Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neal Liu | 7312 | 99.51% | 1 | 20.00% |
Dan Carpenter | 28 | 0.38% | 2 | 40.00% |
zhengbin | 6 | 0.08% | 1 | 20.00% |
Colin Ian King | 2 | 0.03% | 1 | 20.00% |
Total | 7348 | 5 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2021 Aspeed Technology Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/prefetch.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <linux/slab.h> #define AST_UDC_NUM_ENDPOINTS (1 + 4) #define AST_UDC_EP0_MAX_PACKET 64 /* EP0's max packet size */ #define AST_UDC_EPn_MAX_PACKET 1024 /* Generic EPs max packet size */ #define AST_UDC_DESCS_COUNT 256 /* Use 256 stages descriptor mode (32/256) */ #define AST_UDC_DESC_MODE 1 /* Single/Multiple Stage(s) Descriptor Mode */ #define AST_UDC_EP_DMA_SIZE (AST_UDC_EPn_MAX_PACKET + 8 * AST_UDC_DESCS_COUNT) /***************************** * * * UDC register definitions * * * *****************************/ #define AST_UDC_FUNC_CTRL 0x00 /* Root Function Control & Status Register */ #define AST_UDC_CONFIG 0x04 /* Root Configuration Setting Register */ #define AST_UDC_IER 0x08 /* Interrupt Control Register */ #define AST_UDC_ISR 0x0C /* Interrupt Status Register */ #define AST_UDC_EP_ACK_IER 0x10 /* Programmable ep Pool ACK Interrupt Enable Reg */ #define AST_UDC_EP_NAK_IER 0x14 /* Programmable ep Pool NAK Interrupt Enable Reg */ #define AST_UDC_EP_ACK_ISR 0x18 /* Programmable ep Pool ACK Interrupt Status Reg */ #define AST_UDC_EP_NAK_ISR 0x1C /* Programmable ep Pool NAK Interrupt Status Reg */ #define AST_UDC_DEV_RESET 0x20 /* Device Controller Soft Reset Enable Register */ #define AST_UDC_STS 0x24 /* USB Status Register */ #define AST_VHUB_EP_DATA 0x28 /* Programmable ep Pool Data Toggle Value Set */ #define AST_VHUB_ISO_TX_FAIL 0x2C /* Isochronous Transaction Fail Accumulator */ #define AST_UDC_EP0_CTRL 0x30 /* Endpoint 0 Control/Status Register */ #define AST_UDC_EP0_DATA_BUFF 0x34 /* Base Address of ep0 IN/OUT Data Buffer Reg */ #define AST_UDC_SETUP0 0x80 /* Root Device Setup Data Buffer0 */ #define AST_UDC_SETUP1 0x84 /* Root Device Setup Data Buffer1 */ /* Main control reg */ #define USB_PHY_CLK_EN BIT(31) #define USB_FIFO_DYN_PWRD_EN BIT(19) #define USB_EP_LONG_DESC BIT(18) #define USB_BIST_TEST_PASS BIT(13) #define USB_BIST_TURN_ON BIT(12) #define USB_PHY_RESET_DIS BIT(11) #define USB_TEST_MODE(x) ((x) << 8) #define USB_FORCE_TIMER_HS BIT(7) #define USB_FORCE_HS BIT(6) #define USB_REMOTE_WAKEUP_12MS BIT(5) #define USB_REMOTE_WAKEUP_EN BIT(4) #define USB_AUTO_REMOTE_WAKEUP_EN BIT(3) #define USB_STOP_CLK_IN_SUPEND BIT(2) #define USB_UPSTREAM_FS BIT(1) #define USB_UPSTREAM_EN BIT(0) /* Main config reg */ #define UDC_CFG_SET_ADDR(x) ((x) & 0x3f) #define UDC_CFG_ADDR_MASK (0x3f) /* Interrupt ctrl & status reg */ #define UDC_IRQ_EP_POOL_NAK BIT(17) #define UDC_IRQ_EP_POOL_ACK_STALL BIT(16) #define UDC_IRQ_BUS_RESUME BIT(8) #define UDC_IRQ_BUS_SUSPEND BIT(7) #define UDC_IRQ_BUS_RESET BIT(6) #define UDC_IRQ_EP0_IN_DATA_NAK BIT(4) #define UDC_IRQ_EP0_IN_ACK_STALL BIT(3) #define UDC_IRQ_EP0_OUT_NAK BIT(2) #define UDC_IRQ_EP0_OUT_ACK_STALL BIT(1) #define UDC_IRQ_EP0_SETUP BIT(0) #define UDC_IRQ_ACK_ALL (0x1ff) /* EP isr reg */ #define USB_EP3_ISR BIT(3) #define USB_EP2_ISR BIT(2) #define USB_EP1_ISR BIT(1) #define USB_EP0_ISR BIT(0) #define UDC_IRQ_EP_ACK_ALL (0xf) /*Soft reset reg */ #define ROOT_UDC_SOFT_RESET BIT(0) /* USB status reg */ #define UDC_STS_HIGHSPEED BIT(27) /* Programmable EP data toggle */ #define EP_TOGGLE_SET_EPNUM(x) ((x) & 0x3) /* EP0 ctrl reg */ #define EP0_GET_RX_LEN(x) ((x >> 16) & 0x7f) #define EP0_TX_LEN(x) ((x & 0x7f) << 8) #define EP0_RX_BUFF_RDY BIT(2) #define EP0_TX_BUFF_RDY BIT(1) #define EP0_STALL BIT(0) /************************************* * * * per-endpoint register definitions * * * *************************************/ #define AST_UDC_EP_CONFIG 0x00 /* Endpoint Configuration Register */ #define AST_UDC_EP_DMA_CTRL 0x04 /* DMA Descriptor List Control/Status Register */ #define AST_UDC_EP_DMA_BUFF 0x08 /* DMA Descriptor/Buffer Base Address */ #define AST_UDC_EP_DMA_STS 0x0C /* DMA Descriptor List R/W Pointer and Status */ #define AST_UDC_EP_BASE 0x200 #define AST_UDC_EP_OFFSET 0x10 /* EP config reg */ #define EP_SET_MAX_PKT(x) ((x & 0x3ff) << 16) #define EP_DATA_FETCH_CTRL(x) ((x & 0x3) << 14) #define EP_AUTO_DATA_DISABLE (0x1 << 13) #define EP_SET_EP_STALL (0x1 << 12) #define EP_SET_EP_NUM(x) ((x & 0xf) << 8) #define EP_SET_TYPE_MASK(x) ((x) << 5) #define EP_TYPE_BULK (0x1) #define EP_TYPE_INT (0x2) #define EP_TYPE_ISO (0x3) #define EP_DIR_OUT (0x1 << 4) #define EP_ALLOCATED_MASK (0x7 << 1) #define EP_ENABLE BIT(0) /* EP DMA ctrl reg */ #define EP_DMA_CTRL_GET_PROC_STS(x) ((x >> 4) & 0xf) #define EP_DMA_CTRL_STS_RX_IDLE 0x0 #define EP_DMA_CTRL_STS_TX_IDLE 0x8 #define EP_DMA_CTRL_IN_LONG_MODE (0x1 << 3) #define EP_DMA_CTRL_RESET (0x1 << 2) #define EP_DMA_SINGLE_STAGE (0x1 << 1) #define EP_DMA_DESC_MODE (0x1 << 0) /* EP DMA status reg */ #define EP_DMA_SET_TX_SIZE(x) ((x & 0x7ff) << 16) #define EP_DMA_GET_TX_SIZE(x) (((x) >> 16) & 0x7ff) #define EP_DMA_GET_RPTR(x) (((x) >> 8) & 0xff) #define EP_DMA_GET_WPTR(x) ((x) & 0xff) #define EP_DMA_SINGLE_KICK (1 << 0) /* WPTR = 1 for single mode */ /* EP desc reg */ #define AST_EP_DMA_DESC_INTR_ENABLE BIT(31) #define AST_EP_DMA_DESC_PID_DATA0 (0 << 14) #define AST_EP_DMA_DESC_PID_DATA2 BIT(14) #define AST_EP_DMA_DESC_PID_DATA1 (2 << 14) #define AST_EP_DMA_DESC_PID_MDATA (3 << 14) #define EP_DESC1_IN_LEN(x) ((x) & 0x1fff) #define AST_EP_DMA_DESC_MAX_LEN (7680) /* Max packet length for trasmit in 1 desc */ struct ast_udc_request { struct usb_request req; struct list_head queue; unsigned mapped:1; unsigned int actual_dma_length; u32 saved_dma_wptr; }; #define to_ast_req(__req) container_of(__req, struct ast_udc_request, req) struct ast_dma_desc { u32 des_0; u32 des_1; }; struct ast_udc_ep { struct usb_ep ep; /* Request queue */ struct list_head queue; struct ast_udc_dev *udc; void __iomem *ep_reg; void *epn_buf; dma_addr_t epn_buf_dma; const struct usb_endpoint_descriptor *desc; /* DMA Descriptors */ struct ast_dma_desc *descs; dma_addr_t descs_dma; u32 descs_wptr; u32 chunk_max; bool dir_in:1; unsigned stopped:1; bool desc_mode:1; }; #define to_ast_ep(__ep) container_of(__ep, struct ast_udc_ep, ep) struct ast_udc_dev { struct platform_device *pdev; void __iomem *reg; int irq; spinlock_t lock; struct clk *clk; struct work_struct wake_work; /* EP0 DMA buffers allocated in one chunk */ void *ep0_buf; dma_addr_t ep0_buf_dma; struct ast_udc_ep ep[AST_UDC_NUM_ENDPOINTS]; struct usb_gadget gadget; struct usb_gadget_driver *driver; void __iomem *creq; enum usb_device_state suspended_from; int desc_mode; /* Force full speed only */ bool force_usb1:1; unsigned is_control_tx:1; bool wakeup_en:1; }; #define to_ast_dev(__g) container_of(__g, struct ast_udc_dev, gadget) static const char * const ast_ep_name[] = { "ep0", "ep1", "ep2", "ep3", "ep4" }; #ifdef AST_UDC_DEBUG_ALL #define AST_UDC_DEBUG #define AST_SETUP_DEBUG #define AST_EP_DEBUG #define AST_ISR_DEBUG #endif #ifdef AST_SETUP_DEBUG #define SETUP_DBG(u, fmt, ...) \ dev_dbg(&(u)->pdev->dev, "%s() " fmt, __func__, ##__VA_ARGS__) #else #define SETUP_DBG(u, fmt, ...) #endif #ifdef AST_EP_DEBUG #define EP_DBG(e, fmt, ...) \ dev_dbg(&(e)->udc->pdev->dev, "%s():%s " fmt, __func__, \ (e)->ep.name, ##__VA_ARGS__) #else #define EP_DBG(ep, fmt, ...) ((void)(ep)) #endif #ifdef AST_UDC_DEBUG #define UDC_DBG(u, fmt, ...) \ dev_dbg(&(u)->pdev->dev, "%s() " fmt, __func__, ##__VA_ARGS__) #else #define UDC_DBG(u, fmt, ...) #endif #ifdef AST_ISR_DEBUG #define ISR_DBG(u, fmt, ...) \ dev_dbg(&(u)->pdev->dev, "%s() " fmt, __func__, ##__VA_ARGS__) #else #define ISR_DBG(u, fmt, ...) #endif /*-------------------------------------------------------------------------*/ #define ast_udc_read(udc, offset) \ readl((udc)->reg + (offset)) #define ast_udc_write(udc, val, offset) \ writel((val), (udc)->reg + (offset)) #define ast_ep_read(ep, reg) \ readl((ep)->ep_reg + (reg)) #define ast_ep_write(ep, val, reg) \ writel((val), (ep)->ep_reg + (reg)) /*-------------------------------------------------------------------------*/ static void ast_udc_done(struct ast_udc_ep *ep, struct ast_udc_request *req, int status) { struct ast_udc_dev *udc = ep->udc; EP_DBG(ep, "req @%p, len (%d/%d), buf:0x%x, dir:0x%x\n", req, req->req.actual, req->req.length, (u32)req->req.buf, ep->dir_in); list_del(&req->queue); if (req->req.status == -EINPROGRESS) req->req.status = status; else status = req->req.status; if (status && status != -ESHUTDOWN) EP_DBG(ep, "done req:%p, status:%d\n", req, status); spin_unlock(&udc->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&udc->lock); } static void ast_udc_nuke(struct ast_udc_ep *ep, int status) { int count = 0; while (!list_empty(&ep->queue)) { struct ast_udc_request *req; req = list_entry(ep->queue.next, struct ast_udc_request, queue); ast_udc_done(ep, req, status); count++; } if (count) EP_DBG(ep, "Nuked %d request(s)\n", count); } /* * Stop activity on all endpoints. * Device controller for which EP activity is to be stopped. * * All the endpoints are stopped and any pending transfer requests if any on * the endpoint are terminated. */ static void ast_udc_stop_activity(struct ast_udc_dev *udc) { struct ast_udc_ep *ep; int i; for (i = 0; i < AST_UDC_NUM_ENDPOINTS; i++) { ep = &udc->ep[i]; ep->stopped = 1; ast_udc_nuke(ep, -ESHUTDOWN); } } static int ast_udc_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { u16 maxpacket = usb_endpoint_maxp(desc); struct ast_udc_ep *ep = to_ast_ep(_ep); struct ast_udc_dev *udc = ep->udc; u8 epnum = usb_endpoint_num(desc); unsigned long flags; u32 ep_conf = 0; u8 dir_in; u8 type; if (!