Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 1253 | 57.66% | 29 | 69.05% |
Russell King | 350 | 16.11% | 2 | 4.76% |
Linus Torvalds | 202 | 9.30% | 2 | 4.76% |
Al Viro | 154 | 7.09% | 4 | 9.52% |
Alexey Dobriyan | 142 | 6.53% | 1 | 2.38% |
Denver Gingerich | 42 | 1.93% | 1 | 2.38% |
Tejun Heo | 23 | 1.06% | 1 | 2.38% |
Christoph Hellwig | 7 | 0.32% | 2 | 4.76% |
Total | 2173 | 42 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 1996-2000 Russell King. * * Scan ADFS partitions on hard disk drives. Unfortunately, there * isn't a standard for partitioning drives on Acorn machines, so * every single manufacturer of SCSI and IDE cards created their own * method. */ #include <linux/buffer_head.h> #include <linux/adfs_fs.h> #include "check.h" /* * Partition types. (Oh for reusability) */ #define PARTITION_RISCIX_MFM 1 #define PARTITION_RISCIX_SCSI 2 #define PARTITION_LINUX 9 #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ defined(CONFIG_ACORN_PARTITION_ADFS) static struct adfs_discrecord * adfs_partition(struct parsed_partitions *state, char *name, char *data, unsigned long first_sector, int slot) { struct adfs_discrecord *dr; unsigned int nr_sects; if (adfs_checkbblk(data)) return NULL; dr = (struct adfs_discrecord *)(data + 0x1c0); if (dr->disc_size == 0 && dr->disc_size_high == 0) return NULL; nr_sects = (le32_to_cpu(dr->disc_size_high) << 23) | (le32_to_cpu(dr->disc_size) >> 9); if (name) { strlcat(state->pp_buf, " [", PAGE_SIZE); strlcat(state->pp_buf, name, PAGE_SIZE); strlcat(state->pp_buf, "]", PAGE_SIZE); } put_partition(state, slot, first_sector, nr_sects); return dr; } #endif #ifdef CONFIG_ACORN_PARTITION_RISCIX struct riscix_part { __le32 start; __le32 length; __le32 one; char name[16]; }; struct riscix_record { __le32 magic; #define RISCIX_MAGIC cpu_to_le32(0x4a657320) __le32 date; struct riscix_part part[8]; }; #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ defined(CONFIG_ACORN_PARTITION_ADFS) static int riscix_partition(struct parsed_partitions *state, unsigned long first_sect, int slot, unsigned long nr_sects) { Sector sect; struct riscix_record *rr; rr = read_part_sector(state, first_sect, §); if (!rr) return -1; strlcat(state->pp_buf, " [RISCiX]", PAGE_SIZE); if (rr->magic == RISCIX_MAGIC) { unsigned long size = nr_sects > 2 ? 2 : nr_sects; int part; strlcat(state->pp_buf, " <", PAGE_SIZE); put_partition(state, slot++, first_sect, size); for (part = 0; part < 8; part++) { if (rr->part[part].one && memcmp(rr->part[part].name, "All\0", 4)) { put_partition(state, slot++, le32_to_cpu(rr->part[part].start), le32_to_cpu(rr->part[part].length)); strlcat(state->pp_buf, "(", PAGE_SIZE); strlcat(state->pp_buf, rr->part[part].name, PAGE_SIZE); strlcat(state->pp_buf, ")", PAGE_SIZE); } } strlcat(state->pp_buf, " >\n", PAGE_SIZE); } else { put_partition(state, slot++, first_sect, nr_sects); } put_dev_sector(sect); return slot; } #endif #endif #define LINUX_NATIVE_MAGIC 0xdeafa1de #define LINUX_SWAP_MAGIC 0xdeafab1e struct linux_part { __le32 magic; __le32 start_sect; __le32 nr_sects; }; #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ defined(CONFIG_ACORN_PARTITION_ADFS) static int linux_partition(struct parsed_partitions *state, unsigned long first_sect, int slot, unsigned long nr_sects) { Sector sect; struct linux_part *linuxp; unsigned long size = nr_sects > 2 ? 2 : nr_sects; strlcat(state->pp_buf, " [Linux]", PAGE_SIZE); put_partition(state, slot++, first_sect, size); linuxp = read_part_sector(state, first_sect, §); if (!linuxp) return -1; strlcat(state->pp_buf, " <", PAGE_SIZE); while (linuxp->magic == cpu_to_le32(LINUX_NATIVE_MAGIC) || linuxp->magic == cpu_to_le32(LINUX_SWAP_MAGIC)) { if (slot == state->limit) break; put_partition(state, slot++, first_sect + le32_to_cpu(linuxp->start_sect), le32_to_cpu(linuxp->nr_sects)); linuxp ++; } strlcat(state->pp_buf, " >", PAGE_SIZE); put_dev_sector(sect); return slot; } #endif #ifdef CONFIG_ACORN_PARTITION_CUMANA