugfs_init(struct sdw_cdns *cdns, struct dentry *root) { debugfs_create_file("cdns-registers", 0400, root, cdns, &cdns_reg_fops); debugfs_create_file("cdns-hw-reset", 0200, root, cdns, &cdns_hw_reset_fops); debugfs_create_file("cdns-parity-error-injection", 0200, root, cdns, &cdns_parity_error_fops); cdns->pdi_loopback_source = -1; cdns->pdi_loopback_target = -1; debugfs_create_file("cdns-pdi-loopback-source", 0200, root, cdns, &cdns_pdi_loopback_source_fops); debugfs_create_file("cdns-pdi-loopback-target", 0200, root, cdns, &cdns_pdi_loopback_target_fops); } EXPORT_SYMBOL_GPL(sdw_cdns_debugfs_init); #endif /* CONFIG_DEBUG_FS */ /* * IO Calls */ static enum sdw_command_response cdns_fill_msg_resp(struct sdw_cdns *cdns, struct sdw_msg *msg, int count, int offset) { int nack = 0, no_ack = 0; int i; /* check message response */ for (i = 0; i < count; i++) { if (!(cdns->response_buf[i] & CDNS_MCP_RESP_ACK)) { no_ack = 1; dev_vdbg(cdns->dev, "Msg Ack not received, cmd %d\n", i); } if (cdns->response_buf[i] & CDNS_MCP_RESP_NACK) { nack = 1; dev_err_ratelimited(cdns->dev, "Msg NACK received, cmd %d\n", i); } } if (nack) { dev_err_ratelimited(cdns->dev, "Msg NACKed for Slave %d\n", msg->dev_num); return SDW_CMD_FAIL; } if (no_ack) { dev_dbg_ratelimited(cdns->dev, "Msg ignored for Slave %d\n", msg->dev_num); return SDW_CMD_IGNORED; } if (msg->flags == SDW_MSG_FLAG_READ) { /* fill response */ for (i = 0; i < count; i++) msg->buf[i + offset] = FIELD_GET(CDNS_MCP_RESP_RDATA, cdns->response_buf[i]); } return SDW_CMD_OK; } static enum sdw_command_response _cdns_xfer_msg(struct sdw_cdns *cdns, struct sdw_msg *msg, int cmd, int offset, int count, bool defer) { unsigned long time; u32 base, i, data; u16 addr; /* Program the watermark level for RX FIFO */ if (cdns->msg_count != count) { cdns_writel(cdns, CDNS_MCP_FIFOLEVEL, count); cdns->msg_count = count; } base = CDNS_MCP_CMD_BASE; addr = msg->addr + offset; for (i = 0; i < count; i++) { data = FIELD_PREP(CDNS_MCP_CMD_DEV_ADDR, msg->dev_num); data |= FIELD_PREP(CDNS_MCP_CMD_COMMAND, cmd); data |= FIELD_PREP(CDNS_MCP_CMD_REG_ADDR, addr); addr++; if (msg->flags == SDW_MSG_FLAG_WRITE) data |= msg->buf[i + offset]; data |= FIELD_PREP(CDNS_MCP_CMD_SSP_TAG, msg->ssp_sync); cdns_writel(cdns, base, data); base += CDNS_MCP_CMD_WORD_LEN; } if (defer) return SDW_CMD_OK; /* wait for timeout or response */ time = wait_for_completion_timeout(&cdns->tx_complete, msecs_to_jiffies(CDNS_TX_TIMEOUT)); if (!time) { dev_err(cdns->dev, "IO transfer timed out, cmd %d device %d addr %x len %d\n", cmd, msg->dev_num, msg->addr, msg->len); msg->len = 0; return SDW_CMD_TIMEOUT; } return cdns_fill_msg_resp(cdns, msg, count, offset); } static enum sdw_command_response cdns_program_scp_addr(struct sdw_cdns *cdns, struct sdw_msg *msg) { int nack = 0, no_ack = 0; unsigned long time; u32 data[2], base; int i; /* Program the watermark level for RX FIFO */ if (cdns->msg_count != CDNS_SCP_RX_FIFOLEVEL) { cdns_writel(cdns, CDNS_MCP_FIFOLEVEL, CDNS_SCP_RX_FIFOLEVEL); cdns->msg_count = CDNS_SCP_RX_FIFOLEVEL; } data[0] = FIELD_PREP(CDNS_MCP_CMD_DEV_ADDR, msg->dev_num); data[0] |= FIELD_PREP(CDNS_MCP_CMD_COMMAND, 0x3); data[1] = data[0]; data[0] |= FIELD_PREP(CDNS_MCP_CMD_REG_ADDR, SDW_SCP_ADDRPAGE1); data[1] |= FIELD_PREP(CDNS_MCP_CMD_REG_ADDR, SDW_SCP_ADDRPAGE2); data[0] |= msg->addr_page1; data[1] |= msg->addr_page2; base = CDNS_MCP_CMD_BASE; cdns_writel(cdns, base, data[0]); base += CDNS_MCP_CMD_WORD_LEN; cdns_writel(cdns, base, data[1]); time = wait_for_completion_timeout(&cdns->tx_complete, msecs_to_jiffies(CDNS_TX_TIMEOUT)); if (!time) { dev_err(cdns->dev, "SCP Msg trf timed out\n"); msg->len = 0; return SDW_CMD_TIMEOUT; } /* check response the writes */ for (i = 0; i < 2; i++) { if (!