_ep || !ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || maxpacket == 0 || maxpacket > ep->ep.maxpacket) { EP_DBG(ep, "Failed, invalid EP enable param\n"); return -EINVAL; } if (!udc->driver) { EP_DBG(ep, "bogus device state\n"); return -ESHUTDOWN; } EP_DBG(ep, "maxpacket:0x%x\n", maxpacket); spin_lock_irqsave(&udc->lock, flags); ep->desc = desc; ep->stopped = 0; ep->ep.maxpacket = maxpacket; ep->chunk_max = AST_EP_DMA_DESC_MAX_LEN; if (maxpacket < AST_UDC_EPn_MAX_PACKET) ep_conf = EP_SET_MAX_PKT(maxpacket); ep_conf |= EP_SET_EP_NUM(epnum); type = usb_endpoint_type(desc); dir_in = usb_endpoint_dir_in(desc); ep->dir_in = dir_in; if (!ep->dir_in) ep_conf |= EP_DIR_OUT; EP_DBG(ep, "type %d, dir_in %d\n", type, dir_in); switch (type) { case USB_ENDPOINT_XFER_ISOC: ep_conf |= EP_SET_TYPE_MASK(EP_TYPE_ISO); break; case USB_ENDPOINT_XFER_BULK: ep_conf |= EP_SET_TYPE_MASK(EP_TYPE_BULK); break; case USB_ENDPOINT_XFER_INT: ep_conf |= EP_SET_TYPE_MASK(EP_TYPE_INT); break; } ep->desc_mode = udc->desc_mode && ep->descs_dma && ep->dir_in; if (ep->desc_mode) { ast_ep_write(ep, EP_DMA_CTRL_RESET, AST_UDC_EP_DMA_CTRL); ast_ep_write(ep, 0, AST_UDC_EP_DMA_STS); ast_ep_write(ep, ep->descs_dma, AST_UDC_EP_DMA_BUFF); /* Enable Long Descriptor Mode */ ast_ep_write(ep, EP_DMA_CTRL_IN_LONG_MODE | EP_DMA_DESC_MODE, AST_UDC_EP_DMA_CTRL); ep->descs_wptr = 0; } else { ast_ep_write(ep, EP_DMA_CTRL_RESET, AST_UDC_EP_DMA_CTRL); ast_ep_write(ep, EP_DMA_SINGLE_STAGE, AST_UDC_EP_DMA_CTRL); ast_ep_write(ep, 0, AST_UDC_EP_DMA_STS); } /* Cleanup data toggle just in case */ ast_udc_write(udc, EP_TOGGLE_SET_EPNUM(epnum), AST_VHUB_EP_DATA); /* Enable EP */ ast_ep_write(ep, ep_conf | EP_ENABLE, AST_UDC_EP_CONFIG); EP_DBG(ep, "ep_config: 0x%x\n", ast_ep_read(ep, AST_UDC_EP_CONFIG)); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int ast_udc_ep_disable(struct usb_ep *_ep) { struct ast_udc_ep *ep = to_ast_ep(_ep); struct ast_udc_dev *udc = ep->udc; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); ep->ep.desc = NULL; ep->stopped = 1; ast_udc_nuke(ep, -ESHUTDOWN); ast_ep_write(ep, 0, AST_UDC_EP_CONFIG); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static struct usb_request *ast_udc_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) { struct ast_udc_ep *ep = to_ast_ep(_ep); struct ast_udc_request *req; req = kzalloc(sizeof(struct ast_udc_request), gfp_flags); if (!req) { EP_DBG(ep, "request allocation failed\n"); return NULL; } INIT_LIST_HEAD(&req->queue); return &req->req; } static void ast_udc_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) { struct ast_udc_request *req = to_ast_req(_req); kfree(req); } static int ast_dma_descriptor_setup(struct ast_udc_ep *ep, u32 dma_buf, u16 tx_len, struct ast_udc_request *req) { struct ast_udc_dev *udc = ep->udc; struct device *dev = &udc->pdev->dev; bool last = false; int chunk, count; u32 offset; if (!ep->descs) { dev_warn(dev, "%s: Empty DMA descs list failure\n", ep->ep.name); return -EINVAL; } chunk = tx_len; offset = count = 0; EP_DBG(ep, "req @%p, %s:%d, %s:0x%x, %s:0x%x\n", req, "wptr", ep->descs_wptr, "dma_buf", dma_buf, "tx_len", tx_len); /* Create Descriptor Lists */ while (chunk >= 0 && !last && count < AST_UDC_DESCS_COUNT) { ep->descs[ep->descs_wptr].des_0 = dma_buf + offset; if (chunk > ep->chunk_max) { ep->descs[ep->descs_wptr].des_1 = ep->chunk_max; } else { ep->descs[ep->descs_wptr].des_1 = chunk; last = true; } chunk -= ep->chunk_max; EP_DBG(ep, "descs[%d]: 0x%x 0x%x\n", ep->descs_wptr, ep->descs[ep->descs_wptr].des_0, ep->descs[ep->descs_wptr].des_1); if (count == 0) req->saved_dma_wptr = ep->descs_wptr; ep->descs_wptr++; count++; if (ep->descs_wptr >= AST_UDC_DESCS_COUNT) ep->descs_wptr = 0; offset = ep->chunk_max * count; } return 0; } static void ast_udc_epn_kick(struct ast_udc_ep *ep, struct ast_udc_request *req) { u32 tx_len; u32 last; last = req->req.length - req->req.actual; tx_len = last > ep->ep.maxpacket ? ep->ep.maxpacket : last; EP_DBG(ep, "kick req @%p, len:%d, dir:%d\n", req, tx_len, ep->dir_in); ast_ep_write(ep, req->req.dma + req->req.actual, AST_UDC_EP_DMA_BUFF); /* Start DMA */ ast_ep_write(ep, EP_DMA_SET_TX_SIZE(tx_len), AST_UDC_EP_DMA_STS); ast_ep_write(ep, EP_DMA_SET_TX_SIZE(tx_len) | EP_DMA_SINGLE_KICK, AST_UDC_EP_DMA_STS); } static void