int adfspart_check_CUMANA(struct parsed_partitions *state) { unsigned long first_sector = 0; unsigned int start_blk = 0; Sector sect; unsigned char *data; char *name = "CUMANA/ADFS"; int first = 1; int slot = 1; /* * Try Cumana style partitions - sector 6 contains ADFS boot block * with pointer to next 'drive'. * * There are unknowns in this code - is the 'cylinder number' of the * next partition relative to the start of this one - I'm assuming * it is. * * Also, which ID did Cumana use? * * This is totally unfinished, and will require more work to get it * going. Hence it is totally untested. */ do { struct adfs_discrecord *dr; unsigned int nr_sects; data = read_part_sector(state, start_blk * 2 + 6, §); if (!data) return -1; if (slot == state->limit) break; dr = adfs_partition(state, name, data, first_sector, slot++); if (!dr) break; name = NULL; nr_sects = (data[0x1fd] + (data[0x1fe] << 8)) * (dr->heads + (dr->lowsector & 0x40 ? 1 : 0)) * dr->secspertrack; if (!nr_sects) break; first = 0; first_sector += nr_sects; start_blk += nr_sects >> (BLOCK_SIZE_BITS - 9); nr_sects = 0; /* hmm - should be partition size */ switch (data[0x1fc] & 15) { case 0: /* No partition / ADFS? */ break; #ifdef CONFIG_ACORN_PARTITION_RISCIX case PARTITION_RISCIX_SCSI: /* RISCiX - we don't know how to find the next one. */ slot = riscix_partition(state, first_sector, slot, nr_sects); break; #endif case PARTITION_LINUX: slot = linux_partition(state, first_sector, slot, nr_sects); break; } put_dev_sector(sect); if (slot == -1) return -1; } while (1); put_dev_sector(sect); return first ? 0 : 1; } #endif #ifdef CONFIG_ACORN_PARTITION_ADFS /* * Purpose: allocate ADFS partitions. * * Params : hd - pointer to gendisk structure to store partition info. * dev - device number to access. * * Returns: -1 on error, 0 for no ADFS boot sector, 1 for ok. * * Alloc : hda = whole drive * hda1 = ADFS partition on first drive. * hda2 = non-ADFS partition. */ int adfspart_check_ADFS(struct parsed_partitions *state) { unsigned long start_sect, nr_sects, sectscyl, heads; Sector sect; unsigned char *data; struct adfs_discrecord *dr; unsigned char id; int slot = 1; data = read_part_sector(state, 6, §); if (!data) return -1; dr = adfs_partition(state, "ADFS", data, 0, slot++); if (!dr) { put_dev_sector(sect); return 0; } heads = dr->heads + ((dr->lowsector >> 6) & 1); sectscyl = dr->secspertrack * heads; start_sect = ((data[0x1fe] << 8) + data[0x1fd]) * sectscyl; id = data[0x1fc] & 15; put_dev_sector(sect); /* * Work out start of non-adfs partition. */ nr_sects = get_capacity(state->disk) - start_sect; if (start_sect) { switch (id) { #ifdef CONFIG_ACORN_PARTITION_RISCIX case PARTITION_RISCIX_SCSI: case PARTITION_RISCIX_MFM: riscix_partition(state, start_sect, slot, nr_sects); break; #endif case PARTITION_LINUX: linux_partition(state, start_sect, slot, nr_sects); break; } } strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; } #endif #ifdef CONFIG_ACORN_PARTITION_ICS struct ics_part { __le32 start; __le32 size; }; static int adfspart_check_ICSLinux(struct parsed_partitions *state, unsigned long block) { Sector sect; unsigned char *data = read_part_sector(state, block, §); int result = 0; if (data) { if (memcmp(data, "LinuxPart", 9) == 0) result = 1; put_dev_sector(sect); } return result; } /* * Check for a valid ICS partition using the checksum. */ static inline int valid_ics_sector(const unsigned char *data) { unsigned long sum; int i; for (i = 0, sum = 0x50617274; i < 508; i++) sum += data[i]; sum -= le32_to_cpu(*(__le32 *)(&data[508])); return sum == 0; } /* * Purpose: allocate ICS partitions. * Params : hd - pointer to gendisk structure to store partition info. * dev - device number to access. * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. * Alloc : hda = whole drive * hda1 = ADFS partition 0 on first drive. * hda2 = ADFS partition 1 on first drive. * ..etc.. */ int adfspart_check_ICS(struct parsed_partitions *state) { const