(cdns->response_buf[i] & CDNS_MCP_RESP_ACK)) { no_ack = 1; dev_err(cdns->dev, "Program SCP Ack not received\n"); if (cdns->response_buf[i] & CDNS_MCP_RESP_NACK) { nack = 1; dev_err(cdns->dev, "Program SCP NACK received\n"); } } } /* For NACK, NO ack, don't return err if we are in Broadcast mode */ if (nack) { dev_err_ratelimited(cdns->dev, "SCP_addrpage NACKed for Slave %d\n", msg->dev_num); return SDW_CMD_FAIL; } if (no_ack) { dev_dbg_ratelimited(cdns->dev, "SCP_addrpage ignored for Slave %d\n", msg->dev_num); return SDW_CMD_IGNORED; } return SDW_CMD_OK; } static int cdns_prep_msg(struct sdw_cdns *cdns, struct sdw_msg *msg, int *cmd) { int ret; if (msg->page) { ret = cdns_program_scp_addr(cdns, msg); if (ret) { msg->len = 0; return ret; } } switch (msg->flags) { case SDW_MSG_FLAG_READ: *cmd = CDNS_MCP_CMD_READ; break; case SDW_MSG_FLAG_WRITE: *cmd = CDNS_MCP_CMD_WRITE; break; default: dev_err(cdns->dev, "Invalid msg cmd: %d\n", msg->flags); return -EINVAL; } return 0; } enum sdw_command_response cdns_xfer_msg(struct sdw_bus *bus, struct sdw_msg *msg) { struct sdw_cdns *cdns = bus_to_cdns(bus); int cmd = 0, ret, i; ret = cdns_prep_msg(cdns, msg, &cmd); if (ret) return SDW_CMD_FAIL_OTHER; for (i = 0; i < msg->len / CDNS_MCP_CMD_LEN; i++) { ret = _cdns_xfer_msg(cdns, msg, cmd, i * CDNS_MCP_CMD_LEN, CDNS_MCP_CMD_LEN, false); if (ret != SDW_CMD_OK) return ret; } if (!(msg->len % CDNS_MCP_CMD_LEN)) return SDW_CMD_OK; return _cdns_xfer_msg(cdns, msg, cmd, i * CDNS_MCP_CMD_LEN, msg->len % CDNS_MCP_CMD_LEN, false); } EXPORT_SYMBOL(cdns_xfer_msg); enum sdw_command_response cdns_xfer_msg_defer(struct sdw_bus *bus, struct sdw_msg *msg, struct sdw_defer *defer) { struct sdw_cdns *cdns = bus_to_cdns(bus); int cmd = 0, ret; /* for defer only 1 message is supported */ if (msg->len > 1) return -ENOTSUPP; ret = cdns_prep_msg(cdns, msg, &cmd); if (ret) return SDW_CMD_FAIL_OTHER; cdns->defer = defer; cdns->defer->length = msg->len; return _cdns_xfer_msg(cdns, msg, cmd, 0, msg->len, true); } EXPORT_SYMBOL(cdns_xfer_msg_defer); enum sdw_command_response cdns_reset_page_addr(struct sdw_bus *bus, unsigned int dev_num) { struct sdw_cdns *cdns = bus_to_cdns(bus); struct sdw_msg msg; /* Create dummy message with valid device number */ memset(&msg, 0, sizeof(msg)); msg.dev_num = dev_num; return cdns_program_scp_addr(cdns, &msg); } EXPORT_SYMBOL(cdns_reset_page_addr); u32 cdns_read_ping_status(struct sdw_bus *bus) { struct sdw_cdns *cdns = bus_to_cdns(bus); return cdns_readl(cdns, CDNS_MCP_SLAVE_STAT); } EXPORT_SYMBOL(cdns_read_ping_status); /* * IRQ handling */ static void cdns_read_response(struct sdw_cdns *cdns) { u32 num_resp, cmd_base; int i; num_resp = cdns_readl(cdns, CDNS_MCP_FIFOSTAT); num_resp &= CDNS_MCP_RX_FIFO_AVAIL; cmd_base = CDNS_MCP_CMD_BASE; for (i = 0; i < num_resp; i++) { cdns->response_buf[i] = cdns_readl(cdns, cmd_base); cmd_base += CDNS_MCP_CMD_WORD_LEN; } } static int cdns_update_slave_status(struct sdw_cdns *cdns, u64 slave_intstat) { enum sdw_slave_status status[SDW_MAX_DEVICES + 1]; bool is_slave = false; u32 mask; u32 val; int i, set_status; memset(status, 0, sizeof(status)); for (i = 0; i <= SDW_MAX_DEVICES; i++) { mask = (slave_intstat >> (i * CDNS_MCP_SLAVE_STATUS_NUM)) & CDNS_MCP_SLAVE_STATUS_BITS; set_status = 0; if (mask) { is_slave = true; if (mask & CDNS_MCP_SLAVE_INTSTAT_RESERVED) { status[i] = SDW_SLAVE_RESERVED; set_status++; } if (mask & CDNS_MCP_SLAVE_INTSTAT_ATTACHED) { status[i] = SDW_SLAVE_ATTACHED; set_status++; } if (mask & CDNS_MCP_SLAVE_INTSTAT_ALERT) { status[i] = SDW_SLAVE_ALERT; set_status++; } if (mask & CDNS_MCP_SLAVE_INTSTAT_NPRESENT) { status[i] = SDW_SLAVE_UNATTACHED; set_status++; } } /* * check that there was a single reported Slave status and when * there is not use the latest status extracted from PING commands */ if (set_status != 1) { val = cdns_readl(cdns, CDNS_MCP_SLAVE_STAT); val >>= (i * 2); switch (val & 0x3) { case 0: status[i] = SDW_SLAVE_UNATTACHED; break; case 1: status[i] = SDW_SLAVE_ATTACHED; break; case 2: status[i] = SDW_SLAVE_ALERT; break; case 3: default: status[i] = SDW_SLAVE_RESERVED; break; } } } if (is_slave) return sdw_handle_slave_status(&cdns->bus, status); return 0; } /** * sdw_cdns_irq() - Cadence interrupt handler * @irq: irq number * @dev_id: irq context */ irqreturn_t sdw_cdns_irq(int irq, void *dev_id) { struct sdw_cdns *cdns = dev_id; u32 int_status; /* Check if the link is up */ if (!cdns->link_up) return IRQ_NONE; int_status = cdns_readl(cdns, CDNS_MCP_INTSTAT); /* check for reserved values read as zero */ if (int_status & CDNS_MCP_INT_RESERVED) return IRQ_NONE; if (!