ast_udc_epn_kick_desc(struct ast_udc_ep *ep, struct ast_udc_request *req) { u32 descs_max_size; u32 tx_len; u32 last; descs_max_size = AST_EP_DMA_DESC_MAX_LEN * AST_UDC_DESCS_COUNT; last = req->req.length - req->req.actual; tx_len = last > descs_max_size ? descs_max_size : last; EP_DBG(ep, "kick req @%p, %s:%d, %s:0x%x, %s:0x%x (%d/%d), %s:0x%x\n", req, "tx_len", tx_len, "dir_in", ep->dir_in, "dma", req->req.dma + req->req.actual, req->req.actual, req->req.length, "descs_max_size", descs_max_size); if (!ast_dma_descriptor_setup(ep, req->req.dma + req->req.actual, tx_len, req)) req->actual_dma_length += tx_len; /* make sure CPU done everything before triggering DMA */ mb(); ast_ep_write(ep, ep->descs_wptr, AST_UDC_EP_DMA_STS); EP_DBG(ep, "descs_wptr:%d, dstat:0x%x, dctrl:0x%x\n", ep->descs_wptr, ast_ep_read(ep, AST_UDC_EP_DMA_STS), ast_ep_read(ep, AST_UDC_EP_DMA_CTRL)); } static void ast_udc_ep0_queue(struct ast_udc_ep *ep, struct ast_udc_request *req) { struct ast_udc_dev *udc = ep->udc; u32 tx_len; u32 last; last = req->req.length - req->req.actual; tx_len = last > ep->ep.maxpacket ? ep->ep.maxpacket : last; ast_udc_write(udc, req->req.dma + req->req.actual, AST_UDC_EP0_DATA_BUFF); if (ep->dir_in) { /* IN requests, send data */ SETUP_DBG(udc, "IN: %s:0x%x, %s:0x%x, %s:%d (%d/%d), %s:%d\n", "buf", (u32)req->req.buf, "dma", req->req.dma + req->req.actual, "tx_len", tx_len, req->req.actual, req->req.length, "dir_in", ep->dir_in); req->req.actual += tx_len; ast_udc_write(udc, EP0_TX_LEN(tx_len), AST_UDC_EP0_CTRL); ast_udc_write(udc, EP0_TX_LEN(tx_len) | EP0_TX_BUFF_RDY, AST_UDC_EP0_CTRL); } else { /* OUT requests, receive data */ SETUP_DBG(udc, "OUT: %s:%x, %s:%x, %s:(%d/%d), %s:%d\n", "buf", (u32)req->req.buf, "dma", req->req.dma + req->req.actual, "len", req->req.actual, req->req.length, "dir_in", ep->dir_in); if (!req->req.length) { /* 0 len request, send tx as completion */ ast_udc_write(udc, EP0_TX_BUFF_RDY, AST_UDC_EP0_CTRL); ep->dir_in = 0x1; } else ast_udc_write(udc, EP0_RX_BUFF_RDY, AST_UDC_EP0_CTRL); } } static int ast_udc_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct ast_udc_request *req = to_ast_req(_req); struct ast_udc_ep *ep = to_ast_ep(_ep); struct ast_udc_dev *udc = ep->udc; struct device *dev = &udc->pdev->dev; unsigned long flags; int rc; if (unlikely(!_req || !_req->complete || !_req->buf || !_ep)) { dev_warn(dev, "Invalid EP request !\n"); return -EINVAL; } if (ep->stopped) { dev_warn(dev, "%s is already stopped !\n", _ep->name); return -ESHUTDOWN; } spin_lock_irqsave(&udc->lock, flags); list_add_tail(&req->queue, &ep->queue); req->req.actual = 0; req->req.status = -EINPROGRESS; req->actual_dma_length = 0; rc = usb_gadget_map_request(&udc->gadget, &req->req, ep->dir_in); if (rc) { EP_DBG(ep, "Request mapping failure %d\n", rc); dev_warn(dev, "Request mapping failure %d\n", rc); goto end; } EP_DBG(ep, "enqueue req @%p\n", req); EP_DBG(ep, "l=%d, dma:0x%x, zero:%d, is_in:%d\n", _req->length, _req->dma, _req->zero, ep->dir_in); /* EP0 request enqueue */ if (ep->ep.desc == NULL) { if ((req->req.dma % 4) != 0) { dev_warn(dev, "EP0 req dma alignment error\n"); rc = -ESHUTDOWN; goto end; } ast_udc_ep0_queue(ep, req); goto end; } /* EPn request enqueue */ if (list_is_singular(&ep->queue)) { if (ep->desc_mode) ast_udc_epn_kick_desc(ep, req); else ast_udc_epn_kick(ep, req); } end: spin_unlock_irqrestore(&udc->lock, flags); return rc; } static int ast_udc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct ast_udc_ep *ep = to_ast_ep(_ep); struct ast_udc_dev *udc = ep->udc; struct ast_udc_request *req; unsigned long flags; int rc = 0; spin_lock_irqsave(&udc->lock, flags); /* make sure it's actually queued on this endpoint */ list_for_each_entry(req, &ep->queue, queue) { if (&req->req == _req) { list_del_init(&req->queue); ast_udc_done(ep, req, -ESHUTDOWN); _req->status = -ECONNRESET; break; } } /* dequeue request not found */ if (&req->req != _req) rc = -EINVAL; spin_unlock_irqrestore(&udc->lock, flags); return rc; } static int ast_udc_ep_set_halt(struct usb_ep *_ep, int value) { struct ast_udc_ep *ep = to_ast_ep(_ep); struct ast_udc_dev *udc = ep->udc; unsigned long flags; int epnum; u32 ctrl; EP_DBG(ep, "val:%d\n", value); spin_lock_irqsave(&udc->lock, flags); epnum = usb_endpoint_num(ep->desc); /* EP0 */ if (epnum == 0) { ctrl = ast_udc_read(udc, AST_UDC_EP0_CTRL); if (value) ctrl |= EP0_STALL; else ctrl &= ~EP0_STALL; ast_udc_write(udc, ctrl, AST_UDC_EP0_CTRL); } else { /* EPn */ ctrl = ast_udc_read(udc, AST_UDC_EP_CONFIG); if (value) ctrl |= EP_SET_EP_STALL; else ctrl &= ~EP_SET_EP_STALL; ast_ep_write(ep, ctrl, AST_UDC_EP_CONFIG); /* only epn is stopped and waits for clear */ ep->stopped = value ? 