Contributors: 12
Author Tokens Token Proportion Commits Commit Proportion
Jamie Iles 1087 66.85% 2 11.11%
Jacob jun Pan 332 20.42% 1 5.56%
Viresh Kumar 125 7.69% 1 5.56%
JiSheng Zhang 32 1.97% 5 27.78%
Nicolai Stange 16 0.98% 1 5.56%
Afzal Mohammed 13 0.80% 1 5.56%
Serge Semin 7 0.43% 1 5.56%
Thomas Gleixner 6 0.37% 2 11.11%
Rusty Russell 4 0.25% 1 5.56%
Linus Torvalds (pre-git) 2 0.12% 1 5.56%
Linus Torvalds 1 0.06% 1 5.56%
Rafał Miłecki 1 0.06% 1 5.56%
Total 1626 18


// SPDX-License-Identifier: GPL-2.0-only
/*
 * (C) Copyright 2009 Intel Corporation
 * Author: Jacob Pan (jacob.jun.pan@intel.com)
 *
 * Shared with ARM platforms, Jamie Iles, Picochip 2011
 *
 * Support for the Synopsys DesignWare APB Timers.
 */
#include <linux/dw_apb_timer.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/slab.h>

#define APBT_MIN_PERIOD			4
#define APBT_MIN_DELTA_USEC		200

#define APBTMR_N_LOAD_COUNT		0x00
#define APBTMR_N_CURRENT_VALUE		0x04
#define APBTMR_N_CONTROL		0x08
#define APBTMR_N_EOI			0x0c
#define APBTMR_N_INT_STATUS		0x10

#define APBTMRS_INT_STATUS		0xa0
#define APBTMRS_EOI			0xa4
#define APBTMRS_RAW_INT_STATUS		0xa8
#define APBTMRS_COMP_VERSION		0xac

#define APBTMR_CONTROL_ENABLE		(1 << 0)
/* 1: periodic, 0:free running. */
#define APBTMR_CONTROL_MODE_PERIODIC	(1 << 1)
#define APBTMR_CONTROL_INT		(1 << 2)

static inline struct dw_apb_clock_event_device *
ced_to_dw_apb_ced(struct clock_event_device *evt)
{
	return container_of(evt, struct dw_apb_clock_event_device, ced);
}

static inline struct dw_apb_clocksource *
clocksource_to_dw_apb_clocksource(struct clocksource *cs)
{
	return container_of(cs, struct dw_apb_clocksource, cs);
}

static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
{
	return readl(timer->base + offs);
}

static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
			unsigned long offs)
{
	writel(val, timer->base + offs);
}

static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
{
	return readl_relaxed(timer->base + offs);
}

static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
			unsigned long offs)
{
	writel_relaxed(val, timer->base + offs);
}

static void apbt_disable_int(struct dw_apb_timer *timer)
{
	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);

	ctrl |= APBTMR_CONTROL_INT;
	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
}

/**
 * dw_apb_clockevent_pause() - stop the clock_event_device from running
 *
 * @dw_ced:	The APB clock to stop generating events.
 */
void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
{
	disable_irq(dw_ced->timer.irq);
	apbt_disable_int(&dw_ced->timer);
}

static void apbt_eoi(struct dw_apb_timer *timer)
{
	apbt_readl_relaxed(timer, APBTMR_N_EOI);
}

static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
{
	struct clock_event_device *evt = data;
	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);

	if (!evt->event_handler) {
		pr_info("Spurious APBT timer interrupt %d\n", irq);
		return IRQ_NONE;
	}

	if (dw_ced->eoi)
		dw_ced->eoi(&dw_ced->timer);

	evt->event_handler(evt);
	return IRQ_HANDLED;
}

static void apbt_enable_int(struct dw_apb_timer *timer)
{
	u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
	/* clear pending intr */
	apbt_readl(timer, APBTMR_N_EOI);
	ctrl &= ~APBTMR_CONTROL_INT;
	apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
}

static int apbt_shutdown(struct clock_event_device *evt)
{
	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
	u32 ctrl;

	pr_debug("%s CPU %d state=shutdown\n", __func__,
		 cpumask_first(evt->cpumask));

	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
	ctrl &= ~APBTMR_CONTROL_ENABLE;
	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
	return 0;
}

static int apbt_set_oneshot(struct clock_event_device *evt)
{
	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
	u32 ctrl;

	pr_debug("%s CPU %d state=oneshot\n", __func__,
		 cpumask_first(evt->cpumask));

	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
	/*
	 * set free running mode, this mode will let timer reload max
	 * timeout which will give time (3min on 25MHz clock) to rearm
	 * the next event, therefore emulate the one-shot mode.
	 */
	ctrl &= ~APBTMR_CONTROL_ENABLE;
	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;

	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
	/* write again to set free running mode */
	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);

	/*
	 * DW APB p. 46, load counter with all 1s before starting free
	 * running mode.
	 */
	apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
	ctrl &= ~APBTMR_CONTROL_INT;
	ctrl |= APBTMR_CONTROL_ENABLE;
	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
	return 0;
}

static int apbt_set_periodic(struct clock_event_device *evt)
{
	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
	unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
	u32 ctrl;

	pr_debug("%s CPU %d state=periodic\n", __func__,
		 cpumask_first(evt->cpumask));

	ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
	ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
	/*
	 * DW APB p. 46, have to disable timer before load counter,
	 * may cause sync problem.
	 */
	ctrl &= ~APBTMR_CONTROL_ENABLE;
	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
	udelay(1);
	pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
	apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
	ctrl |= APBTMR_CONTROL_ENABLE;
	apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
	return 0;
}

static int apbt_resume(struct clock_event_device *evt)
{
	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);

	pr_debug("%s CPU %d state=resume\n", __func__,
		 cpumask_first(evt->cpumask));

	apbt_enable_int(&dw_ced->timer);
	return 0;
}

static int apbt_next_event(unsigned long delta,
			   struct clock_event_device *evt)
{
	u32 ctrl;
	struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);