(int_status & CDNS_MCP_INT_IRQ)) return IRQ_NONE; if (int_status & CDNS_MCP_INT_RX_WL) { cdns_read_response(cdns); if (cdns->defer) { cdns_fill_msg_resp(cdns, cdns->defer->msg, cdns->defer->length, 0); complete(&cdns->defer->complete); cdns->defer = NULL; } else { complete(&cdns->tx_complete); } } if (int_status & CDNS_MCP_INT_PARITY) { /* Parity error detected by Master */ dev_err_ratelimited(cdns->dev, "Parity error\n"); } if (int_status & CDNS_MCP_INT_CTRL_CLASH) { /* Slave is driving bit slot during control word */ dev_err_ratelimited(cdns->dev, "Bus clash for control word\n"); } if (int_status & CDNS_MCP_INT_DATA_CLASH) { /* * Multiple slaves trying to drive bit slot, or issue with * ownership of data bits or Slave gone bonkers */ dev_err_ratelimited(cdns->dev, "Bus clash for data word\n"); } if (cdns->bus.params.m_data_mode != SDW_PORT_DATA_MODE_NORMAL && int_status & CDNS_MCP_INT_DPINT) { u32 port_intstat; /* just log which ports report an error */ port_intstat = cdns_readl(cdns, CDNS_MCP_PORT_INTSTAT); dev_err_ratelimited(cdns->dev, "DP interrupt: PortIntStat %8x\n", port_intstat); /* clear status w/ write1 */ cdns_writel(cdns, CDNS_MCP_PORT_INTSTAT, port_intstat); } if (int_status & CDNS_MCP_INT_SLAVE_MASK) { /* Mask the Slave interrupt and wake thread */ cdns_updatel(cdns, CDNS_MCP_INTMASK, CDNS_MCP_INT_SLAVE_MASK, 0); int_status &= ~CDNS_MCP_INT_SLAVE_MASK; /* * Deal with possible race condition between interrupt * handling and disabling interrupts on suspend. * * If the master is in the process of disabling * interrupts, don't schedule a workqueue */ if (cdns->interrupt_enabled) schedule_work(&cdns->work); } cdns_writel(cdns, CDNS_MCP_INTSTAT, int_status); return IRQ_HANDLED; } EXPORT_SYMBOL(sdw_cdns_irq); /** * cdns_update_slave_status_work - update slave status in a work since we will need to handle * other interrupts eg. CDNS_MCP_INT_RX_WL during the update slave * process. * @work: cdns worker thread */ static void cdns_update_slave_status_work(struct work_struct *work) { struct sdw_cdns *cdns = container_of(work, struct sdw_cdns, work); u32 slave0, slave1; u64 slave_intstat; u32 device0_status; int retry_count = 0; /* * Clear main interrupt first so we don't lose any assertions * that happen during this function. */ cdns_writel(cdns, CDNS_MCP_INTSTAT, CDNS_MCP_INT_SLAVE_MASK); slave0 = cdns_readl(cdns, CDNS_MCP_SLAVE_INTSTAT0); slave1 = cdns_readl(cdns, CDNS_MCP_SLAVE_INTSTAT1); /* * Clear the bits before handling so we don't lose any * bits that re-assert. */ cdns_writel(cdns, CDNS_MCP_SLAVE_INTSTAT0, slave0); cdns_writel(cdns, CDNS_MCP_SLAVE_INTSTAT1, slave1); /* combine the two status */ slave_intstat = ((u64)slave1 << 32) | slave0; dev_dbg_ratelimited(cdns->dev, "Slave status change: 0x%llx\n", slave_intstat); update_status: cdns_update_slave_status(cdns, slave_intstat); /* * When there is more than one peripheral per link, it's * possible that a deviceB becomes attached after we deal with * the attachment of deviceA. Since the hardware does a * logical AND, the attachment of the second device does not * change the status seen by the driver. * * In that case, clearing the registers above would result in * the deviceB never being detected - until a change of status * is observed on the bus. * * To avoid this race condition, re-check if any device0 needs * attention with PING commands. There is no need to check for * ALERTS since they are not allowed until a non-zero * device_number is assigned. * * Do not clear the INTSTAT0/1. While looping to enumerate devices on * #0 there could be status changes on other devices - these must * be kept in the INTSTAT so they can be handled when all #0 devices * have been handled. */ device0_status = cdns_readl(cdns, CDNS_MCP_SLAVE_STAT); device0_status &= 3; if (device0_status == SDW_SLAVE_ATTACHED) { if (retry_count++ < SDW_MAX_DEVICES) { dev_dbg_ratelimited(cdns->dev, "Device0 detected after clearing status, iteration %d\n", retry_count); slave_intstat = CDNS_MCP_SLAVE_INTSTAT_ATTACHED; goto