1 : 0; } spin_unlock_irqrestore(&udc->lock, flags); return 0; } static const struct usb_ep_ops ast_udc_ep_ops = { .enable = ast_udc_ep_enable, .disable = ast_udc_ep_disable, .alloc_request = ast_udc_ep_alloc_request, .free_request = ast_udc_ep_free_request, .queue = ast_udc_ep_queue, .dequeue = ast_udc_ep_dequeue, .set_halt = ast_udc_ep_set_halt, /* there's only imprecise fifo status reporting */ }; static void ast_udc_ep0_rx(struct ast_udc_dev *udc) { ast_udc_write(udc, udc->ep0_buf_dma, AST_UDC_EP0_DATA_BUFF); ast_udc_write(udc, EP0_RX_BUFF_RDY, AST_UDC_EP0_CTRL); } static void ast_udc_ep0_tx(struct ast_udc_dev *udc) { ast_udc_write(udc, udc->ep0_buf_dma, AST_UDC_EP0_DATA_BUFF); ast_udc_write(udc, EP0_TX_BUFF_RDY, AST_UDC_EP0_CTRL); } static void ast_udc_ep0_out(struct ast_udc_dev *udc) { struct device *dev = &udc->pdev->dev; struct ast_udc_ep *ep = &udc->ep[0]; struct ast_udc_request *req; u16 rx_len; if (list_empty(&ep->queue)) return; req = list_entry(ep->queue.next, struct ast_udc_request, queue); rx_len = EP0_GET_RX_LEN(ast_udc_read(udc, AST_UDC_EP0_CTRL)); req->req.actual += rx_len; SETUP_DBG(udc, "req %p (%d/%d)\n", req, req->req.actual, req->req.length); if ((rx_len < ep->ep.maxpacket) || (req->req.actual == req->req.length)) { ast_udc_ep0_tx(udc); if (!ep->dir_in) ast_udc_done(ep, req, 0); } else { if (rx_len > req->req.length) { // Issue Fix dev_warn(dev, "Something wrong (%d/%d)\n", req->req.actual, req->req.length); ast_udc_ep0_tx(udc); ast_udc_done(ep, req, 0); return; } ep->dir_in = 0; /* More works */ ast_udc_ep0_queue(ep, req); } } static void ast_udc_ep0_in(struct ast_udc_dev *udc) { struct ast_udc_ep *ep = &udc->ep[0]; struct ast_udc_request *req; if (list_empty(&ep->queue)) { if (udc->is_control_tx) { ast_udc_ep0_rx(udc); udc->is_control_tx = 0; } return; } req = list_entry(ep->queue.next, struct ast_udc_request, queue); SETUP_DBG(udc, "req %p (%d/%d)\n", req, req->req.actual, req->req.length); if (req->req.length == req->req.actual) { if (req->req.length) ast_udc_ep0_rx(udc); if (ep->dir_in) ast_udc_done(ep, req, 0); } else { /* More works */ ast_udc_ep0_queue(ep, req); } } static void ast_udc_epn_handle(struct ast_udc_dev *udc, u16 ep_num) { struct ast_udc_ep *ep = &udc->ep[ep_num]; struct ast_udc_request *req; u16 len = 0; if (list_empty(&ep->queue)) return; req = list_first_entry(&ep->queue, struct ast_udc_request, queue); len = EP_DMA_GET_TX_SIZE(ast_ep_read(ep, AST_UDC_EP_DMA_STS)); req->req.actual += len; EP_DBG(ep, "req @%p, length:(%d/%d), %s:0x%x\n", req, req->req.actual, req->req.length, "len", len); /* Done this request */ if (req->req.length == req->req.actual) { ast_udc_done(ep, req, 0); req = list_first_entry_or_null(&ep->queue, struct ast_udc_request, queue); } else { /* Check for short packet */ if (len < ep->ep.maxpacket) { ast_udc_done(ep, req, 0); req = list_first_entry_or_null(&ep->queue, struct ast_udc_request, queue); } } /* More requests */ if (req) ast_udc_epn_kick(ep, req); } static void ast_udc_epn_handle_desc(struct ast_udc_dev *udc, u16 ep_num) { struct ast_udc_ep *ep = &udc->ep[ep_num]; struct device *dev = &udc->pdev->dev; struct ast_udc_request *req; u32 proc_sts, wr_ptr, rd_ptr; u32 len_in_desc, ctrl; u16 total_len = 0; int i; if (list_empty(&ep->queue)) { dev_warn(dev, "%s request queue empty!\n", ep->ep.name); return; } req = list_first_entry(&ep->queue, struct ast_udc_request, queue); ctrl = ast_ep_read(ep, AST_UDC_EP_DMA_CTRL); proc_sts = EP_DMA_CTRL_GET_PROC_STS(ctrl); /* Check processing status is idle */ if (proc_sts != EP_DMA_CTRL_STS_RX_IDLE && proc_sts != EP_DMA_CTRL_STS_TX_IDLE) { dev_warn(dev, "EP DMA CTRL: 0x%x, PS:0x%x\n", ast_ep_read(ep, AST_UDC_EP_DMA_CTRL), proc_sts); return; } ctrl = ast_ep_read(ep, AST_UDC_EP_DMA_STS); rd_ptr = EP_DMA_GET_RPTR(ctrl); wr_ptr = EP_DMA_GET_WPTR(ctrl); if (rd_ptr != wr_ptr) { dev_warn(dev, "desc list is not empty ! %s:%d, %s:%d\n", "rptr", rd_ptr, "wptr", wr_ptr); return; } EP_DBG(ep, "rd_ptr:%d, wr_ptr:%d\n", rd_ptr, wr_ptr); i = req->saved_dma_wptr; do { len_in_desc = EP_DESC1_IN_LEN(ep->descs[i].des_1); EP_DBG(ep, "desc[%d] len: %d\n", i, len_in_desc); total_len += len_in_desc; i++; if (i >= AST_UDC_DESCS_COUNT) i = 0; } while (i != wr_ptr); req->req.actual += total_len; EP_DBG(ep, "req @%p, length:(%d/%d), %s:0x%x\n", req, req->req.actual, req->req.length, "len", total_len); /* Done this request */ if (req->req.length == req->req.actual) { ast_udc_done(ep, req, 0); req = list_first_entry_or_null(&ep->queue, struct ast_udc_request, queue); } else { /* Check for short packet */ if (total_len < ep->ep.maxpacket) { ast_udc_done(ep, req, 0); req = list_first_entry_or_null(&ep->queue, struct ast_udc_request, queue); } } /* More requests & dma descs not setup yet */ if (req && (req->actual_dma_length == req->req.actual)) { EP_DBG(ep, "More requests\n"); ast_udc_epn_kick_desc(ep, req); } } static void ast_udc_ep0_data_tx(struct ast_udc_dev *udc, u8 *tx_data, u32 len) { if (len) { memcpy(udc->ep0_buf, tx_data, len); ast_udc_write(udc, udc->ep0_buf_dma, AST_UDC_EP0_DATA_BUFF); ast_udc_write(udc, EP0_TX_LEN(len), AST_UDC_EP0_CTRL); ast_udc_write(udc, EP0_TX_LEN(len) | EP0_TX_BUFF_RDY, AST_UDC_EP0_CTRL); udc->is_control_tx = 1; } else ast_udc_write(udc, EP0_TX_BUFF_RDY, AST_UDC_EP0_CTRL); } static void ast_udc_getstatus(struct ast_udc_dev *udc) { struct usb_ctrlrequest crq; struct ast_udc_ep *ep; u16 status = 0; u16 epnum = 0; memcpy_fromio(&crq, udc->creq, sizeof(crq)); switch (crq.bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: /* Get device status */ status = 1 << USB_DEVICE_SELF_POWERED; break; case USB_RECIP_INTERFACE: break; case USB_RECIP_ENDPOINT: epnum = crq.wIndex & USB_ENDPOINT_NUMBER_MASK; status = udc->ep[epnum].stopped; break; default: goto stall; } ep = &udc->ep[epnum]; EP_DBG(ep, "status: 0x%x\n", status); ast_udc_ep0_data_tx(udc, (u8 *)&status, sizeof(status)); return; stall: EP_DBG(ep, "Can't respond request\n"); ast_udc_write(udc, ast_udc_read(udc, AST_UDC_EP0_CTRL) | EP0_STALL, AST_UDC_EP0_CTRL); } static void ast_udc_ep0_handle_setup(struct ast_udc_dev *udc) { struct ast_udc_ep *ep = &udc->ep[0]; struct ast_udc_request *req; struct usb_ctrlrequest crq; int req_num = 0; int rc = 0; u32 reg; memcpy_fromio(&crq, udc->creq, sizeof(crq)); SETUP_DBG(udc, "SETUP packet: %02x/%02x/%04x/%04x/%04x\n", crq.bRequestType, crq.bRequest, le16_to_cpu(crq.wValue), le16_to_cpu(crq.wIndex), le16_to_cpu(crq.wLength)); /* * Cleanup ep0 request(s) in queue because * there is a new control setup comes. */ list_for_each_entry(req, &udc->ep[0].queue, queue) { req_num++; EP_DBG(ep, "there is req %p in ep0 queue !\n", req); } if (req_num) ast_udc_nuke(&udc->ep[0], -ETIMEDOUT); udc->ep[0].dir_in = crq.bRequestType & USB_DIR_IN; if ((crq.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { switch (crq.bRequest) { case USB_REQ_SET_ADDRESS: if (ast_udc_read(udc, AST_UDC_STS) & UDC_STS_HIGHSPEED) udc->gadget.speed = USB_SPEED_HIGH; else udc->gadget.speed = USB_SPEED_FULL; SETUP_DBG(udc, "set addr: 0x%x\n", crq.wValue); reg = ast_udc_read(udc, AST_UDC_CONFIG); reg &= ~UDC_CFG_ADDR_MASK; reg |= UDC_CFG_SET_ADDR(crq.wValue); ast_udc_write(udc, reg, AST_UDC_CONFIG); goto req_complete; case USB_REQ_CLEAR_FEATURE: SETUP_DBG(udc, "ep0: CLEAR FEATURE\n"); goto req_driver; case USB_REQ_SET_FEATURE: SETUP_DBG(udc, "ep0: SET FEATURE\n"); goto req_driver; case USB_REQ_GET_STATUS: ast_udc_getstatus(udc); return; default: goto req_driver; } } req_driver: if (udc->driver) { SETUP_DBG(udc, "Forwarding %s to gadget...\n", udc->gadget.name); spin_unlock(&udc->lock); rc = udc->driver->setup(&udc->gadget, &crq); spin_lock(&udc->lock); } else { SETUP_DBG(udc, "No gadget for request !\n"); } if (rc >= 0) return; /* Stall if gadget failed */ SETUP_DBG(udc, "Stalling, rc:0x%x\n", rc); ast_udc_write(udc, ast_udc_read(udc, AST_UDC_EP0_CTRL) | EP0_STALL, AST_UDC_EP0_CTRL); return; req_complete: SETUP_DBG(udc, "ep0: Sending IN status without data\n"); ast_udc_write(udc, EP0_TX_BUFF_RDY, AST_UDC_EP0_CTRL); } static irqreturn_t ast_udc_isr(int irq, void *data) { struct ast_udc_dev *udc = (struct ast_udc_dev *)data; struct ast_udc_ep *ep; u32 isr, ep_isr; int i; spin_lock(&udc->lock); isr = ast_udc_read(udc, AST_UDC_ISR); if (!isr) goto done; /* Ack interrupts */ ast_udc_write(udc, isr, AST_UDC_ISR); if (isr & UDC_IRQ_BUS_RESET) { ISR_DBG(udc, "UDC_IRQ_BUS_RESET\n"); udc->gadget.speed = USB_SPEED_UNKNOWN; ep = &udc->ep[1]; EP_DBG(ep, "dctrl:0x%x\n", ast_ep_read(ep, AST_UDC_EP_DMA_CTRL)); if (udc->driver && udc->driver->reset) { spin_unlock(&udc->lock); udc->driver->reset(&udc->gadget); spin_lock(&udc->lock); } } if (isr & UDC_IRQ_BUS_SUSPEND) { ISR_DBG(udc, "UDC_IRQ_BUS_SUSPEND\n"); udc->suspended_from = udc->gadget.state; usb_gadget_set_state(&udc->gadget, USB_STATE_SUSPENDED); if (udc->driver && udc->driver->suspend) { spin_unlock(&udc->lock); udc->driver->suspend(&udc->gadget); spin_lock(&udc->lock); } } if (isr & UDC_IRQ_BUS_RESUME) { ISR_DBG(udc, "UDC_IRQ_BUS_RESUME\n"); usb_gadget_set_state(&udc->gadget, udc->suspended_from); if (udc->driver && udc->driver->resume) { spin_unlock(&udc->lock); udc->driver->resume(&udc->gadget); spin_lock(&udc->lock); } } if (isr & UDC_IRQ_EP0_IN_ACK_STALL) { ISR_DBG(udc, "UDC_IRQ_EP0_IN_ACK_STALL\n"); ast_udc_ep0_in(udc); } if (isr & UDC_IRQ_EP0_OUT_ACK_STALL) { ISR_DBG(udc, "UDC_IRQ_EP0_OUT_ACK_STALL\n"); ast_udc_ep0_out(udc); } if (isr & UDC_IRQ_EP0_SETUP) { ISR_DBG(udc, "UDC_IRQ_EP0_SETUP\n"); ast_udc_ep0_handle_setup(udc); } if (isr & UDC_IRQ_EP_POOL_ACK_STALL) { ISR_DBG(udc, "UDC_IRQ_EP_POOL_ACK_STALL\n"); ep_isr = ast_udc_read(udc, AST_UDC_EP_ACK_ISR); /* Ack EP interrupts */ ast_udc_write(udc, ep_isr, AST_UDC_EP_ACK_ISR); /* Handle each EP */ for (i = 0; i < AST_UDC_NUM_ENDPOINTS - 1; i++) { if (ep_isr & (0x1 << i)) { ep = &udc->ep[i + 1]; if (ep->desc_mode) ast_udc_epn_handle_desc(udc, i + 1); else ast_udc_epn_handle(udc, i + 1); } } } done: spin_unlock(&udc->lock); return IRQ_HANDLED; } static int ast_udc_gadget_getframe(struct usb_gadget *gadget) { struct ast_udc_dev *udc = to_ast_dev(gadget); return (ast_udc_read(udc, AST_UDC_STS) >> 16) & 0x7ff; } static void ast_udc_wake_work(struct work_struct *work) { struct ast_udc_dev *udc = container_of(work, struct ast_udc_dev, wake_work); unsigned long flags; u32 ctrl; spin_lock_irqsave(&udc->lock, flags); UDC_DBG(udc, "Wakeup Host !\n"); ctrl = ast_udc_read(udc, AST_UDC_FUNC_CTRL); ast_udc_write(udc, ctrl | USB_REMOTE_WAKEUP_EN, AST_UDC_FUNC_CTRL); spin_unlock_irqrestore(&udc->lock, flags); } static void ast_udc_wakeup_all(struct ast_udc_dev *udc) { /* * A device is trying to wake the world, because this * can recurse into the device, we break the call chain * using a work queue */ schedule_work(&udc->wake_work); } static int ast_udc_wakeup(struct usb_gadget *gadget) { struct ast_udc_dev *udc = to_ast_dev(gadget); unsigned long flags; int rc = 0; spin_lock_irqsave(&udc->lock, flags); if (!udc->wakeup_en) { UDC_DBG(udc, "Remote Wakeup is disabled\n"); rc = -EINVAL; goto err; } UDC_DBG(udc, "Device initiated wakeup\n"); ast_udc_wakeup_all(udc); err: spin_unlock_irqrestore(&udc->lock, flags); return rc; } /* * Activate/Deactivate link with host */ static int ast_udc_pullup(struct usb_gadget *gadget, int is_on) { struct ast_udc_dev *udc = to_ast_dev(gadget); unsigned long flags; u32 ctrl; spin_lock_irqsave(&udc->lock, flags); UDC_DBG(udc, "is_on: %d\n", is_on); if (is_on) ctrl = ast_udc_read(udc, AST_UDC_FUNC_CTRL) | USB_UPSTREAM_EN; else ctrl = ast_udc_read(udc, AST_UDC_FUNC_CTRL) & ~USB_UPSTREAM_EN; ast_udc_write(udc, ctrl, AST_UDC_FUNC_CTRL); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int ast_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct ast_udc_dev *udc = to_ast_dev(gadget); struct ast_udc_ep *ep; unsigned long flags; int i; spin_lock_irqsave(&udc->lock, flags); UDC_DBG(udc, "\n"); udc->driver = driver; udc->gadget.dev.of_node = udc->pdev->dev.of_node; for (i = 0; i < AST_UDC_NUM_ENDPOINTS; i++) { ep = &udc->ep[i]; ep->stopped = 0; } spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int ast_udc_stop(struct usb_gadget *gadget) { struct ast_udc_dev *udc = to_ast_dev(gadget); unsigned long flags; u32 ctrl; spin_lock_irqsave(&udc->lock, flags); UDC_DBG(udc, "\n"); ctrl = ast_udc_read(udc, AST_UDC_FUNC_CTRL) & ~USB_UPSTREAM_EN; ast_udc_write(udc, ctrl, AST_UDC_FUNC_CTRL); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->driver = NULL; ast_udc_stop_activity(udc); usb_gadget_set_state(&udc->gadget, USB_STATE_NOTATTACHED); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static const struct usb_gadget_ops ast_udc_ops = { .get_frame = ast_udc_gadget_getframe, .wakeup = ast_udc_wakeup, .pullup = ast_udc_pullup, .udc_start = ast_udc_start, .udc_stop = ast_udc_stop, }; /* * Support 1 Control Endpoint. * Support multiple programmable endpoints that can be configured to * Bulk IN/OUT, Interrupt IN/OUT, and Isochronous IN/OUT type endpoint. */ static void ast_udc_init_ep(struct ast_udc_dev *udc) { struct ast_udc_ep *ep; int i; for (i = 0; i < AST_UDC_NUM_ENDPOINTS; i++) { ep = &udc->ep[i]; ep->ep.name = ast_ep_name[i]; if (i == 0) { ep->ep.caps.type_control = true; } else { ep->ep.caps.type_iso = true; ep->ep.caps.type_bulk = true; ep->ep.caps.type_int = true; } ep->ep.caps.dir_in = true; ep->ep.caps.dir_out = true; ep->ep.ops = &ast_udc_ep_ops; ep->udc = udc; INIT_LIST_HEAD(&ep->queue); if (i == 0) { usb_ep_set_maxpacket_limit(&ep->ep, AST_UDC_EP0_MAX_PACKET); continue; } ep->ep_reg = udc->reg + AST_UDC_EP_BASE + (AST_UDC_EP_OFFSET * (i - 1)); ep->epn_buf = udc->ep0_buf + (i * AST_UDC_EP_DMA_SIZE); ep->epn_buf_dma = udc->ep0_buf_dma + (i * AST_UDC_EP_DMA_SIZE); usb_ep_set_maxpacket_limit(&ep->ep, AST_UDC_EPn_MAX_PACKET); ep->descs = ep->epn_buf + AST_UDC_EPn_MAX_PACKET; ep->descs_dma = ep->epn_buf_dma + AST_UDC_EPn_MAX_PACKET; ep->descs_wptr = 0; list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list); } } static void ast_udc_init_dev(struct