Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jerry Chuang | 5763 | 85.23% | 1 | 1.43% |
Xenia Ragiadakou | 566 | 8.37% | 15 | 21.43% |
John Whitmore | 181 | 2.68% | 36 | 51.43% |
Lee Jones | 110 | 1.63% | 1 | 1.43% |
Len Baker | 69 | 1.02% | 3 | 4.29% |
Colin Ian King | 16 | 0.24% | 1 | 1.43% |
Amitoj Kaur Chawla | 15 | 0.22% | 1 | 1.43% |
Derek Robson | 12 | 0.18% | 1 | 1.43% |
Ana Rey Botello | 8 | 0.12% | 1 | 1.43% |
Anish Bhatt | 8 | 0.12% | 1 | 1.43% |
Ksenija Stanojevic | 5 | 0.07% | 3 | 4.29% |
Hatice ERTÜRK | 4 | 0.06% | 1 | 1.43% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 1.43% |
Michael Straube | 1 | 0.01% | 1 | 1.43% |
Peter Senna Tschudin | 1 | 0.01% | 1 | 1.43% |
Masahiro Yamada | 1 | 0.01% | 1 | 1.43% |
Geliang Tang | 1 | 0.01% | 1 | 1.43% |
Total | 6762 | 70 |
// SPDX-License-Identifier: GPL-2.0 #include "r8192U.h" #include "r8192U_hw.h" #include "r819xU_phy.h" #include "r819xU_phyreg.h" #include "r8190_rtl8256.h" #include "r8192U_dm.h" #include "r819xU_firmware_img.h" #include "ieee80211/dot11d.h" #include <linux/bitops.h> static u32 RF_CHANNEL_TABLE_ZEBRA[] = { 0, 0x085c, /* 2412 1 */ 0x08dc, /* 2417 2 */ 0x095c, /* 2422 3 */ 0x09dc, /* 2427 4 */ 0x0a5c, /* 2432 5 */ 0x0adc, /* 2437 6 */ 0x0b5c, /* 2442 7 */ 0x0bdc, /* 2447 8 */ 0x0c5c, /* 2452 9 */ 0x0cdc, /* 2457 10 */ 0x0d5c, /* 2462 11 */ 0x0ddc, /* 2467 12 */ 0x0e5c, /* 2472 13 */ 0x0f72, /* 2484 */ }; #define rtl819XMACPHY_Array Rtl8192UsbMACPHY_Array /****************************************************************************** * function: This function checks different RF type to execute legal judgement. * If RF Path is illegal, we will return false. * input: net_device *dev * u32 e_rfpath * output: none * return: 0(illegal, false), 1(legal, true) *****************************************************************************/ u8 rtl8192_phy_CheckIsLegalRFPath(struct net_device *dev, u32 e_rfpath) { u8 ret = 1; struct r8192_priv *priv = ieee80211_priv(dev); if (priv->rf_type == RF_2T4R) { ret = 0; } else if (priv->rf_type == RF_1T2R) { if (e_rfpath == RF90_PATH_A || e_rfpath == RF90_PATH_B) ret = 1; else if (e_rfpath == RF90_PATH_C || e_rfpath == RF90_PATH_D) ret = 0; } return ret; } /****************************************************************************** * function: This function sets specific bits to BB register * input: net_device *dev * u32 reg_addr //target addr to be modified * u32 bitmask //taget bit pos to be modified * u32 data //value to be write * output: none * return: none * notice: ******************************************************************************/ void rtl8192_setBBreg(struct net_device *dev, u32 reg_addr, u32 bitmask, u32 data) { u32 reg, bitshift; if (bitmask != bMaskDWord) { read_nic_dword(dev, reg_addr, ®); bitshift = ffs(bitmask) - 1; reg &= ~bitmask; reg |= data << bitshift; write_nic_dword(dev, reg_addr, reg); } else { write_nic_dword(dev, reg_addr, data); } } /****************************************************************************** * function: This function reads specific bits from BB register * input: net_device *dev * u32 reg_addr //target addr to be readback * u32 bitmask //taget bit pos to be readback * output: none * return: u32 data //the readback register value * notice: ******************************************************************************/ u32 rtl8192_QueryBBReg(struct net_device *dev, u32 reg_addr, u32 bitmask) { u32 reg, bitshift; read_nic_dword(dev, reg_addr, ®); bitshift = ffs(bitmask) - 1; return (reg & bitmask) >> bitshift; } static u32 phy_FwRFSerialRead(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 offset); static void phy_FwRFSerialWrite(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 offset, u32 data); /****************************************************************************** * function: This function reads register from RF chip * input: net_device *dev * rf90_radio_path_e e_rfpath //radio path of A/B/C/D * u32 offset //target address to be read * output: none * return: u32 readback value * notice: There are three types of serial operations: * (1) Software serial write. * (2)Hardware LSSI-Low Speed Serial Interface. * (3)Hardware HSSI-High speed serial write. * Driver here need to implement (1) and (2) * ---need more spec for this information. ******************************************************************************/ static u32 rtl8192_phy_RFSerialRead(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 offset) { struct r8192_priv *priv = ieee80211_priv(dev); u32 ret = 0; u32 new_offset = 0; BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[e_rfpath]; rtl8192_setBBreg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData, 0); /* Make sure RF register offset is correct */ offset &= 0x3f; /* Switch page for 8256 RF IC */ if (priv->rf_chip == RF_8256) { if (offset >= 31) { priv->RfReg0Value[e_rfpath] |= 0x140; /* Switch to Reg_Mode2 for Reg 31-45 */ rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, priv->RfReg0Value[e_rfpath]<<16); /* Modify offset */ new_offset = offset - 30; } else if (offset >= 16) { priv->RfReg0Value[e_rfpath] |= 0x100; priv->RfReg0Value[e_rfpath] &= (~0x40); /* Switch to Reg_Mode1 for Reg16-30 */ rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, priv->RfReg0Value[e_rfpath]<<16); new_offset = offset - 15; } else { new_offset = offset; } } else { RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need to be 8256\n"); new_offset = offset; } /* Put desired read addr to LSSI control Register */ rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadAddress, new_offset); /* Issue a posedge trigger */ rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x0); rtl8192_setBBreg(dev, pPhyReg->rfHSSIPara2, bLSSIReadEdge, 0x1); /* TODO: we should not delay such a long time. Ask for help from SD3 */ usleep_range(1000, 1000); ret = rtl8192_QueryBBReg(dev, pPhyReg->rfLSSIReadBack, bLSSIReadBackData); /* Switch back to Reg_Mode0 */ if (priv->rf_chip == RF_8256) { priv->RfReg0Value[e_rfpath] &= 0xebf; rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, priv->RfReg0Value[e_rfpath] << 16); } return ret; } /****************************************************************************** * function: This function writes data to RF register * input: net_device *dev * rf90_radio_path_e e_rfpath //radio path of A/B/C/D * u32 offset //target address to be written * u32 data //the new register data to be written * output: none * return: none * notice: For RF8256 only. * =========================================================================== * Reg