update_status; } else { dev_err_ratelimited(cdns->dev, "Device0 detected after %d iterations\n", retry_count); } } /* unmask Slave interrupt now */ cdns_updatel(cdns, CDNS_MCP_INTMASK, CDNS_MCP_INT_SLAVE_MASK, CDNS_MCP_INT_SLAVE_MASK); } /* paranoia check to make sure self-cleared bits are indeed cleared */ void sdw_cdns_check_self_clearing_bits(struct sdw_cdns *cdns, const char *string, bool initial_delay, int reset_iterations) { u32 mcp_control; u32 mcp_config_update; int i; if (initial_delay) usleep_range(1000, 1500); mcp_control = cdns_readl(cdns, CDNS_MCP_CONTROL); /* the following bits should be cleared immediately */ if (mcp_control & CDNS_MCP_CONTROL_CMD_RST) dev_err(cdns->dev, "%s failed: MCP_CONTROL_CMD_RST is not cleared\n", string); if (mcp_control & CDNS_MCP_CONTROL_SOFT_RST) dev_err(cdns->dev, "%s failed: MCP_CONTROL_SOFT_RST is not cleared\n", string); if (mcp_control & CDNS_MCP_CONTROL_SW_RST) dev_err(cdns->dev, "%s failed: MCP_CONTROL_SW_RST is not cleared\n", string); if (mcp_control & CDNS_MCP_CONTROL_CLK_STOP_CLR) dev_err(cdns->dev, "%s failed: MCP_CONTROL_CLK_STOP_CLR is not cleared\n", string); mcp_config_update = cdns_readl(cdns, CDNS_MCP_CONFIG_UPDATE); if (mcp_config_update & CDNS_MCP_CONFIG_UPDATE_BIT) dev_err(cdns->dev, "%s failed: MCP_CONFIG_UPDATE_BIT is not cleared\n", string); i = 0; while (mcp_control & CDNS_MCP_CONTROL_HW_RST) { if (i == reset_iterations) { dev_err(cdns->dev, "%s failed: MCP_CONTROL_HW_RST is not cleared\n", string); break; } dev_dbg(cdns->dev, "%s: MCP_CONTROL_HW_RST is not cleared at iteration %d\n", string, i); i++; usleep_range(1000, 1500); mcp_control = cdns_readl(cdns, CDNS_MCP_CONTROL); } } EXPORT_SYMBOL(sdw_cdns_check_self_clearing_bits); /* * init routines */ /** * sdw_cdns_exit_reset() - Program reset parameters and start bus operations * @cdns: Cadence instance */ int sdw_cdns_exit_reset(struct sdw_cdns *cdns) { /* keep reset delay unchanged to 4096 cycles */ /* use hardware generated reset */ cdns_updatel(cdns, CDNS_MCP_CONTROL, CDNS_MCP_CONTROL_HW_RST, CDNS_MCP_CONTROL_HW_RST); /* commit changes */ cdns_updatel(cdns, CDNS_MCP_CONFIG_UPDATE, CDNS_MCP_CONFIG_UPDATE_BIT, CDNS_MCP_CONFIG_UPDATE_BIT); /* don't wait here */ return 0; } EXPORT_SYMBOL(sdw_cdns_exit_reset); /** * cdns_enable_slave_interrupts() - Enable SDW slave interrupts * @cdns: Cadence instance * @state: boolean for true/false */ static void cdns_enable_slave_interrupts(struct sdw_cdns *cdns, bool state) { u32 mask; mask = cdns_readl(cdns, CDNS_MCP_INTMASK); if (state) mask |= CDNS_MCP_INT_SLAVE_MASK; else mask &= ~CDNS_MCP_INT_SLAVE_MASK; cdns_writel(cdns, CDNS_MCP_INTMASK, mask); } /** * sdw_cdns_enable_interrupt() - Enable SDW interrupts * @cdns: Cadence instance * @state: True if we are trying to enable interrupt. */ int sdw_cdns_enable_interrupt(struct sdw_cdns *cdns, bool state) { u32 slave_intmask0 = 0; u32 slave_intmask1 = 0; u32 mask = 0; if (!state) goto update_masks; slave_intmask0 = CDNS_MCP_SLAVE_INTMASK0_MASK; slave_intmask1 = CDNS_MCP_SLAVE_INTMASK1_MASK; /* enable detection of all slave state changes */ mask = CDNS_MCP_INT_SLAVE_MASK; /* enable detection of bus issues */ mask |= CDNS_MCP_INT_CTRL_CLASH | CDNS_MCP_INT_DATA_CLASH | CDNS_MCP_INT_PARITY; /* port interrupt limited to test modes for now */ if (cdns->bus.params.m_data_mode != SDW_PORT_DATA_MODE_NORMAL) mask |= CDNS_MCP_INT_DPINT; /* enable detection of RX fifo level */ mask |= CDNS_MCP_INT_RX_WL; /* * CDNS_MCP_INT_IRQ needs to be set otherwise all previous * settings are irrelevant */ mask |= CDNS_MCP_INT_IRQ; if (interrupt_mask) /* parameter override */ mask = interrupt_mask; update_masks: /* clear slave interrupt status before enabling interrupt */ if (state) { u32 slave_state; slave_state = cdns_readl(cdns, CDNS_MCP_SLAVE_INTSTAT0); cdns_writel(cdns, CDNS_MCP_SLAVE_INTSTAT0, slave_state); slave_state = cdns_readl(cdns, CDNS_MCP_SLAVE_INTSTAT1); cdns_writel(cdns, CDNS_MCP_SLAVE_INTSTAT1, slave_state); } cdns->interrupt_enabled = state; /* * Complete any on-going status updates before updating masks, * and cancel queued status updates. * * There could