ast_udc_dev *udc) { INIT_WORK(&udc->wake_work, ast_udc_wake_work); } static void ast_udc_init_hw(struct ast_udc_dev *udc) { u32 ctrl; /* Enable PHY */ ctrl = USB_PHY_CLK_EN | USB_PHY_RESET_DIS; ast_udc_write(udc, ctrl, AST_UDC_FUNC_CTRL); udelay(1); ast_udc_write(udc, 0, AST_UDC_DEV_RESET); /* Set descriptor ring size */ if (AST_UDC_DESCS_COUNT == 256) { ctrl |= USB_EP_LONG_DESC; ast_udc_write(udc, ctrl, AST_UDC_FUNC_CTRL); } /* Mask & ack all interrupts before installing the handler */ ast_udc_write(udc, 0, AST_UDC_IER); ast_udc_write(udc, UDC_IRQ_ACK_ALL, AST_UDC_ISR); /* Enable some interrupts */ ctrl = UDC_IRQ_EP_POOL_ACK_STALL | UDC_IRQ_BUS_RESUME | UDC_IRQ_BUS_SUSPEND | UDC_IRQ_BUS_RESET | UDC_IRQ_EP0_IN_ACK_STALL | UDC_IRQ_EP0_OUT_ACK_STALL | UDC_IRQ_EP0_SETUP; ast_udc_write(udc, ctrl, AST_UDC_IER); /* Cleanup and enable ep ACK interrupts */ ast_udc_write(udc, UDC_IRQ_EP_ACK_ALL, AST_UDC_EP_ACK_IER); ast_udc_write(udc, UDC_IRQ_EP_ACK_ALL, AST_UDC_EP_ACK_ISR); ast_udc_write(udc, 0, AST_UDC_EP0_CTRL); } static int ast_udc_remove(struct platform_device *pdev) { struct ast_udc_dev *udc = platform_get_drvdata(pdev); unsigned long flags; u32 ctrl; usb_del_gadget_udc(&udc->gadget); if (udc->driver) return -EBUSY; spin_lock_irqsave(&udc->lock, flags); /* Disable upstream port connection */ ctrl = ast_udc_read(udc, AST_UDC_FUNC_CTRL) & ~USB_UPSTREAM_EN; ast_udc_write(udc, ctrl, AST_UDC_FUNC_CTRL); clk_disable_unprepare(udc->clk); spin_unlock_irqrestore(&udc->lock, flags); if (udc->ep0_buf) dma_free_coherent(&pdev->dev, AST_UDC_EP_DMA_SIZE * AST_UDC_NUM_ENDPOINTS, udc->ep0_buf, udc->ep0_buf_dma); udc->ep0_buf = NULL; return 0; } static int ast_udc_probe(struct platform_device *pdev) { enum usb_device_speed max_speed; struct device *dev = &pdev->dev; struct ast_udc_dev *udc; struct resource *res; int rc; udc = devm_kzalloc(&pdev->dev, sizeof(struct ast_udc_dev), GFP_KERNEL); if (!udc) return -ENOMEM; udc->gadget.dev.parent = dev; udc->pdev = pdev; spin_lock_init(&udc->lock); udc->gadget.ops = &ast_udc_ops; udc->gadget.ep0 = &udc->ep[0].ep; udc->gadget.name = "aspeed-udc"; udc->gadget.dev.init_name = "gadget"; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); udc->reg = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(udc->reg)) { dev_err(&pdev->dev, "Failed to map resources\n"); return PTR_ERR(udc->reg); } platform_set_drvdata(pdev, udc); udc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(udc->clk)) { rc = PTR_ERR(udc->clk); goto err; } rc = clk_prepare_enable(udc->clk); if (rc) { dev_err(&pdev->dev, "Failed to enable clock (0x%x)\n", rc); goto err; } /* Check if we need to limit the HW to USB1 */ max_speed = usb_get_maximum_speed(&pdev->dev); if (max_speed != USB_SPEED_UNKNOWN && max_speed < USB_SPEED_HIGH) udc->force_usb1 = true; /* * Allocate DMA buffers for all EPs in one chunk */ udc->ep0_buf = dma_alloc_coherent(&pdev->dev, AST_UDC_EP_DMA_SIZE * AST_UDC_NUM_ENDPOINTS, &udc->ep0_buf_dma, GFP_KERNEL); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->gadget.max_speed = USB_SPEED_HIGH; udc->creq = udc->reg + AST_UDC_SETUP0; /* * Support single stage mode or 32/256 stages descriptor mode. * Set default as Descriptor Mode. */ udc->desc_mode = AST_UDC_DESC_MODE; dev_info(&pdev->dev, "DMA %s\n", udc->desc_mode ? "descriptor mode" : "single mode"); INIT_LIST_HEAD(&udc->gadget.ep_list); INIT_LIST_HEAD(&udc->gadget.ep0->ep_list); /* Initialized udc ep */ ast_udc_init_ep(udc); /* Initialized udc device */ ast_udc_init_dev(udc); /* Initialized udc hardware */ ast_udc_init_hw(udc); /* Find interrupt and install handler */ udc->irq = platform_get_irq(pdev, 0); if (udc->irq < 0) { rc = udc->irq; goto err; } rc = devm_request_irq(&pdev->dev, udc->irq, ast_udc_isr, 0, KBUILD_MODNAME, udc); if (rc) { dev_err(&pdev->dev, "Failed to request interrupt\n"); goto err; } rc = usb_add_gadget_udc(&pdev->dev, &udc->gadget); if (rc) { dev_err(&pdev->dev, "Failed to add gadget udc\n"); goto err; } dev_info(&pdev->dev, "Initialized udc in USB%s mode\n", udc->force_usb1 ? "1" : "2"); return 0; err: dev_err(&pdev->dev, "Failed to udc probe, rc:0x%x\n", rc); ast_udc_remove(pdev); return rc; } static const struct of_device_id ast_udc_of_dt_ids[] = { { .compatible = "aspeed,ast2600-udc", }, {} }; MODULE_DEVICE_TABLE(of, ast_udc_of_dt_ids); static struct platform_driver ast_udc_driver = { .probe = ast_udc_probe, .remove = ast_udc_remove, .driver = { .name = KBUILD_MODNAME, .of_match_table = ast_udc_of_dt_ids, }, }; module_platform_driver(ast_udc_driver); MODULE_DESCRIPTION("ASPEED UDC driver"); MODULE_AUTHOR("Neal Liu <neal_liu@aspeedtech.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1