	/* Disable timer */
	ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
	ctrl &= ~APBTMR_CONTROL_ENABLE;
	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
	/* write new count */
	apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
	ctrl |= APBTMR_CONTROL_ENABLE;
	apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);

	return 0;
}

/**
 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
 *
 * @cpu:	The CPU the events will be targeted at or -1 if CPU affiliation
 *		isn't required.
 * @name:	The name used for the timer and the IRQ for it.
 * @rating:	The rating to give the timer.
 * @base:	I/O base for the timer registers.
 * @irq:	The interrupt number to use for the timer.
 * @freq:	The frequency that the timer counts at.
 *
 * This creates a clock_event_device for using with the generic clock layer
 * but does not start and register it.  This should be done with
 * dw_apb_clockevent_register() as the next step.  If this is the first time
 * it has been called for a timer then the IRQ will be requested, if not it
 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
 * releasing the IRQ.
 */
struct dw_apb_clock_event_device *
dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
		       void __iomem *base, int irq, unsigned long freq)
{
	struct dw_apb_clock_event_device *dw_ced =
		kzalloc(sizeof(*dw_ced), GFP_KERNEL);
	int err;

	if (!dw_ced)
		return NULL;

	dw_ced->timer.base = base;
	dw_ced->timer.irq = irq;
	dw_ced->timer.freq = freq;

	clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
	dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
						       &dw_ced->ced);
	dw_ced->ced.max_delta_ticks = 0x7fffffff;
	dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
	dw_ced->ced.min_delta_ticks = 5000;
	dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu);
	dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
				CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
	dw_ced->ced.set_state_shutdown = apbt_shutdown;
	dw_ced->ced.set_state_periodic = apbt_set_periodic;
	dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
	dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
	dw_ced->ced.tick_resume = apbt_resume;
	dw_ced->ced.set_next_event = apbt_next_event;
	dw_ced->ced.irq = dw_ced->timer.irq;
	dw_ced->ced.rating = rating;
	dw_ced->ced.name = name;

	dw_ced->eoi = apbt_eoi;
	err = request_irq(irq, dw_apb_clockevent_irq,
			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
			  dw_ced->ced.name, &dw_ced->ced);
	if (err) {
		pr_err("failed to request timer irq\n");
		kfree(dw_ced);
		dw_ced = NULL;
	}

	return dw_ced;
}

/**
 * dw_apb_clockevent_resume() - resume a clock that has been paused.
 *
 * @dw_ced:	The APB clock to resume.
 */
void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
{
	enable_irq(dw_ced->timer.irq);
}

/**
 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
 *
 * @dw_ced:	The APB clock to stop generating the events.
 */
void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
{
	free_irq(dw_ced->timer.irq, &dw_ced->ced);
}

/**
 * dw_apb_clockevent_register() - register the clock with the generic layer
 *
 * @dw_ced:	The APB clock to register as a clock_event_device.
 */
void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
{
	apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
	clockevents_register_device(&dw_ced->ced);
	apbt_enable_int(&dw_ced->timer);
}

/**
 * dw_apb_clocksource_start() - start the clocksource counting.
 *
 * @dw_cs:	The clocksource to start.
 *
 * This is used to start the clocksource before registration and can be used
 * to enable calibration of timers.
 */
void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
{
	/*
	 * start count down from 0xffff_ffff. this is done by toggling the
	 * enable bit then load initial load count to ~0.
	 */
	u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);

	ctrl &= ~APBTMR_CONTROL_ENABLE;
	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
	apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
	/* enable, mask interrupt */
	ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
	ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
	apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
	/* read it once to get cached counter value initialized */
	dw_apb_clocksource_read(dw_cs);
}

static u64 __apbt_read_clocksource(struct clocksource *cs)
{
	u32 current_count;
	struct dw_apb_clocksource *dw_cs =
		clocksource_to_dw_apb_clocksource(cs);

	current_count = apbt_readl_relaxed(&dw_cs->timer,
					APBTMR_N_CURRENT_VALUE);

	return (u64)~current_count;
}

static void apbt_restart_clocksource(struct clocksource *cs)
{
	struct dw_apb_clocksource *dw_cs =
		clocksource_to_dw_apb_clocksource(cs);

	dw_apb_clocksource_start(dw_cs);
}

/**
 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
 *
 * @rating:	The rating to give the clocksource.
 * @name:	The name for the clocksource.
 * @base:	The I/O base for the timer registers.
 * @freq:	The frequency that the timer counts at.
 *
 * This creates a clocksource using an APB timer but does not yet register it
 * with the clocksource system.  This should be done with
 * dw_apb_clocksource_register() as the next step.
 */
struct dw_apb_clocksource *
dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
			unsigned long freq)
{
	struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);

	if (!dw_cs)
		return NULL;

	dw_cs->timer.base = base;
	dw_cs->timer.freq = freq;
	dw_cs->cs.name = name;
	dw_cs->cs.rating = rating;
	dw_cs->cs.read = __apbt_read_clocksource;
	dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
	dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
	dw_cs->cs.resume = apbt_restart_clocksource;

	return dw_cs;
}

/**
 * dw_apb_clocksource_register() - register the APB clocksource.
 *
 * @dw_cs:	The clocksource to register.
 */
void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
{
	clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
}

/**
 * dw_apb_clocksource_read() - read the current value of a clocksource.
 *
 * @dw_cs:	The clocksource to read.
 */
u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
{
	return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
}