Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacek Lawrynowicz | 4596 | 97.87% | 5 | 50.00% |
Stanislaw Gruszka | 98 | 2.09% | 4 | 40.00% |
Colin Ian King | 2 | 0.04% | 1 | 10.00% |
Total | 4696 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020-2023 Intel Corporation */ #include "ivpu_drv.h" #include "ivpu_fw.h" #include "ivpu_hw_mtl_reg.h" #include "ivpu_hw_reg_io.h" #include "ivpu_hw.h" #include "ivpu_ipc.h" #include "ivpu_mmu.h" #include "ivpu_pm.h" #define TILE_FUSE_ENABLE_BOTH 0x0 #define TILE_SKU_BOTH_MTL 0x3630 /* Work point configuration values */ #define CONFIG_1_TILE 0x01 #define CONFIG_2_TILE 0x02 #define PLL_RATIO_5_3 0x01 #define PLL_RATIO_4_3 0x02 #define WP_CONFIG(tile, ratio) (((tile) << 8) | (ratio)) #define WP_CONFIG_1_TILE_5_3_RATIO WP_CONFIG(CONFIG_1_TILE, PLL_RATIO_5_3) #define WP_CONFIG_1_TILE_4_3_RATIO WP_CONFIG(CONFIG_1_TILE, PLL_RATIO_4_3) #define WP_CONFIG_2_TILE_5_3_RATIO WP_CONFIG(CONFIG_2_TILE, PLL_RATIO_5_3) #define WP_CONFIG_2_TILE_4_3_RATIO WP_CONFIG(CONFIG_2_TILE, PLL_RATIO_4_3) #define WP_CONFIG_0_TILE_PLL_OFF WP_CONFIG(0, 0) #define PLL_REF_CLK_FREQ (50 * 1000000) #define PLL_SIMULATION_FREQ (10 * 1000000) #define PLL_DEFAULT_EPP_VALUE 0x80 #define TIM_SAFE_ENABLE 0xf1d0dead #define TIM_WATCHDOG_RESET_VALUE 0xffffffff #define TIMEOUT_US (150 * USEC_PER_MSEC) #define PWR_ISLAND_STATUS_TIMEOUT_US (5 * USEC_PER_MSEC) #define PLL_TIMEOUT_US (1500 * USEC_PER_MSEC) #define IDLE_TIMEOUT_US (500 * USEC_PER_MSEC) #define ICB_0_IRQ_MASK ((REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, HOST_IPC_FIFO_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_0_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_1_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_2_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT))) #define ICB_1_IRQ_MASK ((REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_2_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_3_INT)) | \ (REG_FLD(MTL_VPU_HOST_SS_ICB_STATUS_1, CPU_INT_REDIRECT_4_INT))) #define ICB_0_1_IRQ_MASK ((((u64)ICB_1_IRQ_MASK) << 32) | ICB_0_IRQ_MASK) #define BUTTRESS_IRQ_MASK ((REG_FLD(MTL_BUTTRESS_INTERRUPT_STAT, FREQ_CHANGE)) | \ (REG_FLD(MTL_BUTTRESS_INTERRUPT_STAT, ATS_ERR)) | \ (REG_FLD(MTL_BUTTRESS_INTERRUPT_STAT, UFI_ERR))) #define BUTTRESS_IRQ_ENABLE_MASK ((u32)~BUTTRESS_IRQ_MASK) #define BUTTRESS_IRQ_DISABLE_MASK ((u32)-1) #define ITF_FIREWALL_VIOLATION_MASK ((REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, CSS_ROM_CMX)) | \ (REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, CSS_DBG)) | \ (REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, CSS_CTRL)) | \ (REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, DEC400)) | \ (REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, MSS_NCE)) | \ (REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, MSS_MBI)) | \ (REG_FLD(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, MSS_MBI_CMX))) static char *ivpu_platform_to_str(u32 platform) { switch (platform) { case IVPU_PLATFORM_SILICON: return "IVPU_PLATFORM_SILICON"; case IVPU_PLATFORM_SIMICS: return "IVPU_PLATFORM_SIMICS"; case IVPU_PLATFORM_FPGA: return "IVPU_PLATFORM_FPGA"; default: return "Invalid platform"; } } static void ivpu_hw_read_platform(struct ivpu_device *vdev) { u32 gen_ctrl = REGV_RD32(MTL_VPU_HOST_SS_GEN_CTRL); u32 platform = REG_GET_FLD(MTL_VPU_HOST_SS_GEN_CTRL, PS, gen_ctrl); if (platform == IVPU_PLATFORM_SIMICS || platform == IVPU_PLATFORM_FPGA) vdev->platform = platform; else vdev->platform = IVPU_PLATFORM_SILICON; ivpu_dbg(vdev, MISC, "Platform type: %s (%d)\n", ivpu_platform_to_str(vdev->platform), vdev->platform); } static void ivpu_hw_wa_init(struct ivpu_device *vdev) { vdev->wa.punit_disabled = ivpu_is_fpga(vdev); vdev->wa.clear_runtime_mem = false; vdev->wa.d3hot_after_power_off = true; } static void ivpu_hw_timeouts_init(struct ivpu_device *vdev) { if (ivpu_is_simics(vdev) || ivpu_is_fpga(vdev)) { vdev->timeout.boot = 100000; vdev->timeout.jsm = 50000; vdev->timeout.tdr = 2000000; vdev->timeout.reschedule_suspend = 1000; } else { vdev->timeout.boot = 1000; vdev->timeout.jsm = 500; vdev->timeout.tdr = 2000; vdev->timeout.reschedule_suspend = 10; } } static int ivpu_pll_wait_for_cmd_send(struct ivpu_device *vdev) { return REGB_POLL_FLD(MTL_BUTTRESS_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US); } /* Send KMD initiated workpoint change */ static int ivpu_pll_cmd_send(struct ivpu_device *vdev, u16 min_ratio, u16 max_ratio, u16 target_ratio, u16 config) { int ret; u32 val; ret = ivpu_pll_wait_for_cmd_send(vdev); if (ret) { ivpu_err(vdev, "Failed to sync before WP request: %d\n", ret); return ret; } val = REGB_RD32(MTL_BUTTRESS_WP_REQ_PAYLOAD0); val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD0, MIN_RATIO, min_ratio, val); val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD0, MAX_RATIO, max_ratio, val); REGB_WR32(MTL_BUTTRESS_WP_REQ_PAYLOAD0, val); val = REGB_RD32(MTL_BUTTRESS_WP_REQ_PAYLOAD1); val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD1, TARGET_RATIO, target_ratio, val); val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD1, EPP, PLL_DEFAULT_EPP_VALUE, val); REGB_WR32(MTL_BUTTRESS_WP_REQ_PAYLOAD1, val); val = REGB_RD32(MTL_BUTTRESS_WP_REQ_PAYLOAD2); val = REG_SET_FLD_NUM(MTL_BUTTRESS_WP_REQ_PAYLOAD2, CONFIG, config, val); REGB_WR32(MTL_BUTTRESS_WP_REQ_PAYLOAD2, val); val = REGB_RD32(MTL_BUTTRESS_WP_REQ_CMD); val = REG_SET_FLD(MTL_BUTTRESS_WP_REQ_CMD, SEND, val); REGB_WR32(MTL_BUTTRESS_WP_REQ_CMD, val); ret = ivpu_pll_wait_for_cmd_send(vdev); if (ret) ivpu_err(vdev, "Failed to sync after WP request: %d\n", ret); return ret; } static int ivpu_pll_wait_for_lock(struct ivpu_device *vdev, bool enable) { u32 exp_val = enable ? 0x1 : 0x0; if (IVPU_WA(punit_disabled)) return 0; return REGB_POLL_FLD(MTL_BUTTRESS_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US); } static int ivpu_pll_wait_for_status_ready(struct ivpu_device *vdev) { if (IVPU_WA(punit_disabled)) return 0; return REGB_POLL_FLD(MTL_BUTTRESS_VPU_STATUS, READY, 1, PLL_TIMEOUT_US); } static void ivpu_pll_init_frequency_ratios(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; u8 fuse_min_ratio, fuse_max_ratio, fuse_pn_ratio; u32 fmin_fuse, fmax_fuse; fmin_fuse = REGB_RD32(MTL_BUTTRESS_FMIN_FUSE); fuse_min_ratio = REG_GET_FLD(MTL_BUTTRESS_FMIN_FUSE, MIN_RATIO, fmin_fuse); fuse_pn_ratio = REG_GET_FLD(MTL_BUTTRESS_FMIN_FUSE, PN_RATIO, fmin_fuse); fmax_fuse = REGB_RD32(MTL_BUTTRESS_FMAX_FUSE); fuse_max_ratio = REG_GET_FLD(MTL_BUTTRESS_FMAX_FUSE, MAX_RATIO, fmax_fuse); hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, fuse_min_ratio, fuse_max_ratio); hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, fuse_max_ratio); hw->pll.pn_ratio = clamp_t(u8, fuse_pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio); } static int ivpu_pll_drive(struct ivpu_device *vdev, bool enable) { struct ivpu_hw_info *hw = vdev->hw; u16 target_ratio; u16 config; int ret; if (IVPU_WA(punit_disabled)) { ivpu_dbg(vdev, PM, "Skipping PLL request on %s\n", ivpu_platform_to_str(vdev->platform)); return 0; } if (enable) { target_ratio = hw->pll.pn_ratio; config = hw->config; } else { target_ratio = 0; config = 0; } ivpu_dbg(vdev, PM, "PLL workpoint request: config 0x%04x pll ratio 0x%x\n", config, target_ratio); ret = ivpu_pll_cmd_send(vdev, hw->pll.min_ratio, hw->pll.max_ratio, target_ratio, config); if (ret) { ivpu_err(vdev, "Failed to send PLL workpoint request: %d\n", ret); return ret; } ret = ivpu_pll_wait_for_lock(vdev, enable); if (ret) { ivpu_err(vdev, "Timed out waiting for PLL lock\n"); return