Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Erik Kaneda | 1122 | 85.13% | 1 | 5.88% |
Aubrey Li | 114 | 8.65% | 3 | 17.65% |
Ard Biesheuvel | 34 | 2.58% | 1 | 5.88% |
Len Brown | 14 | 1.06% | 1 | 5.88% |
Lukasz Anaczkowski | 8 | 0.61% | 1 | 5.88% |
Sudeep Holla | 6 | 0.46% | 1 | 5.88% |
Andy Grover | 5 | 0.38% | 3 | 17.65% |
Lv Zheng | 5 | 0.38% | 1 | 5.88% |
Alexey Y. Starikovskiy | 4 | 0.30% | 1 | 5.88% |
Linus Torvalds (pre-git) | 3 | 0.23% | 2 | 11.76% |
Dave Jones | 2 | 0.15% | 1 | 5.88% |
Wei Yongjun | 1 | 0.08% | 1 | 5.88% |
Total | 1318 | 17 |
// SPDX-License-Identifier: GPL-2.0-only /* * Author: Erik Kaneda <erik.kaneda@intel.com> * Copyright 2020 Intel Corporation * * prmt.c * * Each PRM service is an executable that is run in a restricted environment * that is invoked by writing to the PlatformRtMechanism OperationRegion from * AML bytecode. * * init_prmt initializes the Platform Runtime Mechanism (PRM) services by * processing data in the PRMT as well as registering an ACPI OperationRegion * handler for the PlatformRtMechanism subtype. * */ #include <linux/kernel.h> #include <linux/efi.h> #include <linux/acpi.h> #include <linux/prmt.h> #include <asm/efi.h> #pragma pack(1) struct prm_mmio_addr_range { u64 phys_addr; u64 virt_addr; u32 length; }; struct prm_mmio_info { u64 mmio_count; struct prm_mmio_addr_range addr_ranges[]; }; struct prm_buffer { u8 prm_status; u64 efi_status; u8 prm_cmd; guid_t handler_guid; }; struct prm_context_buffer { char signature[ACPI_NAMESEG_SIZE]; u16 revision; u16 reserved; guid_t identifier; u64 static_data_buffer; struct prm_mmio_info *mmio_ranges; }; #pragma pack() static LIST_HEAD(prm_module_list); struct prm_handler_info { guid_t guid; void *handler_addr; u64 static_data_buffer_addr; u64 acpi_param_buffer_addr; struct list_head handler_list; }; struct prm_module_info { guid_t guid; u16 major_rev; u16 minor_rev; u16 handler_count; struct prm_mmio_info *mmio_info; bool updatable; struct list_head module_list; struct prm_handler_info handlers[]; }; static u64 efi_pa_va_lookup(u64 pa) { efi_memory_desc_t *md; u64 pa_offset = pa & ~PAGE_MASK; u64 page = pa & PAGE_MASK; for_each_efi_memory_desc(md) { if (md->phys_addr < pa && pa < md->phys_addr + PAGE_SIZE * md->num_pages) return pa_offset + md->virt_addr + page - md->phys_addr; } return 0; } #define get_first_handler(a) ((struct acpi_prmt_handler_info *) ((char *) (a) + a->handler_info_offset)) #define get_next_handler(a) ((struct acpi_prmt_handler_info *) (sizeof(struct acpi_prmt_handler_info) + (char *) a)) static int __init acpi_parse_prmt(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_prmt_module_info *module_info; struct acpi_prmt_handler_info *handler_info; struct prm_handler_info *th; struct prm_module_info *tm; u64 *mmio_count; u64 cur_handler = 0; u32 module_info_size = 0; u64 mmio_range_size = 0; void *temp_mmio; module_info = (struct acpi_prmt_module_info *) header; module_info_size = struct_size(tm, handlers, module_info->handler_info_count); tm = kmalloc(module_info_size, GFP_KERNEL); if (!tm) goto parse_prmt_out1; guid_copy(&tm->guid, (guid_t *) module_info->module_guid); tm->major_rev = module_info->major_rev; tm->minor_rev = module_info->minor_rev; tm->handler_count = module_info->handler_info_count; tm->updatable = true; if (module_info->mmio_list_pointer) { /* * Each module is associated with a list of addr * ranges that it can use during the service */ mmio_count = (u64 *) memremap(module_info->mmio_list_pointer, 8, MEMREMAP_WB); if (!mmio_count) goto parse_prmt_out2; mmio_range_size = struct_size(tm->mmio_info, addr_ranges, *mmio_count); tm->mmio_info = kmalloc(mmio_range_size, GFP_KERNEL); if (!tm->mmio_info) goto parse_prmt_out3; temp_mmio = memremap(module_info->mmio_list_pointer, mmio_range_size, MEMREMAP_WB); if (!temp_mmio) goto parse_prmt_out4; memmove(tm->mmio_info, temp_mmio, mmio_range_size); } else { tm->mmio_info = kmalloc(sizeof(*tm->mmio_info), GFP_KERNEL); if (!tm->mmio_info) goto parse_prmt_out2; tm->mmio_info->mmio_count = 0; } INIT_LIST_HEAD(&tm->module_list); list_add(&tm->module_list, &prm_module_list); handler_info = get_first_handler(module_info); do { th = &tm->handlers[cur_handler]; guid_copy(&th->guid, (guid_t *)handler_info->handler_guid); th->handler_addr = (void *)efi_pa_va_lookup(handler_info->handler_address); th->static_data_buffer_addr = efi_pa_va_lookup(handler_info->static_data_buffer_address); th->acpi_param_buffer_addr = efi_pa_va_lookup(handler_info->acpi_param_buffer_address); } while (++cur_handler < tm->handler_count && (handler_info = get_next_handler(handler_info))); return 0; parse_prmt_out4: kfree(tm->mmio_info); parse_prmt_out3: memunmap(mmio_count); parse_prmt_out2: kfree(tm); parse_prmt_out1: return -ENOMEM; } #define GET_MODULE 0 #define GET_HANDLER 1 static void *find_guid_info(const guid_t *guid, u8 mode) { struct prm_handler_info *cur_handler; struct prm_module_info *cur_module; int i = 0; list_for_each_entry(cur_module, &prm_module_list, module_list) { for (i = 0; i < cur_module->handler_count; ++i) { cur_handler = &cur_module->handlers[i]; if (guid_equal(guid, &cur_handler->guid)) { if (mode == GET_MODULE) return (void *)cur_module; else return (void *)cur_handler; } } } return NULL; } static struct prm_module_info *find_prm_module(const guid_t *guid) { return (struct prm_module_info *)find_guid_info(guid, GET_MODULE); } static struct prm_handler_info *find_prm_handler(const guid_t *guid) { return (struct prm_handler_info *) find_guid_info(guid, GET_HANDLER); } /* In-coming PRM commands */ #define PRM_CMD_RUN_SERVICE 0 #define PRM_CMD_START_TRANSACTION 1 #define PRM_CMD_END_TRANSACTION 2 /* statuses that can be passed back to ASL */ #define PRM_HANDLER_SUCCESS 0 #define PRM_HANDLER_ERROR 1 #define INVALID_PRM_COMMAND 2 #define PRM_HANDLER_GUID_NOT_FOUND 3 #define UPDATE_LOCK_ALREADY_HELD 4 #define UPDATE_UNLOCK_WITHOUT_LOCK 5 /* * This is the PlatformRtMechanism opregion space handler. * @function: indicates the read/write. In fact as the PlatformRtMechanism * message is driven by command, only write is meaningful. * * @addr : not used * @bits : not used. * @value : it is an in/out parameter. It points to the PRM message buffer. * @handler_context: not used */ static acpi_status acpi_platformrt_space_handler(u32 function, acpi_physical_address addr, u32 bits, acpi_integer *value, void *handler_context, void *region_context) { struct prm_buffer *buffer = ACPI_CAST_PTR(struct prm_buffer, value); struct prm_handler_info *handler; struct prm_module_info *module; efi_status_t status; struct prm_context_buffer context; if (!efi_enabled(EFI_RUNTIME_SERVICES)) { pr_err_ratelimited("PRM: EFI runtime services no longer available\n"); return AE_NO_HANDLER; } /* * The returned acpi_status will always be AE_OK. Error values will be * saved in the first byte of the PRM message buffer to be used by ASL. */ switch (buffer->prm_cmd) { case PRM_CMD_RUN_SERVICE: handler = find_prm_handler(&buffer->handler_guid); module = find_prm_module(&buffer->handler_guid); if (!handler || !module) goto invalid_guid; ACPI_COPY_NAMESEG(context.signature, "PRMC"); context.revision = 0x0; context.reserved = 0x0; context.identifier = handler->guid; context.static_data_buffer = handler->static_data_buffer_addr; context.mmio_ranges = module->mmio_info; status = efi_call_virt_pointer(handler, handler_addr, handler->acpi_param_buffer_addr, &context); if (status == EFI_SUCCESS) { buffer->prm_status = PRM_HANDLER_SUCCESS; } else { buffer->prm_status = PRM_HANDLER_ERROR; buffer->efi_status = status; } break; case PRM_CMD_START_TRANSACTION: module = find_prm_module(&buffer->handler_guid); if (!module) goto invalid_guid; if (module->updatable) module->updatable = false; else buffer->prm_status = UPDATE_LOCK_ALREADY_HELD; break; case PRM_CMD_END_TRANSACTION: module = find_prm_module(&buffer->handler_guid); if (!module) goto invalid_guid; if (module->updatable) buffer->prm_status = UPDATE_UNLOCK_WITHOUT_LOCK; else module->updatable = true; break; default: buffer->prm_status = INVALID_PRM_COMMAND; break; } return AE_OK; invalid_guid: buffer->prm_status = PRM_HANDLER_GUID_NOT_FOUND; return AE_OK; } void __init init_prmt(void) { struct acpi_table_header *tbl; acpi_status status; int mc; status = acpi_get_table(ACPI_SIG_PRMT, 0, &tbl); if (ACPI_FAILURE(status)) return; mc = acpi_table_parse_entries(ACPI_SIG_PRMT, sizeof(struct acpi_table_prmt) + sizeof (struct acpi_table_prmt_header), 0, acpi_parse_prmt, 0); acpi_put_table(tbl); /* * Return immediately if PRMT table is not present or no PRM module found. */ if (mc <= 0) return; pr_info("PRM: found %u modules\n", mc); if (!efi_enabled(EFI_RUNTIME_SERVICES)) { pr_err("PRM: EFI runtime services unavailable\n"); return; } status = acpi_install_address_space_handler(ACPI_ROOT_OBJECT, ACPI_ADR_SPACE_PLATFORM_RT, &acpi_platformrt_space_handler, NULL, NULL); if (ACPI_FAILURE(status)) pr_alert("PRM: OperationRegion handler could not be installed\n"); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1