be a race with a new interrupt thrown before * the 3 mask updates below are complete, so in the interrupt * we use the 'interrupt_enabled' status to prevent new work * from being queued. */ if (!state) cancel_work_sync(&cdns->work); cdns_writel(cdns, CDNS_MCP_SLAVE_INTMASK0, slave_intmask0); cdns_writel(cdns, CDNS_MCP_SLAVE_INTMASK1, slave_intmask1); cdns_writel(cdns, CDNS_MCP_INTMASK, mask); return 0; } EXPORT_SYMBOL(sdw_cdns_enable_interrupt); static int cdns_allocate_pdi(struct sdw_cdns *cdns, struct sdw_cdns_pdi **stream, u32 num, u32 pdi_offset) { struct sdw_cdns_pdi *pdi; int i; if (!num) return 0; pdi = devm_kcalloc(cdns->dev, num, sizeof(*pdi), GFP_KERNEL); if (!pdi) return -ENOMEM; for (i = 0; i < num; i++) { pdi[i].num = i + pdi_offset; } *stream = pdi; return 0; } /** * sdw_cdns_pdi_init() - PDI initialization routine * * @cdns: Cadence instance * @config: Stream configurations */ int sdw_cdns_pdi_init(struct sdw_cdns *cdns, struct sdw_cdns_stream_config config) { struct sdw_cdns_streams *stream; int offset; int ret; cdns->pcm.num_bd = config.pcm_bd; cdns->pcm.num_in = config.pcm_in; cdns->pcm.num_out = config.pcm_out; /* Allocate PDIs for PCMs */ stream = &cdns->pcm; /* we allocate PDI0 and PDI1 which are used for Bulk */ offset = 0; ret = cdns_allocate_pdi(cdns, &stream->bd, stream->num_bd, offset); if (ret) return ret; offset += stream->num_bd; ret = cdns_allocate_pdi(cdns, &stream->in, stream->num_in, offset); if (ret) return ret; offset += stream->num_in; ret = cdns_allocate_pdi(cdns, &stream->out, stream->num_out, offset); if (ret) return ret; /* Update total number of PCM PDIs */ stream->num_pdi = stream->num_bd + stream->num_in + stream->num_out; cdns->num_ports = stream->num_pdi; return 0; } EXPORT_SYMBOL(sdw_cdns_pdi_init); static u32 cdns_set_initial_frame_shape(int n_rows, int n_cols) { u32 val; int c; int r; r = sdw_find_row_index(n_rows); c = sdw_find_col_index(n_cols); val = FIELD_PREP(CDNS_MCP_FRAME_SHAPE_ROW_MASK, r); val |= FIELD_PREP(CDNS_MCP_FRAME_SHAPE_COL_MASK, c); return val; } static void cdns_init_clock_ctrl(struct sdw_cdns *cdns) { struct sdw_bus *bus = &cdns->bus; struct sdw_master_prop *prop = &bus->prop; u32 val; u32 ssp_interval; int divider; /* Set clock divider */ divider = (prop->mclk_freq / prop->max_clk_freq) - 1; cdns_updatel(cdns, CDNS_MCP_CLK_CTRL0, CDNS_MCP_CLK_MCLKD_MASK, divider); cdns_updatel(cdns, CDNS_MCP_CLK_CTRL1, CDNS_MCP_CLK_MCLKD_MASK, divider); /* * Frame shape changes after initialization have to be done * with the bank switch mechanism */ val = cdns_set_initial_frame_shape(prop->default_row, prop->default_col); cdns_writel(cdns, CDNS_MCP_FRAME_SHAPE_INIT, val); /* Set SSP interval to default value */ ssp_interval = prop->default_frame_rate / SDW_CADENCE_GSYNC_HZ; cdns_writel(cdns, CDNS_MCP_SSP_CTRL0, ssp_interval); cdns_writel(cdns, CDNS_MCP_SSP_CTRL1, ssp_interval); } /** * sdw_cdns_init() - Cadence initialization * @cdns: Cadence instance */ int sdw_cdns_init(struct sdw_cdns *cdns) { u32 val; cdns_init_clock_ctrl(cdns); sdw_cdns_check_self_clearing_bits(cdns, __func__, false, 0); /* reset msg_count to default value of FIFOLEVEL */ cdns->msg_count = cdns_readl(cdns, CDNS_MCP_FIFOLEVEL); /* flush command FIFOs */ cdns_updatel(cdns, CDNS_MCP_CONTROL, CDNS_MCP_CONTROL_CMD_RST, CDNS_MCP_CONTROL_CMD_RST); /* Set cmd accept mode */ cdns_updatel(cdns, CDNS_MCP_CONTROL, CDNS_MCP_CONTROL_CMD_ACCEPT, CDNS_MCP_CONTROL_CMD_ACCEPT); /* Configure mcp config */ val = cdns_readl(cdns, CDNS_MCP_CONFIG); /* enable bus operations with clock and data */ val &= ~CDNS_MCP_CONFIG_OP; val |= CDNS_MCP_CONFIG_OP_NORMAL; /* Set cmd mode for Tx and Rx cmds */ val &= ~CDNS_MCP_CONFIG_CMD; /* Disable sniffer mode */ val &= ~CDNS_MCP_CONFIG_SNIFFER; /* Disable auto bus release */ val &= ~CDNS_MCP_CONFIG_BUS_REL; if (cdns->bus.multi_link) /* Set Multi-master mode to take gsync into account */ val |= CDNS_MCP_CONFIG_MMASTER; /* leave frame delay to hardware default of 0x1F */ /* leave command retry to hardware default of 0 */ cdns_writel(cdns, CDNS_MCP_CONFIG, val); /* changes will be committed later */ return 