ret; } if (enable) { ret = ivpu_pll_wait_for_status_ready(vdev); if (ret) { ivpu_err(vdev, "Timed out waiting for PLL ready status\n"); return ret; } } return 0; } static int ivpu_pll_enable(struct ivpu_device *vdev) { return ivpu_pll_drive(vdev, true); } static int ivpu_pll_disable(struct ivpu_device *vdev) { return ivpu_pll_drive(vdev, false); } static void ivpu_boot_host_ss_rst_clr_assert(struct ivpu_device *vdev) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_CPR_RST_CLR); val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_CLR, TOP_NOC, val); val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_CLR, DSS_MAS, val); val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_CLR, MSS_MAS, val); REGV_WR32(MTL_VPU_HOST_SS_CPR_RST_CLR, val); } static void ivpu_boot_host_ss_rst_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_CPR_RST_SET); if (enable) { val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, TOP_NOC, val); val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, DSS_MAS, val); val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, MSS_MAS, val); } else { val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, TOP_NOC, val); val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, DSS_MAS, val); val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_RST_SET, MSS_MAS, val); } REGV_WR32(MTL_VPU_HOST_SS_CPR_RST_SET, val); } static void ivpu_boot_host_ss_clk_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_CPR_CLK_SET); if (enable) { val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, TOP_NOC, val); val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, DSS_MAS, val); val = REG_SET_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, MSS_MAS, val); } else { val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, TOP_NOC, val); val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, DSS_MAS, val); val = REG_CLR_FLD(MTL_VPU_HOST_SS_CPR_CLK_SET, MSS_MAS, val); } REGV_WR32(MTL_VPU_HOST_SS_CPR_CLK_SET, val); } static int ivpu_boot_noc_qreqn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QREQN); if (!REG_TEST_FLD_NUM(MTL_VPU_HOST_SS_NOC_QREQN, TOP_SOCMMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_noc_qacceptn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QACCEPTN); if (!REG_TEST_FLD_NUM(MTL_VPU_HOST_SS_NOC_QACCEPTN, TOP_SOCMMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_noc_qdeny_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QDENY); if (!REG_TEST_FLD_NUM(MTL_VPU_HOST_SS_NOC_QDENY, TOP_SOCMMIO, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_top_noc_qrenqn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(MTL_VPU_TOP_NOC_QREQN); if (!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QREQN, CPU_CTRL, exp_val, val) || !REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QREQN, HOSTIF_L2CACHE, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_top_noc_qacceptn_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(MTL_VPU_TOP_NOC_QACCEPTN); if (!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QACCEPTN, CPU_CTRL, exp_val, val) || !REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QACCEPTN, HOSTIF_L2CACHE, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_top_noc_qdeny_check(struct ivpu_device *vdev, u32 exp_val) { u32 val = REGV_RD32(MTL_VPU_TOP_NOC_QDENY); if (!REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QDENY, CPU_CTRL, exp_val, val) || !REG_TEST_FLD_NUM(MTL_VPU_TOP_NOC_QDENY, HOSTIF_L2CACHE, exp_val, val)) return -EIO; return 0; } static int ivpu_boot_host_ss_configure(struct ivpu_device *vdev) { ivpu_boot_host_ss_rst_clr_assert(vdev); return ivpu_boot_noc_qreqn_check(vdev, 0x0); } static void ivpu_boot_vpu_idle_gen_disable(struct ivpu_device *vdev) { REGV_WR32(MTL_VPU_HOST_SS_AON_VPU_IDLE_GEN, 0x0); } static int ivpu_boot_host_ss_axi_drive(struct ivpu_device *vdev, bool enable) { int ret; u32 val; val = REGV_RD32(MTL_VPU_HOST_SS_NOC_QREQN); if (enable) val = REG_SET_FLD(MTL_VPU_HOST_SS_NOC_QREQN, TOP_SOCMMIO, val); else val = REG_CLR_FLD(MTL_VPU_HOST_SS_NOC_QREQN, TOP_SOCMMIO, val); REGV_WR32(MTL_VPU_HOST_SS_NOC_QREQN, val); ret = ivpu_boot_noc_qacceptn_check(vdev, enable ? 