unsigned char *data; const struct ics_part *p; int slot; Sector sect; /* * Try ICS style partitions - sector 0 contains partition info. */ data = read_part_sector(state, 0, §); if (!data) return -1; if (!valid_ics_sector(data)) { put_dev_sector(sect); return 0; } strlcat(state->pp_buf, " [ICS]", PAGE_SIZE); for (slot = 1, p = (const struct ics_part *)data; p->size; p++) { u32 start = le32_to_cpu(p->start); s32 size = le32_to_cpu(p->size); /* yes, it's signed. */ if (slot == state->limit) break; /* * Negative sizes tell the RISC OS ICS driver to ignore * this partition - in effect it says that this does not * contain an ADFS filesystem. */ if (size < 0) { size = -size; /* * Our own extension - We use the first sector * of the partition to identify what type this * partition is. We must not make this visible * to the filesystem. */ if (size > 1 && adfspart_check_ICSLinux(state, start)) { start += 1; size -= 1; } } if (size) put_partition(state, slot++, start, size); } put_dev_sector(sect); strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; } #endif #ifdef CONFIG_ACORN_PARTITION_POWERTEC struct ptec_part { __le32 unused1; __le32 unused2; __le32 start; __le32 size; __le32 unused5; char type[8]; }; static inline int valid_ptec_sector(const unsigned char *data) { unsigned char checksum = 0x2a; int i; /* * If it looks like a PC/BIOS partition, then it * probably isn't PowerTec. */ if (data[510] == 0x55 && data[511] == 0xaa) return 0; for (i = 0; i < 511; i++) checksum += data[i]; return checksum == data[511]; } /* * Purpose: allocate ICS partitions. * Params : hd - pointer to gendisk structure to store partition info. * dev - device number to access. * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. * Alloc : hda = whole drive * hda1 = ADFS partition 0 on first drive. * hda2 = ADFS partition 1 on first drive. * ..etc.. */ int adfspart_check_POWERTEC(struct parsed_partitions *state) { Sector sect; const unsigned char *data; const struct ptec_part *p; int slot = 1; int i; data = read_part_sector(state, 0, §); if (!data) return -1; if (!valid_ptec_sector(data)) { put_dev_sector(sect); return 0; } strlcat(state->pp_buf, " [POWERTEC]", PAGE_SIZE); for (i = 0, p = (const struct ptec_part *)data; i < 12; i++, p++) { u32 start = le32_to_cpu(p->start); u32 size = le32_to_cpu(p->size); if (size) put_partition(state, slot++, start, size); } put_dev_sector(sect); strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; } #endif #ifdef CONFIG_ACORN_PARTITION_EESOX struct eesox_part { char magic[6]; char name[10]; __le32 start; __le32 unused6; __le32 unused7; __le32 unused8; }; /* * Guess who created this format? */ static const char eesox_name[] = { 'N', 'e', 'i', 'l', ' ', 'C', 'r', 'i', 't', 'c', 'h', 'e', 'l', 'l', ' ', ' ' }; /* * EESOX SCSI partition format. * * This is a goddamned awful partition format. We don't seem to store * the size of the partition in this table, only the start addresses. * * There are two possibilities where the size comes from: * 1. The individual ADFS boot block entries that are placed on the disk. * 2. The start address of the next entry. */ int adfspart_check_EESOX(struct parsed_partitions *state) { Sector sect; const unsigned char *data; unsigned char buffer[256]; struct eesox_part *p; sector_t start = 0; int i, slot = 1; data = read_part_sector(state, 7, §); if (!data) return -1; /* * "Decrypt" the partition table. God knows why... */ for (i = 0; i < 256; i++) buffer[i] = data[i] ^ eesox_name[i & 15]; put_dev_sector(sect); for (i = 0, p = (struct eesox_part *)buffer; i < 8; i++, p++) { sector_t next; if (memcmp(p->magic, "Eesox", 6)) break; next = le32_to_cpu(p->start); if (i) put_partition(state, slot++, start, next - start); start = next; } if (i != 0) { sector_t size; size = get_capacity(state->disk); put_partition(state, slot++, start, size - start); strlcat(state->pp_buf, "\n", PAGE_SIZE); } return i ? 1 : 0; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1