0; } EXPORT_SYMBOL(sdw_cdns_init); int cdns_bus_conf(struct sdw_bus *bus, struct sdw_bus_params *params) { struct sdw_master_prop *prop = &bus->prop; struct sdw_cdns *cdns = bus_to_cdns(bus); int mcp_clkctrl_off; int divider; if (!params->curr_dr_freq) { dev_err(cdns->dev, "NULL curr_dr_freq\n"); return -EINVAL; } divider = prop->mclk_freq * SDW_DOUBLE_RATE_FACTOR / params->curr_dr_freq; divider--; /* divider is 1/(N+1) */ if (params->next_bank) mcp_clkctrl_off = CDNS_MCP_CLK_CTRL1; else mcp_clkctrl_off = CDNS_MCP_CLK_CTRL0; cdns_updatel(cdns, mcp_clkctrl_off, CDNS_MCP_CLK_MCLKD_MASK, divider); return 0; } EXPORT_SYMBOL(cdns_bus_conf); static int cdns_port_params(struct sdw_bus *bus, struct sdw_port_params *p_params, unsigned int bank) { struct sdw_cdns *cdns = bus_to_cdns(bus); int dpn_config_off_source; int dpn_config_off_target; int target_num = p_params->num; int source_num = p_params->num; bool override = false; int dpn_config; if (target_num == cdns->pdi_loopback_target && cdns->pdi_loopback_source != -1) { source_num = cdns->pdi_loopback_source; override = true; } if (bank) { dpn_config_off_source = CDNS_DPN_B1_CONFIG(source_num); dpn_config_off_target = CDNS_DPN_B1_CONFIG(target_num); } else { dpn_config_off_source = CDNS_DPN_B0_CONFIG(source_num); dpn_config_off_target = CDNS_DPN_B0_CONFIG(target_num); } dpn_config = cdns_readl(cdns, dpn_config_off_source); /* use port params if there is no loopback, otherwise use source as is */ if (!override) { u32p_replace_bits(&dpn_config, p_params->bps - 1, CDNS_DPN_CONFIG_WL); u32p_replace_bits(&dpn_config, p_params->flow_mode, CDNS_DPN_CONFIG_PORT_FLOW); u32p_replace_bits(&dpn_config, p_params->data_mode, CDNS_DPN_CONFIG_PORT_DAT); } cdns_writel(cdns, dpn_config_off_target, dpn_config); return 0; } static int cdns_transport_params(struct sdw_bus *bus, struct sdw_transport_params *t_params, enum sdw_reg_bank bank) { struct sdw_cdns *cdns = bus_to_cdns(bus); int dpn_config; int dpn_config_off_source; int dpn_config_off_target; int dpn_hctrl; int dpn_hctrl_off_source; int dpn_hctrl_off_target; int dpn_offsetctrl; int dpn_offsetctrl_off_source; int dpn_offsetctrl_off_target; int dpn_samplectrl; int dpn_samplectrl_off_source; int dpn_samplectrl_off_target; int source_num = t_params->port_num; int target_num = t_params->port_num; bool override = false; if (target_num == cdns->pdi_loopback_target && cdns->pdi_loopback_source != -1) { source_num = cdns->pdi_loopback_source; override = true; } /* * Note: Only full data port is supported on the Master side for * both PCM and PDM ports. */ if (bank) { dpn_config_off_source = CDNS_DPN_B1_CONFIG(source_num); dpn_hctrl_off_source = CDNS_DPN_B1_HCTRL(source_num); dpn_offsetctrl_off_source = CDNS_DPN_B1_OFFSET_CTRL(source_num); dpn_samplectrl_off_source = CDNS_DPN_B1_SAMPLE_CTRL(source_num); dpn_config_off_target = CDNS_DPN_B1_CONFIG(target_num); dpn_hctrl_off_target = CDNS_DPN_B1_HCTRL(target_num); dpn_offsetctrl_off_target = CDNS_DPN_B1_OFFSET_CTRL(target_num); dpn_samplectrl_off_target = CDNS_DPN_B1_SAMPLE_CTRL(target_num); } else { dpn_config_off_source = CDNS_DPN_B0_CONFIG(source_num); dpn_hctrl_off_source = CDNS_DPN_B0_HCTRL(source_num); dpn_offsetctrl_off_source = CDNS_DPN_B0_OFFSET_CTRL(source_num); dpn_samplectrl_off_source = CDNS_DPN_B0_SAMPLE_CTRL(source_num); dpn_config_off_target = CDNS_DPN_B0_CONFIG(target_num); dpn_hctrl_off_target = CDNS_DPN_B0_HCTRL(target_num); dpn_offsetctrl_off_target = CDNS_DPN_B0_OFFSET_CTRL(target_num); dpn_samplectrl_off_target = CDNS_DPN_B0_SAMPLE_CTRL(target_num); } dpn_config = cdns_readl(cdns, dpn_config_off_source); if (!override) { u32p_replace_bits(&dpn_config, t_params->blk_grp_ctrl, CDNS_DPN_CONFIG_BGC); u32p_replace_bits(&dpn_config, t_params->blk_pkg_mode, CDNS_DPN_CONFIG_BPM); } cdns_writel(cdns, dpn_config_off_target, dpn_config); if (!override) { dpn_offsetctrl = 0; u32p_replace_bits(&dpn_offsetctrl, t_params->offset1, CDNS_DPN_OFFSET_CTRL_1); u32p_replace_bits(&dpn_offsetctrl, t_params->offset2, CDNS_DPN_OFFSET_CTRL_2); } else { dpn_offsetctrl = cdns_readl(cdns, dpn_offsetctrl_off_source); } cdns_writel(cdns, dpn_offsetctrl_off_target, dpn_offsetctrl); if (!override) { dpn_hctrl = 0; u32p_replace_bits(&dpn_hctrl, t_params->hstart, CDNS_DPN_HCTRL_HSTART); u32p_replace_bits(&dpn_hctrl, t_params->hstop, CDNS_DPN_HCTRL_HSTOP); u32p_replace_bits(&dpn_hctrl, t_params->lane_ctrl, CDNS_DPN_HCTRL_LCTRL); } else { dpn_hctrl = cdns_readl(cdns, dpn_hctrl_off_source); } cdns_writel(cdns, dpn_hctrl_off_target, dpn_hctrl); if (!override) dpn_samplectrl = t_params->sample_interval - 1; else dpn_samplectrl = cdns_readl(cdns, dpn_samplectrl_off_source); cdns_writel(cdns, dpn_samplectrl_off_target, dpn_samplectrl); return 0; } static int cdns_port_enable(struct sdw_bus *bus, struct sdw_enable_ch *enable_ch, unsigned int bank) { struct sdw_cdns *cdns = bus_to_cdns(bus); int dpn_chnen_off, ch_mask; if (bank) dpn_chnen_off = CDNS_DPN_B1_CH_EN(enable_ch->port_num); else dpn_chnen_off = CDNS_DPN_B0_CH_EN(enable_ch->port_num); ch_mask = enable_ch->ch_mask * enable_ch->enable; cdns_writel(cdns, dpn_chnen_off, ch_mask); return 0; } static const struct sdw_master_port_ops cdns_port_ops = { .dpn_set_port_params = cdns_port_params, .dpn_set_port_transport_params = cdns_transport_params, .dpn_port_enable_ch = cdns_port_enable, }; /** * sdw_cdns_is_clock_stop: Check clock status * * @cdns: Cadence instance */ bool sdw_cdns_is_clock_stop(struct sdw_cdns *cdns) { return !!(cdns_readl(cdns, CDNS_MCP_STAT) & CDNS_MCP_STAT_CLK_STOP); } EXPORT_SYMBOL(sdw_cdns_is_clock_stop); /** * sdw_cdns_clock_stop: Cadence clock stop configuration routine * * @cdns: Cadence instance * @block_wake: prevent wakes if required by the platform */ int sdw_cdns_clock_stop(struct sdw_cdns *cdns, bool block_wake) { bool slave_present = false; struct sdw_slave *slave; int ret; sdw_cdns_check_self_clearing_bits(cdns, __func__, false, 0); /* Check suspend status */ if (sdw_cdns_is_clock_stop(cdns)) { dev_dbg(cdns->dev, "Clock is already stopped\n"); return 0; } /* * Before entering clock stop we mask the Slave * interrupts. This helps avoid having to deal with e.g. a * Slave becoming UNATTACHED while the clock is being stopped */ cdns_enable_slave_interrupts(cdns, false); /* * For specific platforms, it is required to be able to put * master into a state in which it ignores wake-up trials * in clock stop state */ if (block_wake) cdns_updatel(cdns, CDNS_MCP_CONTROL, CDNS_MCP_CONTROL_BLOCK_WAKEUP, CDNS_MCP_CONTROL_BLOCK_WAKEUP); list_for_each_entry(slave, &cdns->bus.slaves, node) { if (slave->status == SDW_SLAVE_ATTACHED || slave->status == SDW_SLAVE_ALERT) { slave_present = true; break; } } /* commit changes */ ret = cdns_config_update(cdns); if (ret < 0) { dev_err(cdns->dev, "%s: config_update failed\n", __func__); return ret; } /* Prepare slaves for clock stop */ if (slave_present) { ret = sdw_bus_prep_clk_stop(&cdns->bus); if (ret < 0 && ret != -ENODATA) { dev_err(cdns->dev, "prepare clock stop failed %d\n", ret); return ret; } } /* * Enter clock stop mode and only report errors if there are * Slave devices present (ALERT or ATTACHED) */ ret = sdw_bus_clk_stop(&cdns->bus); if (ret < 0 && slave_present && ret != -ENODATA) { dev_err(cdns->dev, "bus clock stop failed %d\n", ret); return ret; } ret = cdns_set_wait(cdns, CDNS_MCP_STAT, CDNS_MCP_STAT_CLK_STOP, CDNS_MCP_STAT_CLK_STOP); if (ret < 0) dev_err(cdns->dev, "Clock stop failed %d\n", ret); return ret; } EXPORT_SYMBOL(sdw_cdns_clock_stop); /** * sdw_cdns_clock_restart: Cadence PM clock restart configuration routine * * @cdns: Cadence instance * @bus_reset: context may be lost while in low power modes and the bus * may require a Severe Reset and re-enumeration after a wake. */ int sdw_cdns_clock_restart(struct sdw_cdns *cdns, bool bus_reset) { int ret; /* unmask Slave interrupts that were masked when stopping the clock */ cdns_enable_slave_interrupts(cdns, true); ret = cdns_clear_bit(cdns, CDNS_MCP_CONTROL, CDNS_MCP_CONTROL_CLK_STOP_CLR); if (ret < 0) { dev_err(cdns->dev, "Couldn't exit from clock stop\n"); return ret; } ret = cdns_set_wait(cdns, CDNS_MCP_STAT, CDNS_MCP_STAT_CLK_STOP, 0); if (ret < 0) { dev_err(cdns->dev, "clock stop exit failed %d\n", ret); return