Mode RegCTL[1] RegCTL[0] Note * (Reg00[12]) (Reg00[10]) * =========================================================================== * Reg_Mode0 0 x Reg 0 ~ 15(0x0 ~ 0xf) * --------------------------------------------------------------------------- * Reg_Mode1 1 0 Reg 16 ~ 30(0x1 ~ 0xf) * --------------------------------------------------------------------------- * Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf) * --------------------------------------------------------------------------- *****************************************************************************/ static void rtl8192_phy_RFSerialWrite(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 offset, u32 data) { struct r8192_priv *priv = ieee80211_priv(dev); u32 DataAndAddr = 0, new_offset = 0; BB_REGISTER_DEFINITION_T *pPhyReg = &priv->PHYRegDef[e_rfpath]; offset &= 0x3f; if (priv->rf_chip == RF_8256) { if (offset >= 31) { priv->RfReg0Value[e_rfpath] |= 0x140; rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, priv->RfReg0Value[e_rfpath] << 16); new_offset = offset - 30; } else if (offset >= 16) { priv->RfReg0Value[e_rfpath] |= 0x100; priv->RfReg0Value[e_rfpath] &= (~0x40); rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, priv->RfReg0Value[e_rfpath]<<16); new_offset = offset - 15; } else { new_offset = offset; } } else { RT_TRACE((COMP_PHY|COMP_ERR), "check RF type here, need to be 8256\n"); new_offset = offset; } /* Put write addr in [5:0] and write data in [31:16] */ DataAndAddr = (data<<16) | (new_offset&0x3f); /* Write operation */ rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); if (offset == 0x0) priv->RfReg0Value[e_rfpath] = data; /* Switch back to Reg_Mode0 */ if (priv->rf_chip == RF_8256) { if (offset != 0) { priv->RfReg0Value[e_rfpath] &= 0xebf; rtl8192_setBBreg(dev, pPhyReg->rf3wireOffset, bMaskDWord, priv->RfReg0Value[e_rfpath] << 16); } } } /****************************************************************************** * function: This function set specific bits to RF register * input: net_device dev * rf90_radio_path_e e_rfpath //radio path of A/B/C/D * u32 reg_addr //target addr to be modified * u32 bitmask //taget bit pos to be modified * u32 data //value to be written * output: none * return: none * notice: *****************************************************************************/ void rtl8192_phy_SetRFReg(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 reg_addr, u32 bitmask, u32 data) { struct r8192_priv *priv = ieee80211_priv(dev); u32 reg, bitshift; if (!rtl8192_phy_CheckIsLegalRFPath(dev, e_rfpath)) return; if (priv->Rf_Mode == RF_OP_By_FW) { if (bitmask != bMask12Bits) { /* RF data is 12 bits only */ reg = phy_FwRFSerialRead(dev, e_rfpath, reg_addr); bitshift = ffs(bitmask) - 1; reg &= ~bitmask; reg |= data << bitshift; phy_FwRFSerialWrite(dev, e_rfpath, reg_addr, reg); } else { phy_FwRFSerialWrite(dev, e_rfpath, reg_addr, data); } udelay(200); } else { if (bitmask != bMask12Bits) { /* RF data is 12 bits only */ reg = rtl8192_phy_RFSerialRead(dev, e_rfpath, reg_addr); bitshift = ffs(bitmask) - 1; reg &= ~bitmask; reg |= data << bitshift; rtl8192_phy_RFSerialWrite(dev, e_rfpath, reg_addr, reg); } else { rtl8192_phy_RFSerialWrite(dev, e_rfpath, reg_addr, data); } } } /****************************************************************************** * function: This function reads specific bits from RF register * input: net_device *dev * u32 reg_addr //target addr to be readback * u32 bitmask //taget bit pos to be readback * output: none * return: u32 data //the readback register value * notice: *****************************************************************************/ u32 rtl8192_phy_QueryRFReg(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 reg_addr, u32 bitmask) { u32 reg, bitshift; struct r8192_priv *priv = ieee80211_priv(dev); if (!rtl8192_phy_CheckIsLegalRFPath(dev, e_rfpath)) return 0; if (priv->Rf_Mode == RF_OP_By_FW) { reg = phy_FwRFSerialRead(dev, e_rfpath, reg_addr); udelay(200); } else { reg = rtl8192_phy_RFSerialRead(dev, e_rfpath, reg_addr); } bitshift = ffs(bitmask) - 1; reg = (reg & bitmask) >> bitshift; return reg; } /****************************************************************************** * function: We support firmware to execute RF-R/W. * input: net_device *dev * rf90_radio_path_e e_rfpath * u32 offset * output: none * return: u32 * notice: ****************************************************************************/ static u32 phy_FwRFSerialRead(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 offset) { u32 reg = 0; u32 data = 0; u8 time = 0; u32 tmp; /* Firmware RF Write control. * We can not execute the scheme in the initial step. * Otherwise, RF-R/W will waste much time. * This is only for site survey. */ /* 1. Read operation need not insert data. bit 0-11 */ /* 2. Write RF register address. bit 12-19 */ data |= ((offset&0xFF)<<12); /* 3. Write RF path. bit 20-21 */ data |= ((e_rfpath&0x3)<<20); /* 4. Set RF read indicator. bit 22=0 */ /* 5. Trigger Fw to operate the command. bit 31 */ data |= 0x80000000; /* 6. We can not execute read operation if bit 31 is 1. */ read_nic_dword(dev, QPNR, &tmp); while (tmp & 0x80000000) { /* If FW can not finish RF-R/W for more than ?? times. * We must reset FW. */ if (time++ < 100) { udelay(10); read_nic_dword(dev, QPNR, &tmp); } else { break; } } /* 7. Execute read operation. */ write_nic_dword(dev, QPNR, data); /* 8. Check if firmware send back RF content. */ read_nic_dword(dev, QPNR, &tmp); while (tmp & 0x80000000) { /* If FW can not finish RF-R/W for more than ?? times. * We must reset FW. */ if (time++ < 100) { udelay(10); read_nic_dword(dev, QPNR, &tmp); } else { return 0; } } read_nic_dword(dev, RF_DATA, ®); return reg; } /****************************************************************************** * function: We support firmware to execute RF-R/W. * input: net_device *dev * rf90_radio_path_e e_rfpath * u32 offset * u32 data * output: none * return: none * notice: ****************************************************************************/ static void phy_FwRFSerialWrite(struct net_device *dev, enum rf90_radio_path_e e_rfpath, u32 offset, u32 data) { u8 time = 0; u32 tmp; /* Firmware RF Write control. * We can not execute the scheme in the initial step. * Otherwise, RF-R/W will waste much time. * This is only for site survey. */ /* 1. Set driver write bit and 12 bit data. bit 0-11 */ /* 2. Write RF register address. bit 12-19 */ data |= ((offset&0xFF)<<12); /* 3. Write RF path. bit 20-21 */ data |= ((e_rfpath&0x3)<<20); /* 4. Set RF write indicator. bit 22=1 */ data |= 0x400000; /* 5. Trigger Fw to operate the command. bit 31=1 */ data |= 0x80000000; /* 6. Write operation. We can not write if bit 31 is 1. */ read_nic_dword(dev, QPNR, &tmp); while (tmp & 0x80000000) { /* If FW can not finish RF-R/W for more than ?? times. * We must reset FW. */ if (time++ < 100) { udelay(10); read_nic_dword(dev, QPNR, &tmp); } else { break; } } /* 7. No matter check bit. We always force the write. * Because FW will not accept the command. */ write_nic_dword(dev, QPNR, data); /* According to test, we must delay 20us to wait firmware * to finish RF write operation. */ /* We support delay in firmware side now. */ } /****************************************************************************** * function: This function reads BB parameters from header file we generate, * and do register read/write * input: net_device *dev * output: none * return: none * notice: BB parameters may change all the time, so please make * sure it has been synced with the newest. *****************************************************************************/ void rtl8192_phy_configmac(struct net_device *dev) { u32 dwArrayLen = 0, i; u32 *pdwArray = NULL; struct r8192_priv *priv = ieee80211_priv(dev); if (priv->btxpowerdata_readfromEEPORM) { RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array_PG\n"); dwArrayLen = MACPHY_Array_PGLength; pdwArray = Rtl8192UsbMACPHY_Array_PG; } else { RT_TRACE(COMP_PHY, "Rtl819XMACPHY_Array\n"); dwArrayLen = MACPHY_ArrayLength; pdwArray = rtl819XMACPHY_Array; } for (i = 0; i < dwArrayLen; i = i+3) { if (pdwArray[i] == 0x318) pdwArray[i+2] = 0x00000800; RT_TRACE(COMP_DBG, "Rtl8190MACPHY_Array[0]=%x Rtl8190MACPHY_Array[1]=%x Rtl8190MACPHY_Array[2]=%x\n", pdwArray[i], pdwArray[i+1], pdwArray[i+2]); rtl8192_setBBreg(dev, pdwArray[i], pdwArray[i+1], pdwArray[i+2]); } } /****************************************************************************** * function: This function does dirty work * input: net_device *dev * u8 ConfigType * output: none * return: none * notice: BB parameters may change all the time, so please make * sure it has been synced with the newest. *****************************************************************************/ static void rtl8192_phyConfigBB(struct net_device *dev, enum baseband_config_type ConfigType) { u32 i; if (ConfigType == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < PHY_REG_1T2RArrayLength; i += 2) { rtl8192_setBBreg(dev, Rtl8192UsbPHY_REG_1T2RArray[i], bMaskDWord, Rtl8192UsbPHY_REG_1T2RArray[i+1]); RT_TRACE(COMP_DBG, "i: %x, Rtl819xUsbPHY_REGArray[0]=%x Rtl819xUsbPHY_REGArray[1]=%x\n", i, Rtl8192UsbPHY_REG_1T2RArray[i], Rtl8192UsbPHY_REG_1T2RArray[i+1]); } } else if (ConfigType == BASEBAND_CONFIG_AGC_TAB) { for (i = 0; i < AGCTAB_ArrayLength; i += 2) { rtl8192_setBBreg(dev, Rtl8192UsbAGCTAB_Array[i], bMaskDWord, Rtl8192UsbAGCTAB_Array[i+1]); RT_TRACE(COMP_DBG, "i: %x, Rtl8192UsbAGCTAB_Array[0]=%x Rtl8192UsbAGCTAB_Array[1]=%x\n", i, Rtl8192UsbAGCTAB_Array[i], Rtl8192UsbAGCTAB_Array[i+1]); } } } /****************************************************************************** * function: This function initializes Register definition offset for * Radio Path A/B/C/D * input: net_device *dev * output: none * return: none * notice: Initialization value here is constant and it should never * be changed *****************************************************************************/ static void rtl8192_InitBBRFRegDef(struct net_device *dev) { struct r8192_priv *priv = ieee80211_priv(dev); /* RF Interface Software Control */ /* 16 LSBs if read 32-bit from 0x870 */ priv->PHYRegDef[RF90_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */ priv->PHYRegDef[RF90_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x874 */ priv->PHYRegDef[RF90_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */ priv->PHYRegDef[RF90_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW; /* RF Interface Readback Value */ /* 16 LSBs if read 32-bit from 0x8E0 */ priv->PHYRegDef[RF90_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; /* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */ priv->PHYRegDef[RF90_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB; /* 16 LSBs if read 32-bit from 0x8E4 */ priv->PHYRegDef[RF90_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB; /* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */ priv->PHYRegDef[RF90_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB; /* RF Interface Output (and Enable) */ /* 16 LSBs if read 32-bit from 0x860 */ priv->PHYRegDef[RF90_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */ priv->PHYRegDef[RF90_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x868 */ priv->PHYRegDef[RF90_PATH_C].rfintfo = rFPGA0_XC_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x86C */ priv->PHYRegDef[RF90_PATH_D].rfintfo = rFPGA0_XD_RFInterfaceOE; /* RF Interface (Output and) Enable */ /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */ priv->PHYRegDef[RF90_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */ priv->PHYRegDef[RF90_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x86A (16-bit for 0x86A) */ priv->PHYRegDef[RF90_PATH_C].rfintfe = rFPGA0_XC_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x86C (16-bit for 0x86E) */ priv->PHYRegDef[RF90_PATH_D].rfintfe = rFPGA0_XD_RFInterfaceOE; /* Addr of LSSI. Write RF register by driver */ priv->PHYRegDef[RF90_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; priv->PHYRegDef[RF90_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; priv->PHYRegDef[RF90_PATH_C].rf3wireOffset = rFPGA0_XC_LSSIParameter; priv->PHYRegDef[RF90_PATH_D].rf3wireOffset = rFPGA0_XD_LSSIParameter; /* RF parameter */ /* BB Band Select */ priv->PHYRegDef[RF90_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter; priv->PHYRegDef[RF90_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter; priv->PHYRegDef[RF90_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter; priv->PHYRegDef[RF90_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter; /* Tx AGC Gain Stage (same for all path. Should we remove this?) */ priv->PHYRegDef[RF90_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; priv->PHYRegDef[RF90_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; /* Tranceiver A~D HSSI Parameter-1 */ /* wire control parameter1 */ priv->PHYRegDef[RF90_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1; priv->PHYRegDef[RF90_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1; priv->PHYRegDef[RF90_PATH_C].rfHSSIPara1 = rFPGA0_XC_HSSIParameter1; priv->PHYRegDef[RF90_PATH_D].rfHSSIPara1 = rFPGA0_XD_HSSIParameter1; /* Tranceiver A~D HSSI Parameter-2 */ /* wire control parameter2 */ priv->PHYRegDef[RF90_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; priv->PHYRegDef[RF90_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; priv->PHYRegDef[RF90_PATH_C].rfHSSIPara2 = rFPGA0_XC_HSSIParameter2; priv->PHYRegDef[RF90_PATH_D].rfHSSIPara2 = rFPGA0_XD_HSSIParameter2; /* RF Switch Control */ /* TR/Ant switch control */ priv->PHYRegDef[RF90_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; priv->PHYRegDef[RF90_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl; priv->PHYRegDef[RF90_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl; priv->PHYRegDef[RF90_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl; /* AGC control 1 */ priv->PHYRegDef[RF90_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1; priv->PHYRegDef[RF90_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1; priv->PHYRegDef[RF90_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1; priv->PHYRegDef[RF90_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1; /* AGC control 2 */ priv->PHYRegDef[RF90_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2; priv->PHYRegDef[RF90_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2; priv->PHYRegDef[RF90_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2; priv->PHYRegDef[RF90_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2; /* RX AFE control 1 */ priv->PHYRegDef[RF90_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance; /* RX AFE control 1 */ priv->PHYRegDef[RF90_PATH_A].rfRxAFE = rOFDM0_XARxAFE; priv->PHYRegDef[RF90_PATH_B].rfRxAFE = rOFDM0_XBRxAFE; priv->PHYRegDef[RF90_PATH_C].rfRxAFE = rOFDM0_XCRxAFE; priv->PHYRegDef[RF90_PATH_D].rfRxAFE = rOFDM0_XDRxAFE; /* Tx AFE control 1 */ priv->PHYRegDef[RF90_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance; priv->PHYRegDef[RF90_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance; priv->PHYRegDef[RF90_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance; priv->PHYRegDef[RF90_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance; /* Tx AFE control 2 */ priv->PHYRegDef[RF90_PATH_A].rfTxAFE = rOFDM0_XATxAFE; priv->PHYRegDef[RF90_PATH_B].rfTxAFE = rOFDM0_XBTxAFE; priv->PHYRegDef[RF90_PATH_C].rfTxAFE = rOFDM0_XCTxAFE; priv->PHYRegDef[RF90_PATH_D].rfTxAFE = rOFDM0_XDTxAFE; /* Tranceiver LSSI Readback */ priv->PHYRegDef[RF90_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; priv->PHYRegDef[RF90_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; priv->PHYRegDef[RF90_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack; priv->PHYRegDef[RF90_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack; } /****************************************************************************** * function: This function is to write register and then readback to make * sure whether BB and RF is OK * input: net_device *dev * hw90_block_e CheckBlock * rf90_radio_path_e e_rfpath //only used when checkblock is * //HW90_BLOCK_RF * output: none * return: return whether BB and RF is ok (0:OK, 1:Fail) * notice: This function may be removed in the ASIC ******************************************************************************/ u8 rtl8192_phy_checkBBAndRF(struct net_device *dev, enum hw90_block_e CheckBlock, enum rf90_radio_path_e e_rfpath) { u8 ret = 0; u32 i, CheckTimes = 4, reg = 0; u32 WriteAddr[4]; u32 WriteData[] = {0xfffff027, 0xaa55a02f, 0x00000027, 0x55aa502f}; /* Initialize register address offset to be checked */ WriteAddr[HW90_BLOCK_MAC] = 0x100; WriteAddr[HW90_BLOCK_PHY0] = 0x900; WriteAddr[HW90_BLOCK_PHY1] = 0x800; WriteAddr[HW90_BLOCK_RF] = 0x3; RT_TRACE(COMP_PHY, "%s(), CheckBlock: %d\n", __func__, CheckBlock); for (i = 0; i < CheckTimes; i++) { /* Write data to register and readback */ switch (CheckBlock) { case HW90_BLOCK_MAC: RT_TRACE(COMP_ERR, "PHY_CheckBBRFOK(): Never Write 0x100 here!\n"); break; case HW90_BLOCK_PHY0: case HW90_BLOCK_PHY1: write_nic_dword(dev, WriteAddr[CheckBlock], WriteData[i]); read_nic_dword(dev, WriteAddr[CheckBlock], ®); break; case HW90_BLOCK_RF: WriteData[i] &= 0xfff; rtl8192_phy_SetRFReg(dev, e_rfpath, WriteAddr[HW90_BLOCK_RF], bMask12Bits, WriteData[i]); /* TODO: we should not delay for such a long time. * Ask SD3 */ usleep_range(1000, 1000); reg = rtl8192_phy_QueryRFReg(dev, e_rfpath, WriteAddr[HW90_BLOCK_RF], bMask12Bits); usleep_range(1000, 1000); break; default: ret = 1; break; } /* Check whether readback data is correct */ if (reg != WriteData[i]) { RT_TRACE((COMP_PHY|COMP_ERR), "error reg: %x, WriteData: %x\n", reg, WriteData[i]); ret = 1; break; } } return ret; } /****************************************************************************** * function: This function initializes BB&RF * input: net_device *dev * output: none * return: none * notice: Initialization value may change all the time, so please make * sure it has been synced with the newest. ******************************************************************************/ static void rtl8192_BB_Config_ParaFile(struct net_device *dev) { struct r8192_priv *priv = ieee80211_priv(dev); u8 reg_u8 = 0, eCheckItem = 0, status = 0; u32 reg_u32 = 0; /************************************** * <1> Initialize BaseBand *************************************/ /* --set BB Global Reset-- */ read_nic_byte(dev, BB_GLOBAL_RESET, ®_u8); write_nic_byte(dev, BB_GLOBAL_RESET, (reg_u8|BB_GLOBAL_RESET_BIT)); mdelay(50); /* ---set BB reset Active--- */ read_nic_dword(dev, CPU_GEN, ®_u32); write_nic_dword(dev, CPU_GEN, (reg_u32&(~CPU_GEN_BB_RST))); /* ----Ckeck FPGAPHY0 and PHY1 board is OK---- */ /* TODO: this function should be removed on ASIC */ for (eCheckItem = (enum hw90_block_e)HW90_BLOCK_PHY0; eCheckItem <= HW90_BLOCK_PHY1; eCheckItem++) { /* don't care RF path */ status = rtl8192_phy_checkBBAndRF(dev, (enum hw90_block_e)eCheckItem, (enum rf90_radio_path_e)0); if (status != 0) { RT_TRACE((COMP_ERR | COMP_PHY), "phy_rf8256_config(): Check PHY%d Fail!!