0x1 : 0x0); if (ret) { ivpu_err(vdev, "Failed qacceptn check: %d\n", ret); return ret; } ret = ivpu_boot_noc_qdeny_check(vdev, 0x0); if (ret) ivpu_err(vdev, "Failed qdeny check: %d\n", ret); return ret; } static int ivpu_boot_host_ss_axi_enable(struct ivpu_device *vdev) { return ivpu_boot_host_ss_axi_drive(vdev, true); } static int ivpu_boot_host_ss_top_noc_drive(struct ivpu_device *vdev, bool enable) { int ret; u32 val; val = REGV_RD32(MTL_VPU_TOP_NOC_QREQN); if (enable) { val = REG_SET_FLD(MTL_VPU_TOP_NOC_QREQN, CPU_CTRL, val); val = REG_SET_FLD(MTL_VPU_TOP_NOC_QREQN, HOSTIF_L2CACHE, val); } else { val = REG_CLR_FLD(MTL_VPU_TOP_NOC_QREQN, CPU_CTRL, val); val = REG_CLR_FLD(MTL_VPU_TOP_NOC_QREQN, HOSTIF_L2CACHE, val); } REGV_WR32(MTL_VPU_TOP_NOC_QREQN, val); ret = ivpu_boot_top_noc_qacceptn_check(vdev, enable ? 0x1 : 0x0); if (ret) { ivpu_err(vdev, "Failed qacceptn check: %d\n", ret); return ret; } ret = ivpu_boot_top_noc_qdeny_check(vdev, 0x0); if (ret) ivpu_err(vdev, "Failed qdeny check: %d\n", ret); return ret; } static int ivpu_boot_host_ss_top_noc_enable(struct ivpu_device *vdev) { return ivpu_boot_host_ss_top_noc_drive(vdev, true); } static void ivpu_boot_pwr_island_trickle_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0); if (enable) val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, MSS_CPU, val); else val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, MSS_CPU, val); REGV_WR32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_TRICKLE_EN0, val); } static void ivpu_boot_pwr_island_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0); if (enable) val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0, MSS_CPU, val); else val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0, MSS_CPU, val); REGV_WR32(MTL_VPU_HOST_SS_AON_PWR_ISLAND_EN0, val); } static int ivpu_boot_wait_for_pwr_island_status(struct ivpu_device *vdev, u32 exp_val) { /* FPGA model (UPF) is not power aware, skipped Power Island polling */ if (ivpu_is_fpga(vdev)) return 0; return REGV_POLL_FLD(MTL_VPU_HOST_SS_AON_PWR_ISLAND_STATUS0, MSS_CPU, exp_val, PWR_ISLAND_STATUS_TIMEOUT_US); } static void ivpu_boot_pwr_island_isolation_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0); if (enable) val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0, MSS_CPU, val); else val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0, MSS_CPU, val); REGV_WR32(MTL_VPU_HOST_SS_AON_PWR_ISO_EN0, val); } static void ivpu_boot_dpu_active_drive(struct ivpu_device *vdev, bool enable) { u32 val = REGV_RD32(MTL_VPU_HOST_SS_AON_DPU_ACTIVE); if (enable) val = REG_SET_FLD(MTL_VPU_HOST_SS_AON_DPU_ACTIVE, DPU_ACTIVE, val); else val = REG_CLR_FLD(MTL_VPU_HOST_SS_AON_DPU_ACTIVE, DPU_ACTIVE, val); REGV_WR32(MTL_VPU_HOST_SS_AON_DPU_ACTIVE, val); } static int ivpu_boot_pwr_domain_enable(struct ivpu_device *vdev) { int ret; ivpu_boot_pwr_island_trickle_drive(vdev, true); ivpu_boot_pwr_island_drive(vdev, true); ret = ivpu_boot_wait_for_pwr_island_status(vdev, 0x1); if (ret) { ivpu_err(vdev, "Timed out waiting for power island status\n"); return ret; } ret = ivpu_boot_top_noc_qrenqn_check(vdev, 0x0); if (ret) { ivpu_err(vdev, "Failed qrenqn check %d\n", ret); return ret; } ivpu_boot_host_ss_clk_drive(vdev, true); ivpu_boot_pwr_island_isolation_drive(vdev, false); ivpu_boot_host_ss_rst_drive(vdev, true); ivpu_boot_dpu_active_drive(vdev, true); return ret; } static void ivpu_boot_no_snoop_enable(struct