ret; } cdns_updatel(cdns, CDNS_MCP_CONTROL, CDNS_MCP_CONTROL_BLOCK_WAKEUP, 0); cdns_updatel(cdns, CDNS_MCP_CONTROL, CDNS_MCP_CONTROL_CMD_ACCEPT, CDNS_MCP_CONTROL_CMD_ACCEPT); if (!bus_reset) { /* enable bus operations with clock and data */ cdns_updatel(cdns, CDNS_MCP_CONFIG, CDNS_MCP_CONFIG_OP, CDNS_MCP_CONFIG_OP_NORMAL); ret = cdns_config_update(cdns); if (ret < 0) { dev_err(cdns->dev, "%s: config_update failed\n", __func__); return ret; } ret = sdw_bus_exit_clk_stop(&cdns->bus); if (ret < 0) dev_err(cdns->dev, "bus failed to exit clock stop %d\n", ret); } return ret; } EXPORT_SYMBOL(sdw_cdns_clock_restart); /** * sdw_cdns_probe() - Cadence probe routine * @cdns: Cadence instance */ int sdw_cdns_probe(struct sdw_cdns *cdns) { init_completion(&cdns->tx_complete); cdns->bus.port_ops = &cdns_port_ops; INIT_WORK(&cdns->work, cdns_update_slave_status_work); return 0; } EXPORT_SYMBOL(sdw_cdns_probe); int cdns_set_sdw_stream(struct snd_soc_dai *dai, void *stream, int direction) { struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai); struct sdw_cdns_dai_runtime *dai_runtime; dai_runtime = cdns->dai_runtime_array[dai->id]; if (stream) { /* first paranoia check */ if (dai_runtime) { dev_err(dai->dev, "dai_runtime already allocated for dai %s\n", dai->name); return -EINVAL; } /* allocate and set dai_runtime info */ dai_runtime = kzalloc(sizeof(*dai_runtime), GFP_KERNEL); if (!dai_runtime) return -ENOMEM; dai_runtime->stream_type = SDW_STREAM_PCM; dai_runtime->bus = &cdns->bus; dai_runtime->link_id = cdns->instance; dai_runtime->stream = stream; dai_runtime->direction = direction; cdns->dai_runtime_array[dai->id] = dai_runtime; } else { /* second paranoia check */ if (!dai_runtime) { dev_err(dai->dev, "dai_runtime not allocated for dai %s\n", dai->name); return -EINVAL; } /* for NULL stream we release allocated dai_runtime */ kfree(dai_runtime); cdns->dai_runtime_array[dai->id] = NULL; } return 0; } EXPORT_SYMBOL(cdns_set_sdw_stream); /** * cdns_find_pdi() - Find a free PDI * * @cdns: Cadence instance * @offset: Starting offset * @num: Number of PDIs * @pdi: PDI instances * @dai_id: DAI id * * Find a PDI for a given PDI array. The PDI num and dai_id are * expected to match, return NULL otherwise. */ static struct sdw_cdns_pdi *cdns_find_pdi(struct sdw_cdns *cdns, unsigned int offset, unsigned int num, struct sdw_cdns_pdi *pdi, int dai_id) { int i; for (i = offset; i < offset + num; i++) if (pdi[i].num == dai_id) return &pdi[i]; return NULL; } /** * sdw_cdns_config_stream: Configure a stream * * @cdns: Cadence instance * @ch: Channel count * @dir: Data direction * @pdi: PDI to be used */ void sdw_cdns_config_stream(struct sdw_cdns *cdns, u32 ch, u32 dir, struct sdw_cdns_pdi *pdi) { u32 offset, val = 0; if (dir == SDW_DATA_DIR_RX) { val = CDNS_PORTCTRL_DIRN; if (cdns->bus.params.m_data_mode != SDW_PORT_DATA_MODE_NORMAL) val |= CDNS_PORTCTRL_TEST_FAILED; } offset = CDNS_PORTCTRL + pdi->num * CDNS_PORT_OFFSET; cdns_updatel(cdns, offset, CDNS_PORTCTRL_DIRN | CDNS_PORTCTRL_TEST_FAILED, val); val = pdi->num; val |= CDNS_PDI_CONFIG_SOFT_RESET; val |= FIELD_PREP(CDNS_PDI_CONFIG_CHANNEL, (1 << ch) - 1); cdns_writel(cdns, CDNS_PDI_CONFIG(pdi->num), val); } EXPORT_SYMBOL(sdw_cdns_config_stream); /** * sdw_cdns_alloc_pdi() - Allocate a PDI * * @cdns: Cadence instance * @stream: Stream to be allocated * @ch: Channel count * @dir: Data direction * @dai_id: DAI id */ struct sdw_cdns_pdi *sdw_cdns_alloc_pdi(struct sdw_cdns *cdns, struct sdw_cdns_streams *stream, u32 ch, u32 dir, int dai_id) { struct sdw_cdns_pdi *pdi = NULL; if (dir == SDW_DATA_DIR_RX) pdi = cdns_find_pdi(cdns, 0, stream->num_in, stream->in, dai_id); else pdi = cdns_find_pdi(cdns, 0, stream->num_out, stream->out, dai_id); /* check if we found a PDI, else find in bi-directional */ if (!pdi) pdi = cdns_find_pdi(cdns, 2, stream->num_bd, stream->bd, dai_id); if (pdi) { pdi->l_ch_num = 0; pdi->h_ch_num = ch - 1; pdi->dir = dir; pdi->ch_count = ch; } return pdi; } EXPORT_SYMBOL(sdw_cdns_alloc_pdi); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Cadence Soundwire Library");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1