\n", eCheckItem-1); return; } } /* ---- Set CCK and OFDM Block "OFF"---- */ rtl8192_setBBreg(dev, rFPGA0_RFMOD, bCCKEn|bOFDMEn, 0x0); /* ----BB Register Initilazation---- */ /* ==m==>Set PHY REG From Header<==m== */ rtl8192_phyConfigBB(dev, BASEBAND_CONFIG_PHY_REG); /* ----Set BB reset de-Active---- */ read_nic_dword(dev, CPU_GEN, ®_u32); write_nic_dword(dev, CPU_GEN, (reg_u32|CPU_GEN_BB_RST)); /* ----BB AGC table Initialization---- */ /* ==m==>Set PHY REG From Header<==m== */ rtl8192_phyConfigBB(dev, BASEBAND_CONFIG_AGC_TAB); /* ----Enable XSTAL ---- */ write_nic_byte_E(dev, 0x5e, 0x00); if (priv->card_8192_version == VERSION_819XU_A) { /* Antenna gain offset from B/C/D to A */ reg_u32 = priv->AntennaTxPwDiff[1]<<4 | priv->AntennaTxPwDiff[0]; rtl8192_setBBreg(dev, rFPGA0_TxGainStage, (bXBTxAGC|bXCTxAGC), reg_u32); /* XSTALLCap */ reg_u32 = priv->CrystalCap & 0xf; rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, bXtalCap, reg_u32); } /* Check if the CCK HighPower is turned ON. * This is used to calculate PWDB. */ priv->bCckHighPower = (u8)rtl8192_QueryBBReg(dev, rFPGA0_XA_HSSIParameter2, 0x200); } /****************************************************************************** * function: This function initializes BB&RF * input: net_device *dev * output: none * return: none * notice: Initialization value may change all the time, so please make * sure it has been synced with the newest. *****************************************************************************/ void rtl8192_BBConfig(struct net_device *dev) { rtl8192_InitBBRFRegDef(dev); /* config BB&RF. As hardCode based initialization has not been well * implemented, so use file first. * FIXME: should implement it for hardcode? */ rtl8192_BB_Config_ParaFile(dev); } /****************************************************************************** * function: This function obtains the initialization value of Tx power Level * offset * input: net_device *dev * output: none * return: none *****************************************************************************/ void rtl8192_phy_getTxPower(struct net_device *dev) { struct r8192_priv *priv = ieee80211_priv(dev); u8 tmp; read_nic_dword(dev, rTxAGC_Rate18_06, &priv->MCSTxPowerLevelOriginalOffset[0]); read_nic_dword(dev, rTxAGC_Rate54_24, &priv->MCSTxPowerLevelOriginalOffset[1]); read_nic_dword(dev, rTxAGC_Mcs03_Mcs00, &priv->MCSTxPowerLevelOriginalOffset[2]); read_nic_dword(dev, rTxAGC_Mcs07_Mcs04, &priv->MCSTxPowerLevelOriginalOffset[3]); read_nic_dword(dev, rTxAGC_Mcs11_Mcs08, &priv->MCSTxPowerLevelOriginalOffset[4]); read_nic_dword(dev, rTxAGC_Mcs15_Mcs12, &priv->MCSTxPowerLevelOriginalOffset[5]); /* Read rx initial gain */ read_nic_byte(dev, rOFDM0_XAAGCCore1, &priv->DefaultInitialGain[0]); read_nic_byte(dev, rOFDM0_XBAGCCore1, &priv->DefaultInitialGain[1]); read_nic_byte(dev, rOFDM0_XCAGCCore1, &priv->DefaultInitialGain[2]); read_nic_byte(dev, rOFDM0_XDAGCCore1, &priv->DefaultInitialGain[3]); RT_TRACE(COMP_INIT, "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x)\n", priv->DefaultInitialGain[0], priv->DefaultInitialGain[1], priv->DefaultInitialGain[2], priv->DefaultInitialGain[3]); /* Read framesync */ read_nic_byte(dev, rOFDM0_RxDetector3, &priv->framesync); read_nic_byte(dev, rOFDM0_RxDetector2, &tmp); priv->framesyncC34 = tmp; RT_TRACE(COMP_INIT, "Default framesync (0x%x) = 0x%x\n", rOFDM0_RxDetector3, priv->framesync); /* Read SIFS (save the value read fome MACPHY_REG.txt) */ read_nic_word(dev, SIFS, &priv->SifsTime); } /****************************************************************************** * function: This function sets the initialization value of Tx power Level * offset * input: net_device *dev * u8 channel * output: none * return: none ******************************************************************************/ void rtl8192_phy_setTxPower(struct net_device *dev, u8 channel) { struct r8192_priv *priv = ieee80211_priv(dev); u8 powerlevel = priv->TxPowerLevelCCK[channel-1]; u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; switch (priv->rf_chip) { case RF_8256: /* need further implement */ phy_set_rf8256_cck_tx_power(dev, powerlevel); phy_set_rf8256_ofdm_tx_power(dev, powerlevelOFDM24G); break; default: RT_TRACE((COMP_PHY|COMP_ERR), "error RF chipID(8225 or 8258) in function %s()\n", __func__); break; } } /****************************************************************************** * function: This function checks Rf chip to do RF config * input: net_device *dev * output: none * return: only 8256 is supported ******************************************************************************/ void rtl8192_phy_RFConfig(struct net_device *dev) { struct r8192_priv *priv = ieee80211_priv(dev); switch (priv->rf_chip) { case RF_8256: phy_rf8256_config(dev); break; default: RT_TRACE(COMP_ERR, "error chip id\n"); break; } } /****************************************************************************** * function: This function updates Initial gain * input: net_device *dev * output: none * return: As Windows has not implemented this, wait for complement ******************************************************************************/ void rtl8192_phy_updateInitGain(struct net_device *dev) { } /****************************************************************************** * function: This function read RF parameters from general head file, * and do RF 3-wire * input: net_device *dev * rf90_radio_path_e e_rfpath * output: none * return: return code show if RF configuration is successful(0:pass, 1:fail) * notice: Delay may be required for RF configuration *****************************************************************************/ u8 rtl8192_phy_ConfigRFWithHeaderFile(struct net_device *dev, enum rf90_radio_path_e e_rfpath) { int i; switch (e_rfpath) { case RF90_PATH_A: for (i = 0; i < RadioA_ArrayLength; i = i+2) { if (Rtl8192UsbRadioA_Array[i] == 0xfe) { mdelay(100); continue; } rtl8192_phy_SetRFReg(dev, e_rfpath, Rtl8192UsbRadioA_Array[i], bMask12Bits, Rtl8192UsbRadioA_Array[i+1]); mdelay(1); } break; case RF90_PATH_B: for (i = 0; i < RadioB_ArrayLength; i = i+2) { if (Rtl8192UsbRadioB_Array[i] == 0xfe) { mdelay(100); continue; } rtl8192_phy_SetRFReg(dev, e_rfpath, Rtl8192UsbRadioB_Array[i], bMask12Bits, Rtl8192UsbRadioB_Array[i+1]); mdelay(1); } break; case RF90_PATH_C: for (i = 0; i < RadioC_ArrayLength; i = i+2) { if (Rtl8192UsbRadioC_Array[i] == 0xfe) { mdelay(100); continue; } rtl8192_phy_SetRFReg(dev, e_rfpath, Rtl8192UsbRadioC_Array[i], bMask12Bits, Rtl8192UsbRadioC_Array[i+1]); mdelay(1); } break; case RF90_PATH_D: for (i = 0; i < RadioD_ArrayLength; i = i+2) { if (Rtl8192UsbRadioD_Array[i] == 0xfe) { mdelay(100); continue; } rtl8192_phy_SetRFReg(dev, e_rfpath, Rtl8192UsbRadioD_Array[i], bMask12Bits, Rtl8192UsbRadioD_Array[i+1]); mdelay(1); } break; default: break; } return 0; } /****************************************************************************** * function: This function sets Tx Power of the channel * input: net_device *dev * u8 channel * output: none * return: none * notice: ******************************************************************************/ static void rtl8192_SetTxPowerLevel(struct net_device *dev, u8 channel) { struct r8192_priv *priv = ieee80211_priv(dev); u8 powerlevel = priv->TxPowerLevelCCK[channel-1]; u8 powerlevelOFDM24G = priv->TxPowerLevelOFDM24G[channel-1]; switch (priv->rf_chip) { case RF_8225: break; case RF_8256: phy_set_rf8256_cck_tx_power(dev, powerlevel); phy_set_rf8256_ofdm_tx_power(dev, powerlevelOFDM24G); break; case RF_8258: break; default: RT_TRACE(COMP_ERR, "unknown rf chip ID in %s()\n", __func__); break; } } /****************************************************************************** * function: This function sets RF state on or off * input: net_device *dev * RT_RF_POWER_STATE eRFPowerState //Power State to set * output: none * return: none * notice: *****************************************************************************/ bool rtl8192_SetRFPowerState(struct net_device *dev, RT_RF_POWER_STATE eRFPowerState) { bool bResult = true; struct r8192_priv *priv = ieee80211_priv(dev); if (eRFPowerState == priv->ieee80211->eRFPowerState) return false; if (priv->SetRFPowerStateInProgress) return false; priv->SetRFPowerStateInProgress = true; switch (priv->rf_chip) { case RF_8256: switch (eRFPowerState) { case eRfOn: /* RF-A, RF-B */ /* enable RF-Chip A/B - 0x860[4] */ rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT(4), 0x1); /* analog to digital on - 0x88c[9:8] */ rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0x300, 0x3); /* digital to analog on - 0x880[4:3] */ rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x3); /* rx antenna on - 0xc04[1:0] */ rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0x3, 0x3); /* rx antenna on - 0xd04[1:0] */ rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0x3, 0x3); /* analog to digital part2 on - 0x880[6:5] */ rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x3); break; case eRfSleep: break; case eRfOff: /* RF-A, RF-B */ /* disable RF-Chip A/B - 0x860[4] */ rtl8192_setBBreg(dev, rFPGA0_XA_RFInterfaceOE, BIT(4), 0x0); /* analog to digital off, for power save */ rtl8192_setBBreg(dev, rFPGA0_AnalogParameter4, 0xf00, 0x0); /* 0x88c[11:8] */ /* digital to analog off, for power save - 0x880[4:3] */ rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x18, 0x0); /* rx antenna off - 0xc04[3:0] */ rtl8192_setBBreg(dev, rOFDM0_TRxPathEnable, 0xf, 0x0); /* rx antenna off - 0xd04[3:0] */ rtl8192_setBBreg(dev, rOFDM1_TRxPathEnable, 0xf, 0x0); /* analog to digital part2 off, for power save */ rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x60, 0x0); /* 0x880[6:5] */ break; default: bResult = false; RT_TRACE(COMP_ERR, "%s(): unknown state to set: 0x%X\n", __func__, eRFPowerState); break; } break; default: RT_TRACE(COMP_ERR, "Not support rf_chip(%x)\n", priv->rf_chip); break; } priv->SetRFPowerStateInProgress = false; return bResult; } /****************************************************************************** * function: This function sets command table variable (struct sw_chnl_cmd). * input: sw_chnl_cmd *CmdTable //table to be set * u32 CmdTableIdx //variable index in table to be set * u32 CmdTableSz //table size * switch_chan_cmd_id CmdID //command ID to set * u32 Para1 * u32 Para2 * u32 msDelay * output: * return: true if finished, false otherwise * notice: ******************************************************************************/ static u8 rtl8192_phy_SetSwChnlCmdArray(struct sw_chnl_cmd *CmdTable, u32 CmdTableIdx, u32 CmdTableSz, enum switch_chan_cmd_id CmdID, u32 Para1, u32 Para2, u32 msDelay) { struct sw_chnl_cmd *pCmd; if (!CmdTable) { RT_TRACE(COMP_ERR, "%s(): CmdTable cannot be NULL\n", __func__); return false; } if (CmdTableIdx >= CmdTableSz) { RT_TRACE(COMP_ERR, "%s(): Access invalid index, please check size of the table, CmdTableIdx:%d, CmdTableSz:%d\n", __func__, CmdTableIdx, CmdTableSz); return false; } pCmd = CmdTable + CmdTableIdx; pCmd->cmd_id = CmdID; pCmd->para_1 = Para1; pCmd->para_2 = Para2; pCmd->ms_delay = msDelay; return true; } /****************************************************************************** * function: This function sets channel step by step * input: net_device *dev * u8 channel * u8 *stage //3 stages * u8 *step * u32 *delay //whether need to delay * output: store new stage, step and delay for next step * (combine with function above) * return: true if finished, false otherwise * notice: Wait for simpler function to replace it *****************************************************************************/ static u8 rtl8192_phy_SwChnlStepByStep(struct net_device *dev, u8 channel, u8 *stage, u8 *step, u32 *delay) { struct r8192_priv *priv = ieee80211_priv(dev); struct sw_chnl_cmd *pre_cmd; u32 pre_cmd_cnt = 0; struct sw_chnl_cmd *post_cmd; u32 post_cmd_cnt = 0; struct sw_chnl_cmd *rf_cmd; u32 rf_cmd_cnt = 0; struct sw_chnl_cmd *current_cmd = NULL; u8 e_rfpath; bool ret; pre_cmd = kcalloc(MAX_PRECMD_CNT, sizeof(*pre_cmd), GFP_KERNEL); if (!pre_cmd) return false; post_cmd = kcalloc(MAX_POSTCMD_CNT, sizeof(*post_cmd), GFP_KERNEL); if (!post_cmd) { kfree(pre_cmd); return false; } rf_cmd = kcalloc(MAX_RFDEPENDCMD_CNT, sizeof(*rf_cmd), GFP_KERNEL); if (!rf_cmd) { kfree(pre_cmd); kfree(post_cmd); return false; } RT_TRACE(COMP_CH, "%s() stage: %d, step: %d, channel: %d\n", __func__, *stage, *step, channel); if (!is_legal_channel(priv->ieee80211, channel)) { RT_TRACE(COMP_ERR, "set to illegal channel: %d\n", channel); /* return true to tell upper caller function this channel * setting is finished! Or it will in while loop. */ ret = true; goto out; } /* FIXME: need to check whether channel is legal or not here */ /* <1> Fill up pre common command. */ rtl8192_phy_SetSwChnlCmdArray(pre_cmd, pre_cmd_cnt++, MAX_PRECMD_CNT, CMD_ID_SET_TX_PWR_LEVEL, 0, 0, 0); rtl8192_phy_SetSwChnlCmdArray(pre_cmd, pre_cmd_cnt++, MAX_PRECMD_CNT, CMD_ID_END, 0, 0, 0); /* <2> Fill up post common command. */ rtl8192_phy_SetSwChnlCmdArray(post_cmd, post_cmd_cnt++, MAX_POSTCMD_CNT, CMD_ID_END, 0, 0, 0); /* <3> Fill up RF dependent command. */ switch (priv->rf_chip) { case RF_8225: if (!(channel >= 1 && channel <= 14)) { RT_TRACE(COMP_ERR, "illegal channel for Zebra 8225: %d\n", channel); ret = true; goto out; } rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++, MAX_RFDEPENDCMD_CNT, CMD_ID_RF_WRITE_REG, rZebra1_Channel, RF_CHANNEL_TABLE_ZEBRA[channel], 10); rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++, MAX_RFDEPENDCMD_CNT, CMD_ID_END, 0, 0, 0); break; case RF_8256: /* TEST!! This is not the table for 8256!! */ if (!