ivpu_device *vdev) { u32 val = REGV_RD32(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES); val = REG_SET_FLD(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, NOSNOOP_OVERRIDE_EN, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, AW_NOSNOOP_OVERRIDE, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, AR_NOSNOOP_OVERRIDE, val); REGV_WR32(MTL_VPU_HOST_IF_TCU_PTW_OVERRIDES, val); } static void ivpu_boot_tbu_mmu_enable(struct ivpu_device *vdev) { u32 val = REGV_RD32(MTL_VPU_HOST_IF_TBU_MMUSSIDV); if (ivpu_is_fpga(vdev)) { val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_AWMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_ARMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_AWMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_ARMMUSSIDV, val); } else { val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_AWMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU0_ARMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU1_AWMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU1_ARMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_AWMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU2_ARMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU3_AWMMUSSIDV, val); val = REG_SET_FLD(MTL_VPU_HOST_IF_TBU_MMUSSIDV, TBU3_ARMMUSSIDV, val); } REGV_WR32(MTL_VPU_HOST_IF_TBU_MMUSSIDV, val); } static void ivpu_boot_soc_cpu_boot(struct ivpu_device *vdev) { u32 val; val = REGV_RD32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC); val = REG_SET_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RSTRUN0, val); val = REG_CLR_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RSTVEC, val); REGV_WR32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, val); val = REG_SET_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RESUME0, val); REGV_WR32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, val); val = REG_CLR_FLD(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, IRQI_RESUME0, val); REGV_WR32(MTL_VPU_CPU_SS_MSSCPU_CPR_LEON_RT_VEC, val); val = vdev->fw->entry_point >> 9; REGV_WR32(MTL_VPU_HOST_SS_LOADING_ADDRESS_LO, val); val = REG_SET_FLD(MTL_VPU_HOST_SS_LOADING_ADDRESS_LO, DONE, val); REGV_WR32(MTL_VPU_HOST_SS_LOADING_ADDRESS_LO, val); ivpu_dbg(vdev, PM, "Booting firmware, mode: %s\n", vdev->fw->entry_point == vdev->fw->cold_boot_entry_point ? "cold boot" : "resume"); } static int ivpu_boot_d0i3_drive(struct ivpu_device *vdev, bool enable) { int ret; u32 val; ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret); return ret; } val = REGB_RD32(MTL_BUTTRESS_VPU_D0I3_CONTROL); if (enable) val = REG_SET_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, I3, val); else val = REG_CLR_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, I3, val); REGB_WR32(MTL_BUTTRESS_VPU_D0I3_CONTROL, val); ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US); if (ret) ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret); return ret; } static int ivpu_hw_mtl_info_init(struct ivpu_device *vdev) { struct ivpu_hw_info *hw = vdev->hw; hw->tile_fuse = TILE_FUSE_ENABLE_BOTH; hw->sku = TILE_SKU_BOTH_MTL; hw->config = WP_CONFIG_2_TILE_4_3_RATIO; ivpu_pll_init_frequency_ratios(vdev); ivpu_hw_init_range(&hw->ranges.global_low, 0x80000000, SZ_512M); ivpu_hw_init_range(&hw->ranges.global_high, 0x180000000, SZ_2M); ivpu_hw_init_range(&hw->ranges.user_low, 0xc0000000, 255 * SZ_1M); ivpu_hw_init_range(&hw->ranges.user_high, 0x180000000, SZ_2G); hw->ranges.global_aliased_pio = hw->ranges.user_low; return 0; } static int ivpu_hw_mtl_reset(struct ivpu_device *vdev) { int ret; u32 val; if (IVPU_WA(punit_disabled)) return 0; ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) { ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n"); return ret; } val = REGB_RD32(MTL_BUTTRESS_VPU_IP_RESET); val = REG_SET_FLD(MTL_BUTTRESS_VPU_IP_RESET, TRIGGER, val); REGB_WR32(MTL_BUTTRESS_VPU_IP_RESET, val); ret = REGB_POLL_FLD(MTL_BUTTRESS_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US); if (ret) ivpu_err(vdev, "Timed out waiting for RESET completion\n"); return ret; } static int ivpu_hw_mtl_d0i3_enable(struct ivpu_device *vdev) { int ret; ret = ivpu_boot_d0i3_drive(vdev, true); if (ret) ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret); udelay(5); /* VPU requires 5 us to complete the transition */ return ret; } static int ivpu_hw_mtl_d0i3_disable(struct ivpu_device *vdev) { int ret; ret = ivpu_boot_d0i3_drive(vdev, false); if (ret) ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret); return ret; } static int ivpu_hw_mtl_power_up(struct ivpu_device *vdev) { int ret; ivpu_hw_read_platform(vdev); ivpu_hw_wa_init(vdev); ivpu_hw_timeouts_init(vdev); ret = ivpu_hw_mtl_reset(vdev); if (ret) ivpu_warn(vdev, "Failed to reset HW: %d\n", ret); ret = ivpu_hw_mtl_d0i3_disable(vdev); if (ret) ivpu_warn(vdev, "Failed to disable D0I3: %d\n", ret); ret = ivpu_pll_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to enable PLL: %d\n", ret); return ret; } ret = ivpu_boot_host_ss_configure(vdev); if (ret) { ivpu_err(vdev, "Failed to configure host SS: %d\n", ret); return ret; } /* * The control circuitry for vpu_idle indication logic powers up active. * To ensure unnecessary low power mode signal from LRT during bring up, * KMD disables the circuitry prior to bringing up the Main Power island. */ ivpu_boot_vpu_idle_gen_disable(vdev); ret = ivpu_boot_pwr_domain_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to enable power domain: %d\n", ret); return ret; } ret = ivpu_boot_host_ss_axi_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to enable AXI: %d\n", ret); return ret; } ret = ivpu_boot_host_ss_top_noc_enable(vdev); if (ret) ivpu_err(vdev, "Failed to enable TOP NOC: %d\n", ret); return ret; } static int ivpu_hw_mtl_boot_fw(struct ivpu_device *vdev) { ivpu_boot_no_snoop_enable(vdev); ivpu_boot_tbu_mmu_enable(vdev); ivpu_boot_soc_cpu_boot(vdev); return 0; } static bool ivpu_hw_mtl_is_idle(struct ivpu_device *vdev) { u32 val; if (IVPU_WA(punit_disabled)) return true; val = REGB_RD32(MTL_BUTTRESS_VPU_STATUS); return REG_TEST_FLD(MTL_BUTTRESS_VPU_STATUS, READY, val) && REG_TEST_FLD(MTL_BUTTRESS_VPU_STATUS, IDLE, val); } static int ivpu_hw_mtl_power_down(struct ivpu_device *vdev) { int ret = 0; if (ivpu_hw_mtl_reset(vdev)) { ivpu_err(vdev, "Failed to reset the VPU\n"); ret = -EIO; } if (ivpu_pll_disable(vdev)) { ivpu_err(vdev, "Failed to disable PLL\n"); ret = -EIO; } if (ivpu_hw_mtl_d0i3_enable(vdev)) ivpu_warn(vdev, "Failed to enable D0I3\n"); return ret; } static void ivpu_hw_mtl_wdt_disable(struct ivpu_device *vdev) { u32 val; /* Enable writing and set non-zero WDT value */ REGV_WR32(MTL_VPU_CPU_SS_TIM_SAFE, TIM_SAFE_ENABLE); REGV_WR32(MTL_VPU_CPU_SS_TIM_WATCHDOG, TIM_WATCHDOG_RESET_VALUE); /* Enable writing and disable watchdog timer */ REGV_WR32(MTL_VPU_CPU_SS_TIM_SAFE, TIM_SAFE_ENABLE); REGV_WR32(MTL_VPU_CPU_SS_TIM_WDOG_EN, 0); /* Now clear the timeout interrupt */ val = REGV_RD32(MTL_VPU_CPU_SS_TIM_GEN_CONFIG); val = REG_CLR_FLD(MTL_VPU_CPU_SS_TIM_GEN_CONFIG, WDOG_TO_INT_CLR, val); REGV_WR32(MTL_VPU_CPU_SS_TIM_GEN_CONFIG, val); } static u32 ivpu_hw_mtl_pll_to_freq(u32 ratio, u32 config) { u32 pll_clock = PLL_REF_CLK_FREQ * ratio; u32 cpu_clock; if ((config & 0xff) == PLL_RATIO_4_3) cpu_clock = pll_clock * 2 / 4; else cpu_clock = pll_clock * 2 / 5; return cpu_clock; } /* Register indirect accesses */ static u32 ivpu_hw_mtl_reg_pll_freq_get(struct ivpu_device *vdev) { u32 pll_curr_ratio; pll_curr_ratio = REGB_RD32(MTL_BUTTRESS_CURRENT_PLL); pll_curr_ratio &= MTL_BUTTRESS_CURRENT_PLL_RATIO_MASK; if (!ivpu_is_silicon(vdev)) return PLL_SIMULATION_FREQ; return ivpu_hw_mtl_pll_to_freq(pll_curr_ratio, vdev->hw->config); } static u32 ivpu_hw_mtl_reg_telemetry_offset_get(struct ivpu_device *vdev) { return REGB_RD32(MTL_BUTTRESS_VPU_TELEMETRY_OFFSET); } static u32 ivpu_hw_mtl_reg_telemetry_size_get(struct ivpu_device *vdev) { return REGB_RD32(MTL_BUTTRESS_VPU_TELEMETRY_SIZE); } static u32 ivpu_hw_mtl_reg_telemetry_enable_get(struct ivpu_device *vdev) { return REGB_RD32(MTL_BUTTRESS_VPU_TELEMETRY_ENABLE); } static void ivpu_hw_mtl_reg_db_set(struct ivpu_device *vdev, u32 db_id) { u32 reg_stride = MTL_VPU_CPU_SS_DOORBELL_1 - MTL_VPU_CPU_SS_DOORBELL_0; u32 val = REG_FLD(MTL_VPU_CPU_SS_DOORBELL_0, SET); REGV_WR32I(MTL_VPU_CPU_SS_DOORBELL_0, reg_stride, db_id, val); } static u32 ivpu_hw_mtl_reg_ipc_rx_addr_get(struct ivpu_device *vdev) { return REGV_RD32(MTL_VPU_HOST_SS_TIM_IPC_FIFO_ATM); } static u32 ivpu_hw_mtl_reg_ipc_rx_count_get(struct ivpu_device *vdev) { u32 count = REGV_RD32_SILENT(MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT); return REG_GET_FLD(MTL_VPU_HOST_SS_TIM_IPC_FIFO_STAT, FILL_LEVEL, count); } static void ivpu_hw_mtl_reg_ipc_tx_set(struct ivpu_device *vdev, u32 vpu_addr) { REGV_WR32(MTL_VPU_CPU_SS_TIM_IPC_FIFO, vpu_addr); } static void ivpu_hw_mtl_irq_clear(struct ivpu_device *vdev) { REGV_WR64(MTL_VPU_HOST_SS_ICB_CLEAR_0, ICB_0_1_IRQ_MASK); } static void ivpu_hw_mtl_irq_enable(struct ivpu_device *vdev) { REGV_WR32(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, ITF_FIREWALL_VIOLATION_MASK); REGV_WR64(MTL_VPU_HOST_SS_ICB_ENABLE_0, ICB_0_1_IRQ_MASK); REGB_WR32(MTL_BUTTRESS_LOCAL_INT_MASK, BUTTRESS_IRQ_ENABLE_MASK); REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x0); } static void ivpu_hw_mtl_irq_disable(struct ivpu_device *vdev) { REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x1); REGB_WR32(MTL_BUTTRESS_LOCAL_INT_MASK, BUTTRESS_IRQ_DISABLE_MASK); REGV_WR64(MTL_VPU_HOST_SS_ICB_ENABLE_0, 0x0ull); REGB_WR32(MTL_VPU_HOST_SS_FW_SOC_IRQ_EN, 0x0); } static void ivpu_hw_mtl_irq_wdt_nce_handler(struct ivpu_device *vdev) { ivpu_err_ratelimited(vdev, "WDT NCE irq\n"); ivpu_pm_schedule_recovery(vdev); } static void ivpu_hw_mtl_irq_wdt_mss_handler(struct ivpu_device *vdev) { ivpu_err_ratelimited(vdev, "WDT MSS irq\n"); ivpu_hw_wdt_disable(vdev); ivpu_pm_schedule_recovery(vdev); } static void ivpu_hw_mtl_irq_noc_firewall_handler(struct ivpu_device *vdev) { ivpu_err_ratelimited(vdev, "NOC Firewall irq\n"); ivpu_pm_schedule_recovery(vdev); } /* Handler for IRQs from VPU core (irqV) */ static u32 ivpu_hw_mtl_irqv_handler(struct ivpu_device *vdev, int irq) { u32 status = REGV_RD32(MTL_VPU_HOST_SS_ICB_STATUS_0) & ICB_0_IRQ_MASK; REGV_WR32(MTL_VPU_HOST_SS_ICB_CLEAR_0, status); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_0_INT, status)) ivpu_mmu_irq_evtq_handler(vdev); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, HOST_IPC_FIFO_INT, status)) ivpu_ipc_irq_handler(vdev); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_1_INT, status)) ivpu_dbg(vdev, IRQ, "MMU sync complete\n"); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_2_INT, status)) ivpu_mmu_irq_gerr_handler(vdev); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT, status)) ivpu_hw_mtl_irq_wdt_mss_handler(vdev); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT, status)) ivpu_hw_mtl_irq_wdt_nce_handler(vdev); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT, status)) ivpu_hw_mtl_irq_noc_firewall_handler(vdev); return status; } /* Handler for IRQs from Buttress core (irqB) */ static u32 ivpu_hw_mtl_irqb_handler(struct ivpu_device *vdev, int irq) { u32 status = REGB_RD32(MTL_BUTTRESS_INTERRUPT_STAT) & BUTTRESS_IRQ_MASK; bool schedule_recovery = false; if (status == 0) return 0; /* Disable global interrupt before handling