(channel >= 1 && channel <= 14)) { RT_TRACE(COMP_ERR, "illegal channel for Zebra 8256: %d\n", channel); ret = true; goto out; } rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++, MAX_RFDEPENDCMD_CNT, CMD_ID_RF_WRITE_REG, rZebra1_Channel, channel, 10); rtl8192_phy_SetSwChnlCmdArray(rf_cmd, rf_cmd_cnt++, MAX_RFDEPENDCMD_CNT, CMD_ID_END, 0, 0, 0); break; case RF_8258: break; default: RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip); ret = true; goto out; } do { switch (*stage) { case 0: current_cmd = &pre_cmd[*step]; break; case 1: current_cmd = &rf_cmd[*step]; break; case 2: current_cmd = &post_cmd[*step]; break; } if (current_cmd->cmd_id == CMD_ID_END) { if ((*stage) == 2) { *delay = current_cmd->ms_delay; ret = true; goto out; } (*stage)++; (*step) = 0; continue; } switch (current_cmd->cmd_id) { case CMD_ID_SET_TX_PWR_LEVEL: if (priv->card_8192_version == VERSION_819XU_A) /* consider it later! */ rtl8192_SetTxPowerLevel(dev, channel); break; case CMD_ID_WRITE_PORT_ULONG: write_nic_dword(dev, current_cmd->para_1, current_cmd->para_2); break; case CMD_ID_WRITE_PORT_USHORT: write_nic_word(dev, current_cmd->para_1, (u16)current_cmd->para_2); break; case CMD_ID_WRITE_PORT_UCHAR: write_nic_byte(dev, current_cmd->para_1, (u8)current_cmd->para_2); break; case CMD_ID_RF_WRITE_REG: for (e_rfpath = 0; e_rfpath < RF90_PATH_MAX; e_rfpath++) { rtl8192_phy_SetRFReg(dev, (enum rf90_radio_path_e)e_rfpath, current_cmd->para_1, bZebra1_ChannelNum, current_cmd->para_2); } break; default: break; } break; } while (true); *delay = current_cmd->ms_delay; (*step)++; ret = false; out: kfree(pre_cmd); kfree(post_cmd); kfree(rf_cmd); return ret; } /****************************************************************************** * function: This function does actually set channel work * input: net_device *dev * u8 channel * output: none * return: none * notice: We should not call this function directly *****************************************************************************/ static void rtl8192_phy_FinishSwChnlNow(struct net_device *dev, u8 channel) { struct r8192_priv *priv = ieee80211_priv(dev); u32 delay = 0; while (!rtl8192_phy_SwChnlStepByStep(dev, channel, &priv->SwChnlStage, &priv->SwChnlStep, &delay)) { if (!priv->up) break; } } /****************************************************************************** * function: Callback routine of the work item for switch channel. * input: net_device *dev * * output: none * return: none *****************************************************************************/ void rtl8192_SwChnl_WorkItem(struct net_device *dev) { struct r8192_priv *priv = ieee80211_priv(dev); RT_TRACE(COMP_CH, "==> SwChnlCallback819xUsbWorkItem(), chan:%d\n", priv->chan); rtl8192_phy_FinishSwChnlNow(dev, priv->chan); RT_TRACE(COMP_CH, "<== SwChnlCallback819xUsbWorkItem()\n"); } /****************************************************************************** * function: This function scheduled actual work item to set channel * input: net_device *dev * u8 channel //channel to set * output: none * return: return code show if workitem is scheduled (1:pass, 0:fail) * notice: Delay may be required for RF configuration ******************************************************************************/ u8 rtl8192_phy_SwChnl(struct net_device *dev, u8 channel) { struct r8192_priv *priv = ieee80211_priv(dev); RT_TRACE(COMP_CH, "%s(), SwChnlInProgress: %d\n", __func__, priv->SwChnlInProgress); if (!priv->up) return false; if (priv->SwChnlInProgress) return false; /* -------------------------------------------- */ switch (priv->ieee80211->mode) { case WIRELESS_MODE_A: case WIRELESS_MODE_N_5G: if (channel <= 14) { RT_TRACE(COMP_ERR, "WIRELESS_MODE_A but channel<=14\n"); return false; } break; case WIRELESS_MODE_B: if (channel > 14) { RT_TRACE(COMP_ERR, "WIRELESS_MODE_B but channel>14\n"); return false; } break; case WIRELESS_MODE_G: case WIRELESS_MODE_N_24G: if (channel > 14) { RT_TRACE(COMP_ERR, "WIRELESS_MODE_G but channel>14\n"); return false; } break; } /* -------------------------------------------- */ priv->SwChnlInProgress = true; if (channel == 0) channel = 1; priv->chan = channel; priv->SwChnlStage = 0; priv->SwChnlStep = 0; if (priv->up) rtl8192_SwChnl_WorkItem(dev); priv->SwChnlInProgress = false; return true; } /****************************************************************************** * function: Callback routine of the work item for set bandwidth mode. * input: net_device *dev * output: none * return: none * notice: I doubt whether SetBWModeInProgress flag is necessary as we can * test whether current work in the queue or not.//do I? *****************************************************************************/ void rtl8192_SetBWModeWorkItem(struct net_device *dev) { struct r8192_priv *priv = ieee80211_priv(dev); u8 regBwOpMode; RT_TRACE(COMP_SWBW, "%s() Switch to %s bandwidth\n", __func__, priv->CurrentChannelBW == HT_CHANNEL_WIDTH_20?"20MHz":"40MHz"); if (priv->rf_chip == RF_PSEUDO_11N) { priv->SetBWModeInProgress = false; return; } /* <1> Set MAC register */ read_nic_byte(dev, BW_OPMODE, ®BwOpMode); switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: regBwOpMode |= BW_OPMODE_20MHZ; /* We have not verify whether this register works */ write_nic_byte(dev, BW_OPMODE, regBwOpMode); break; case HT_CHANNEL_WIDTH_20_40: regBwOpMode &= ~BW_OPMODE_20MHZ; /* We have not verify whether this register works */ write_nic_byte(dev, BW_OPMODE, regBwOpMode); break; default: RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n", priv->CurrentChannelBW); break; } /* <2> Set PHY related register */ switch (priv->CurrentChannelBW) { case HT_CHANNEL_WIDTH_20: rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x0); rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x0); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 1); /* Correct the tx power for CCK rate in 20M. */ priv->cck_present_attenuation = priv->cck_present_attenuation_20Mdefault + priv->cck_present_attenuation_difference; if (priv->cck_present_attenuation > 22) priv->cck_present_attenuation = 22; if (priv->cck_present_attenuation < 0) priv->cck_present_attenuation = 0; RT_TRACE(COMP_INIT, "20M, pHalData->CCKPresentAttentuation = %d\n", priv->cck_present_attenuation); if (priv->chan == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = true; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else if (priv->chan != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = false; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else { dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } break; case HT_CHANNEL_WIDTH_20_40: rtl8192_setBBreg(dev, rFPGA0_RFMOD, bRFMOD, 0x1); rtl8192_setBBreg(dev, rFPGA1_RFMOD, bRFMOD, 0x1); rtl8192_setBBreg(dev, rCCK0_System, bCCKSideBand, priv->nCur40MhzPrimeSC >> 1); rtl8192_setBBreg(dev, rFPGA0_AnalogParameter1, 0x00100000, 0); rtl8192_setBBreg(dev, rOFDM1_LSTF, 0xC00, priv->nCur40MhzPrimeSC); priv->cck_present_attenuation = priv->cck_present_attenuation_40Mdefault + priv->cck_present_attenuation_difference; if (priv->cck_present_attenuation > 22) priv->cck_present_attenuation = 22; if (priv->cck_present_attenuation < 0) priv->cck_present_attenuation = 0; RT_TRACE(COMP_INIT, "40M, pHalData->CCKPresentAttentuation = %d\n", priv->cck_present_attenuation); if (priv->chan == 14 && !priv->bcck_in_ch14) { priv->bcck_in_ch14 = true; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else if (priv->chan != 14 && priv->bcck_in_ch14) { priv->bcck_in_ch14 = false; dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } else { dm_cck_txpower_adjust(dev, priv->bcck_in_ch14); } break; default: RT_TRACE(COMP_ERR, "SetChannelBandwidth819xUsb(): unknown Bandwidth: %#X\n", priv->CurrentChannelBW); break; } /* Skip over setting of J-mode in BB register here. * Default value is "None J mode". */ /* <3> Set RF related register */ switch (priv->rf_chip) { case RF_8225: break; case RF_8256: phy_set_rf8256_bandwidth(dev, priv->CurrentChannelBW); break; case RF_8258: break; case RF_PSEUDO_11N: break; default: RT_TRACE(COMP_ERR, "Unknown RFChipID: %d\n", priv->rf_chip); break; } priv->SetBWModeInProgress = false; RT_TRACE(COMP_SWBW, "<==SetBWMode819xUsb(), %d\n", atomic_read(&priv->ieee80211->atm_swbw)); } /****************************************************************************** * function: This function schedules bandwidth switch work. * input: struct net_deviceq *dev * HT_CHANNEL_WIDTH bandwidth //20M or 40M * HT_EXTCHNL_OFFSET offset //Upper, Lower, or Don't care * output: none * return: none * notice: I doubt whether SetBWModeInProgress flag is necessary as we can * test whether current work in the queue or not.//do I? *****************************************************************************/ void rtl8192_SetBWMode(struct net_device *dev, enum ht_channel_width bandwidth, enum ht_extension_chan_offset offset) { struct r8192_priv *priv = ieee80211_priv(dev); if (priv->SetBWModeInProgress) return; priv->SetBWModeInProgress = true; priv->CurrentChannelBW = bandwidth; if (offset == HT_EXTCHNL_OFFSET_LOWER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER; else if (offset == HT_EXTCHNL_OFFSET_UPPER) priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER; else priv->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE; rtl8192_SetBWModeWorkItem(dev); } void InitialGain819xUsb(struct net_device *dev, u8 Operation) { struct r8192_priv *priv = ieee80211_priv(dev); priv->InitialGainOperateType = Operation; if (priv->up) queue_delayed_work(priv->priv_wq, &priv->initialgain_operate_wq, 0); } void InitialGainOperateWorkItemCallBack(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct r8192_priv *priv = container_of(dwork, struct r8192_priv, initialgain_operate_wq); struct net_device *dev = priv->ieee80211->dev; #define SCAN_RX_INITIAL_GAIN 0x17 #define POWER_DETECTION_TH 0x08 u32 bitmask; u8 initial_gain; u8 Operation; Operation = priv->InitialGainOperateType; switch (Operation) { case IG_Backup: RT_TRACE(COMP_SCAN, "IG_Backup, backup the initial gain.\n"); initial_gain = SCAN_RX_INITIAL_GAIN; bitmask = bMaskByte0; if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) /* FW DIG OFF */ rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8); priv->initgain_backup.xaagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XAAGCCore1, bitmask); priv->initgain_backup.xbagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XBAGCCore1, bitmask); priv->initgain_backup.xcagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XCAGCCore1, bitmask); priv->initgain_backup.xdagccore1 = (u8)rtl8192_QueryBBReg(dev, rOFDM0_XDAGCCore1, bitmask); bitmask = bMaskByte2; priv->initgain_backup.cca = (u8)rtl8192_QueryBBReg(dev, rCCK0_CCA, bitmask); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc50 is %x\n", priv->initgain_backup.xaagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc58 is %x\n", priv->initgain_backup.xbagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc60 is %x\n", priv->initgain_backup.xcagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xc68 is %x\n", priv->initgain_backup.xdagccore1); RT_TRACE(COMP_SCAN, "Scan InitialGainBackup 0xa0a is %x\n", priv->initgain_backup.cca); RT_TRACE(COMP_SCAN, "Write scan initial gain = 0x%x\n", initial_gain); write_nic_byte(dev, rOFDM0_XAAGCCore1, initial_gain); write_nic_byte(dev, rOFDM0_XBAGCCore1, initial_gain); write_nic_byte(dev, rOFDM0_XCAGCCore1, initial_gain); write_nic_byte(dev, rOFDM0_XDAGCCore1, initial_gain); RT_TRACE(COMP_SCAN, "Write scan 0xa0a = 0x%x\n", POWER_DETECTION_TH); write_nic_byte(dev, 0xa0a, POWER_DETECTION_TH); break; case IG_Restore: RT_TRACE(COMP_SCAN, "IG_Restore, restore the initial gain.\n"); bitmask = 0x7f; /* Bit0 ~ Bit6 */ if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) /* FW DIG OFF */ rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x8); rtl8192_setBBreg(dev, rOFDM0_XAAGCCore1, bitmask, (u32)priv->initgain_backup.xaagccore1); rtl8192_setBBreg(dev, rOFDM0_XBAGCCore1, bitmask, (u32)priv->initgain_backup.xbagccore1); rtl8192_setBBreg(dev, rOFDM0_XCAGCCore1, bitmask, (u32)priv->initgain_backup.xcagccore1); rtl8192_setBBreg(dev, rOFDM0_XDAGCCore1, bitmask, (u32)priv->initgain_backup.xdagccore1); bitmask = bMaskByte2; rtl8192_setBBreg(dev, rCCK0_CCA, bitmask, (u32)priv->initgain_backup.cca); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc50 is %x\n", priv->initgain_backup.xaagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc58 is %x\n", priv->initgain_backup.xbagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc60 is %x\n", priv->initgain_backup.xcagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xc68 is %x\n", priv->initgain_backup.xdagccore1); RT_TRACE(COMP_SCAN, "Scan BBInitialGainRestore 0xa0a is %x\n", priv->initgain_backup.cca); rtl8192_phy_setTxPower(dev, priv->ieee80211->current_network.channel); if (dm_digtable.dig_algorithm == DIG_ALGO_BY_FALSE_ALARM) /* FW DIG ON */ rtl8192_setBBreg(dev, UFWP, bMaskByte1, 0x1); break; default: RT_TRACE(COMP_SCAN, "Unknown IG Operation.\n"); break; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1