local buttress interrupts */ REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x1); if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, FREQ_CHANGE, status)) ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(MTL_BUTTRESS_CURRENT_PLL)); if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, ATS_ERR, status)) { ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(MTL_BUTTRESS_ATS_ERR_LOG_0)); REGB_WR32(MTL_BUTTRESS_ATS_ERR_CLEAR, 0x1); schedule_recovery = true; } if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, UFI_ERR, status)) { u32 ufi_log = REGB_RD32(MTL_BUTTRESS_UFI_ERR_LOG); ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx", ufi_log, REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, OPCODE, ufi_log), REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, AXI_ID, ufi_log), REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, CQ_ID, ufi_log)); REGB_WR32(MTL_BUTTRESS_UFI_ERR_CLEAR, 0x1); schedule_recovery = true; } /* * Clear local interrupt status by writing 0 to all bits. * This must be done after interrupts are cleared at the source. * Writing 1 triggers an interrupt, so we can't perform read update write. */ REGB_WR32(MTL_BUTTRESS_INTERRUPT_STAT, 0x0); /* Re-enable global interrupt */ REGB_WR32(MTL_BUTTRESS_GLOBAL_INT_MASK, 0x0); if (schedule_recovery) ivpu_pm_schedule_recovery(vdev); return status; } static irqreturn_t ivpu_hw_mtl_irq_handler(int irq, void *ptr) { struct ivpu_device *vdev = ptr; u32 ret_irqv, ret_irqb; ret_irqv = ivpu_hw_mtl_irqv_handler(vdev, irq); ret_irqb = ivpu_hw_mtl_irqb_handler(vdev, irq); return IRQ_RETVAL(ret_irqb | ret_irqv); } static void ivpu_hw_mtl_diagnose_failure(struct ivpu_device *vdev) { u32 irqv = REGV_RD32(MTL_VPU_HOST_SS_ICB_STATUS_0) & ICB_0_IRQ_MASK; u32 irqb = REGB_RD32(MTL_BUTTRESS_INTERRUPT_STAT) & BUTTRESS_IRQ_MASK; if (ivpu_hw_mtl_reg_ipc_rx_count_get(vdev)) ivpu_err(vdev, "IPC FIFO queue not empty, missed IPC IRQ"); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT, irqv)) ivpu_err(vdev, "WDT MSS timeout detected\n"); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_1_INT, irqv)) ivpu_err(vdev, "WDT NCE timeout detected\n"); if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, NOC_FIREWALL_INT, irqv)) ivpu_err(vdev, "NOC Firewall irq detected\n"); if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, ATS_ERR, irqb)) ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(MTL_BUTTRESS_ATS_ERR_LOG_0)); if (REG_TEST_FLD(MTL_BUTTRESS_INTERRUPT_STAT, UFI_ERR, irqb)) { u32 ufi_log = REGB_RD32(MTL_BUTTRESS_UFI_ERR_LOG); ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx", ufi_log, REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, OPCODE, ufi_log), REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, AXI_ID, ufi_log), REG_GET_FLD(MTL_BUTTRESS_UFI_ERR_LOG, CQ_ID, ufi_log)); } } const struct ivpu_hw_ops ivpu_hw_mtl_ops = { .info_init = ivpu_hw_mtl_info_init, .power_up = ivpu_hw_mtl_power_up, .is_idle = ivpu_hw_mtl_is_idle, .power_down = ivpu_hw_mtl_power_down, .boot_fw = ivpu_hw_mtl_boot_fw, .wdt_disable = ivpu_hw_mtl_wdt_disable, .diagnose_failure = ivpu_hw_mtl_diagnose_failure, .reg_pll_freq_get = ivpu_hw_mtl_reg_pll_freq_get, .reg_telemetry_offset_get = ivpu_hw_mtl_reg_telemetry_offset_get, .reg_telemetry_size_get = ivpu_hw_mtl_reg_telemetry_size_get, .reg_telemetry_enable_get = ivpu_hw_mtl_reg_telemetry_enable_get, .reg_db_set = ivpu_hw_mtl_reg_db_set, .reg_ipc_rx_addr_get = ivpu_hw_mtl_reg_ipc_rx_addr_get, .reg_ipc_rx_count_get = ivpu_hw_mtl_reg_ipc_rx_count_get, .reg_ipc_tx_set = ivpu_hw_mtl_reg_ipc_tx_set, .irq_clear = ivpu_hw_mtl_irq_clear, .irq_enable = ivpu_hw_mtl_irq_enable, .irq_disable = ivpu_hw_mtl_irq_disable, .irq_handler = ivpu_hw_mtl_irq_handler, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1