Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Taniya Das | 1354 | 37.41% | 3 | 6.00% |
Manivannan Sadhasivam | 788 | 21.77% | 9 | 18.00% |
Thara Gopinath | 455 | 12.57% | 1 | 2.00% |
Sibi Sankar | 352 | 9.73% | 2 | 4.00% |
Björn Andersson | 148 | 4.09% | 2 | 4.00% |
Vladimir Zapolskiy | 90 | 2.49% | 4 | 8.00% |
Konrad Dybcio | 75 | 2.07% | 1 | 2.00% |
Shawn Guo | 72 | 1.99% | 2 | 4.00% |
Dmitry Eremin-Solenikov | 57 | 1.58% | 4 | 8.00% |
Xuewen Yan | 54 | 1.49% | 1 | 2.00% |
Matthias Kaehlcke | 40 | 1.11% | 1 | 2.00% |
Doug Anderson | 31 | 0.86% | 1 | 2.00% |
Pierre Gondois | 19 | 0.53% | 3 | 6.00% |
Stephen Boyd | 18 | 0.50% | 2 | 4.00% |
Douglas RAILLARD | 14 | 0.39% | 1 | 2.00% |
Ard Biesheuvel | 14 | 0.39% | 1 | 2.00% |
Lukasz Luba | 10 | 0.28% | 2 | 4.00% |
Viresh Kumar | 7 | 0.19% | 3 | 6.00% |
Juri Lelli | 6 | 0.17% | 1 | 2.00% |
Chen Hui | 5 | 0.14% | 1 | 2.00% |
Uwe Kleine-König | 3 | 0.08% | 1 | 2.00% |
Yicong Yang | 3 | 0.08% | 1 | 2.00% |
Amit Kucheria | 3 | 0.08% | 2 | 4.00% |
Ionela Voinescu | 1 | 0.03% | 1 | 2.00% |
Total | 3619 | 50 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018, The Linux Foundation. All rights reserved. */ #include <linux/bitfield.h> #include <linux/clk-provider.h> #include <linux/cpufreq.h> #include <linux/init.h> #include <linux/interconnect.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/pm_opp.h> #include <linux/pm_qos.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/units.h> #define LUT_MAX_ENTRIES 40U #define LUT_SRC GENMASK(31, 30) #define LUT_L_VAL GENMASK(7, 0) #define LUT_CORE_COUNT GENMASK(18, 16) #define LUT_VOLT GENMASK(11, 0) #define CLK_HW_DIV 2 #define LUT_TURBO_IND 1 #define GT_IRQ_STATUS BIT(2) struct qcom_cpufreq_soc_data { u32 reg_enable; u32 reg_domain_state; u32 reg_dcvs_ctrl; u32 reg_freq_lut; u32 reg_volt_lut; u32 reg_intr_clr; u32 reg_current_vote; u32 reg_perf_state; u8 lut_row_size; }; struct qcom_cpufreq_data { void __iomem *base; struct resource *res; /* * Mutex to synchronize between de-init sequence and re-starting LMh * polling/interrupts */ struct mutex throttle_lock; int throttle_irq; char irq_name[15]; bool cancel_throttle; struct delayed_work throttle_work; struct cpufreq_policy *policy; struct clk_hw cpu_clk; bool per_core_dcvs; struct freq_qos_request throttle_freq_req; }; static struct { struct qcom_cpufreq_data *data; const struct qcom_cpufreq_soc_data *soc_data; } qcom_cpufreq; static unsigned long cpu_hw_rate, xo_rate; static bool icc_scaling_enabled; static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz) { unsigned long freq_hz = freq_khz * 1000; struct dev_pm_opp *opp; struct device *dev; int ret; dev = get_cpu_device(policy->cpu); if (!dev) return -ENODEV; opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true); if (IS_ERR(opp)) return PTR_ERR(opp); ret = dev_pm_opp_set_opp(dev, opp); dev_pm_opp_put(opp); return ret; } static int qcom_cpufreq_update_opp(struct device *cpu_dev, unsigned long freq_khz, unsigned long volt) { unsigned long freq_hz = freq_khz * 1000; int ret; /* Skip voltage update if the opp table is not available */ if (!icc_scaling_enabled) return dev_pm_opp_add(cpu_dev, freq_hz, volt); ret = dev_pm_opp_adjust_voltage(cpu_dev, freq_hz, volt, volt, volt); if (ret) { dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz); return ret; } return dev_pm_opp_enable(cpu_dev, freq_hz); } static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy, unsigned int index) { struct qcom_cpufreq_data *data = policy->driver_data; const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data; unsigned long freq = policy->freq_table[index].frequency; unsigned int i; writel_relaxed(index, data->base + soc_data->reg_perf_state); if (data->per_core_dcvs) for (i = 1; i < cpumask_weight(policy->related_cpus); i++) writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4); if (icc_scaling_enabled) qcom_cpufreq_set_bw(policy, freq); return 0; } static unsigned long qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data) { unsigned int lval; if (qcom_cpufreq.soc_data->reg_current_vote) lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_current_vote) & 0x3ff; else lval = readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_domain_state) & 0xff; return lval * xo_rate; } /* Get the frequency requested by the cpufreq core for the CPU */ static unsigned int qcom_cpufreq_get_freq(unsigned int cpu) { struct qcom_cpufreq_data *data; const struct qcom_cpufreq_soc_data *soc_data; struct cpufreq_policy *policy; unsigned int index; policy = cpufreq_cpu_get_raw(cpu); if (!policy) return 0; data = policy->driver_data; soc_data = qcom_cpufreq.soc_data; index = readl_relaxed(data->base + soc_data->reg_perf_state); index = min(index, LUT_MAX_ENTRIES - 1); return policy->freq_table[index].frequency; } static unsigned int qcom_cpufreq_hw_get(unsigned int cpu) { struct qcom_cpufreq_data *data; struct cpufreq_policy *policy; policy = cpufreq_cpu_get_raw(cpu); if (!policy) return 0; data = policy->driver_data; if (data->throttle_irq >= 0) return qcom_lmh_get_throttle_freq(data) / HZ_PER_KHZ; return qcom_cpufreq_get_freq(cpu); } static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq) { struct qcom_cpufreq_data *data = policy->driver_data; const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data; unsigned int index; unsigned int i; index = policy->cached_resolved_idx; writel_relaxed(index, data->base + soc_data->reg_perf_state); if (data->per_core_dcvs) for (i = 1; i < cpumask_weight(policy->related_cpus); i++) writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4); return policy->freq_table[index].frequency; } static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev, struct cpufreq_policy *policy) { u32 data, src, lval, i, core_count, prev_freq = 0, freq; u32 volt; struct cpufreq_frequency_table *table; struct dev_pm_opp *opp; unsigned long rate; int ret; struct qcom_cpufreq_data *drv_data = policy->driver_data; const struct qcom_cpufreq_soc_data *soc_data = qcom_cpufreq.soc_data; table = kcalloc(LUT_MAX_ENTRIES + 1, sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; ret = dev_pm_opp_of_add_table(cpu_dev); if (!ret) { /* Disable all opps and cross-validate against LUT later */ icc_scaling_enabled = true; for (rate = 0; ; rate++) { opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); if (IS_ERR(opp)) break; dev_pm_opp_put(opp); dev_pm_opp_disable(cpu_dev, rate); } } else if (ret != -ENODEV) { dev_err(cpu_dev, "Invalid opp table in device tree\n"); kfree(table); return ret; } else { policy->fast_switch_possible = true; icc_scaling_enabled = false; } for (i = 0; i < LUT_MAX_ENTRIES; i++) { data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut + i * soc_data->lut_row_size); src = FIELD_GET(LUT_SRC, data); lval = FIELD_GET(LUT_L_VAL, data); core_count = FIELD_GET(LUT_CORE_COUNT, data); data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut + i * soc_data->lut_row_size); volt = FIELD_GET(LUT_VOLT, data) * 1000; if (src) freq = xo_rate * lval / 1000; else freq = cpu_hw_rate / 1000; if (freq != prev_freq && core_count != LUT_TURBO_IND) { if (!qcom_cpufreq_update_opp(cpu_dev, freq, volt)) { table[i].frequency = freq; dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i, freq, core_count); } else { dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq); table[i].frequency = CPUFREQ_ENTRY_INVALID; } } else if (core_count == LUT_TURBO_IND) { table[i].frequency = CPUFREQ_ENTRY_INVALID; } /* * Two of the same frequencies with the same core counts means * end of table */ if (i > 0 && prev_freq == freq) { struct cpufreq_frequency_table *prev = &table[i - 1]; /* * Only treat the last frequency that might be a boost * as the boost frequency */ if (prev->frequency == CPUFREQ_ENTRY_INVALID) { if (!qcom_cpufreq_update_opp(cpu_dev, prev_freq, volt)) { prev->frequency = prev_freq; prev->flags = CPUFREQ_BOOST_FREQ; } else { dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq); } } break; } prev_freq = freq; } table[i].frequency = CPUFREQ_TABLE_END; policy->freq_table = table; dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus); return 0; } static void qcom_get_related_cpus(int index, struct cpumask *m) { struct device_node *cpu_np; struct of_phandle_args args; int cpu, ret; for_each_possible_cpu(cpu) { cpu_np = of_cpu_device_node_get(cpu); if (!cpu_np) continue; ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain", "#freq-domain-cells", 0, &args); of_node_put(cpu_np); if (ret < 0) continue; if (index == args.args[0]) cpumask_set_cpu(cpu, m); } } static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data) { struct cpufreq_policy *policy = data->policy; int cpu = cpumask_first(policy->related_cpus); struct device *dev = get_cpu_device(cpu); unsigned long freq_hz, throttled_freq; struct dev_pm_opp *opp; /* * Get the h/w throttled frequency, normalize it using the * registered opp table and use it to calculate thermal pressure. */ freq_hz = qcom_lmh_get_throttle_freq(data); opp = dev_pm_opp_find_freq_floor(dev, &freq_hz); if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE) opp = dev_pm_opp_find_freq_ceil(dev, &freq_hz); if (IS_ERR(opp)) { dev_warn(dev, "Can't find the OPP for throttling: %pe!\n", opp); } else { dev_pm_opp_put(opp); } throttled_freq = freq_hz / HZ_PER_KHZ; freq_qos_update_request(&data->throttle_freq_req, throttled_freq); /* Update thermal pressure (the boost frequencies are accepted) */ arch_update_thermal_pressure(policy->related_cpus, throttled_freq); /* * In the unlikely case policy is unregistered do not enable * polling or h/w interrupt */ mutex_lock(&data->throttle_lock); if (data->cancel_throttle) goto out; /* * If h/w throttled frequency is higher than what cpufreq has requested * for, then stop polling and switch back to interrupt mechanism. */ if (throttled_freq >= qcom_cpufreq_get_freq(cpu)) enable_irq(data->throttle_irq); else mod_delayed_work(system_highpri_wq, &data->throttle_work, msecs_to_jiffies(10)); out: mutex_unlock(&data->throttle_lock); } static void qcom_lmh_dcvs_poll(struct work_struct *work) { struct qcom_cpufreq_data *data; data = container_of(work, struct qcom_cpufreq_data, throttle_work.work); qcom_lmh_dcvs_notify(data); } static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data) { struct qcom_cpufreq_data *c_data = data; /* Disable interrupt and enable polling */ disable_irq_nosync(c_data->throttle_irq); schedule_delayed_work(&c_data->throttle_work, 0); if (qcom_cpufreq.soc_data->reg_intr_clr) writel_relaxed(GT_IRQ_STATUS, c_data->base + qcom_cpufreq.soc_data->reg_intr_clr); return IRQ_HANDLED; } static const struct qcom_cpufreq_soc_data qcom_soc_data = { .reg_enable = 0x0, .reg_dcvs_ctrl = 0xbc, .reg_freq_lut = 0x110, .reg_volt_lut = 0x114, .reg_current_vote = 0x704, .reg_perf_state = 0x920, .lut_row_size = 32, }; static const struct qcom_cpufreq_soc_data epss_soc_data = { .reg_enable = 0x0, .reg_domain_state = 0x20, .reg_dcvs_ctrl = 0xb0, .reg_freq_lut = 0x100, .reg_volt_lut = 0x200, .reg_intr_clr = 0x308, .reg_perf_state = 0x320, .lut_row_size = 4, }; static const struct of_device_id qcom_cpufreq_hw_match[] = { { .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data }, { .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data }, {} }; MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match); static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index) { struct qcom_cpufreq_data *data = policy->driver_data; struct platform_device *pdev = cpufreq_get_driver_data(); int ret; /* * Look for LMh interrupt. If no interrupt line is specified / * if there is an error, allow cpufreq to be enabled as usual. */ data->throttle_irq = platform_get_irq_optional(pdev, index); if (data->throttle_irq == -ENXIO) return 0; if (data->throttle_irq < 0) return data->throttle_irq; ret = freq_qos_add_request(&policy->constraints, &data->throttle_freq_req, FREQ_QOS_MAX, FREQ_QOS_MAX_DEFAULT_VALUE); if (ret < 0) { dev_err(&pdev->dev, "Failed to add freq constraint (%d)\n", ret); return ret; } data->cancel_throttle = false; data->policy = policy; mutex_init(&data->throttle_lock); INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll); snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu); ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq, IRQF_ONESHOT | IRQF_NO_AUTOEN, data->irq_name, data); if (ret) { dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret); return 0; } ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus); if (ret) dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n", data->irq_name, data->throttle_irq); return 0; } static int qcom_cpufreq_hw_cpu_online(struct cpufreq_policy *policy) { struct qcom_cpufreq_data *data = policy->driver_data; struct platform_device *pdev = cpufreq_get_driver_data(); int ret; if (data->throttle_irq <= 0) return 0; mutex_lock(&data->throttle_lock); data->cancel_throttle = false; mutex_unlock(&data->throttle_lock); ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus); if (ret) dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n", data->irq_name, data->throttle_irq); return ret; } static int qcom_cpufreq_hw_cpu_offline(struct cpufreq_policy *policy) { struct qcom_cpufreq_data *data = policy->driver_data; if (data->throttle_irq <= 0) return 0; mutex_lock(&data->throttle_lock); data->cancel_throttle = true; mutex_unlock(&data->throttle_lock); cancel_delayed_work_sync(&data->throttle_work); irq_set_affinity_and_hint(data->throttle_irq, NULL); disable_irq_nosync(data->throttle_irq); return 0; } static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data) { if (data->throttle_irq <= 0) return; freq_qos_remove_request(&data->throttle_freq_req); free_irq(data->throttle_irq, data); } static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy) { struct platform_device *pdev = cpufreq_get_driver_data(); struct device *dev = &pdev->dev; struct of_phandle_args args; struct device_node *cpu_np; struct device *cpu_dev; struct qcom_cpufreq_data *data; int ret, index; cpu_dev = get_cpu_device(policy->cpu); if (!cpu_dev) { pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu); return -ENODEV; } cpu_np = of_cpu_device_node_get(policy->cpu); if (!cpu_np) return -EINVAL; ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain", "#freq-domain-cells", 0, &args); of_node_put(cpu_np); if (ret) return ret; index = args.args[0]; data = &qcom_cpufreq.data[index]; /* HW should be in enabled state to proceed */ if (!(readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_enable) & 0x1)) { dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index); return -ENODEV; } if (readl_relaxed(data->base + qcom_cpufreq.soc_data->reg_dcvs_ctrl) & 0x1) data->per_core_dcvs = true; qcom_get_related_cpus(index, policy->cpus); policy->driver_data = data; policy->dvfs_possible_from_any_cpu = true; ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy); if (ret) { dev_err(dev, "Domain-%d failed to read LUT\n", index); return ret; } ret = dev_pm_opp_get_opp_count(cpu_dev); if (ret <= 0) { dev_err(cpu_dev, "Failed to add OPPs\n"); return -ENODEV; } if (policy_has_boost_freq(policy)) { ret = cpufreq_enable_boost_support(); if (ret) dev_warn(cpu_dev, "failed to enable boost: %d\n", ret); } return qcom_cpufreq_hw_lmh_init(policy, index); } static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy) { struct device *cpu_dev = get_cpu_device(policy->cpu); struct qcom_cpufreq_data *data = policy->driver_data; struct resource *res = data->res; void __iomem *base = data->base; dev_pm_opp_remove_all_dynamic(cpu_dev); dev_pm_opp_of_cpumask_remove_table(policy->related_cpus); qcom_cpufreq_hw_lmh_exit(data); kfree(policy->freq_table); kfree(data); iounmap(base); release_mem_region(res->start, resource_size(res)); return 0; } static void qcom_cpufreq_ready(struct cpufreq_policy *policy) { struct qcom_cpufreq_data *data = policy->driver_data; if (data->throttle_irq >= 0) enable_irq(data->throttle_irq); } static struct freq_attr *qcom_cpufreq_hw_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, &cpufreq_freq_attr_scaling_boost_freqs, NULL }; static struct cpufreq_driver cpufreq_qcom_hw_driver = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_HAVE_GOVERNOR_PER_POLICY | CPUFREQ_IS_COOLING_DEV, .verify = cpufreq_generic_frequency_table_verify, .target_index = qcom_cpufreq_hw_target_index, .get = qcom_cpufreq_hw_get, .init = qcom_cpufreq_hw_cpu_init, .exit = qcom_cpufreq_hw_cpu_exit, .online = qcom_cpufreq_hw_cpu_online, .offline = qcom_cpufreq_hw_cpu_offline, .register_em = cpufreq_register_em_with_opp, .fast_switch = qcom_cpufreq_hw_fast_switch, .name = "qcom-cpufreq-hw", .attr = qcom_cpufreq_hw_attr, .ready = qcom_cpufreq_ready, }; static unsigned long qcom_cpufreq_hw_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct qcom_cpufreq_data *data = container_of(hw, struct qcom_cpufreq_data, cpu_clk); return qcom_lmh_get_throttle_freq(data); } static const struct clk_ops qcom_cpufreq_hw_clk_ops = { .recalc_rate = qcom_cpufreq_hw_recalc_rate, }; static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev) { struct clk_hw_onecell_data *clk_data; struct device *dev = &pdev->dev; struct device_node *soc_node; struct device *cpu_dev; struct clk *clk; int ret, i, num_domains, reg_sz; clk = clk_get(dev, "xo"); if (IS_ERR(clk)) return PTR_ERR(clk); xo_rate = clk_get_rate(clk); clk_put(clk); clk = clk_get(dev, "alternate"); if (IS_ERR(clk)) return PTR_ERR(clk); cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV; clk_put(clk); cpufreq_qcom_hw_driver.driver_data = pdev; /* Check for optional interconnect paths on CPU0 */ cpu_dev = get_cpu_device(0); if (!cpu_dev) return -EPROBE_DEFER; ret = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL); if (ret) return ret; /* Allocate qcom_cpufreq_data based on the available frequency domains in DT */ soc_node = of_get_parent(dev->of_node); if (!soc_node) return -EINVAL; ret = of_property_read_u32(soc_node, "#address-cells", ®_sz); if (ret) goto of_exit; ret = of_property_read_u32(soc_node, "#size-cells", &i); if (ret) goto of_exit; reg_sz += i; num_domains = of_property_count_elems_of_size(dev->of_node, "reg", sizeof(u32) * reg_sz); if (num_domains <= 0) return num_domains; qcom_cpufreq.data = devm_kzalloc(dev, sizeof(struct qcom_cpufreq_data) * num_domains, GFP_KERNEL); if (!qcom_cpufreq.data) return -ENOMEM; qcom_cpufreq.soc_data = of_device_get_match_data(dev); if (!qcom_cpufreq.soc_data) return -ENODEV; clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, num_domains), GFP_KERNEL); if (!clk_data) return -ENOMEM; clk_data->num = num_domains; for (i = 0; i < num_domains; i++) { struct qcom_cpufreq_data *data = &qcom_cpufreq.data[i]; struct clk_init_data clk_init = {}; struct resource *res; void __iomem *base; base = devm_platform_get_and_ioremap_resource(pdev, i, &res); if (IS_ERR(base)) { dev_err(dev, "Failed to map resource %pR\n", res); return PTR_ERR(base); } data->base = base; data->res = res; /* Register CPU clock for each frequency domain */ clk_init.name = kasprintf(GFP_KERNEL, "qcom_cpufreq%d", i); if (!clk_init.name) return -ENOMEM; clk_init.flags = CLK_GET_RATE_NOCACHE; clk_init.ops = &qcom_cpufreq_hw_clk_ops; data->cpu_clk.init = &clk_init; ret = devm_clk_hw_register(dev, &data->cpu_clk); if (ret < 0) { dev_err(dev, "Failed to register clock %d: %d\n", i, ret); kfree(clk_init.name); return ret; } clk_data->hws[i] = &data->cpu_clk; kfree(clk_init.name); } ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data); if (ret < 0) { dev_err(dev, "Failed to add clock provider\n"); return ret; } ret = cpufreq_register_driver(&cpufreq_qcom_hw_driver); if (ret) dev_err(dev, "CPUFreq HW driver failed to register\n"); else dev_dbg(dev, "QCOM CPUFreq HW driver initialized\n"); of_exit: of_node_put(soc_node); return ret; } static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev) { cpufreq_unregister_driver(&cpufreq_qcom_hw_driver); return 0; } static struct platform_driver qcom_cpufreq_hw_driver = { .probe = qcom_cpufreq_hw_driver_probe, .remove = qcom_cpufreq_hw_driver_remove, .driver = { .name = "qcom-cpufreq-hw", .of_match_table = qcom_cpufreq_hw_match, }, }; static int __init qcom_cpufreq_hw_init(void) { return platform_driver_register(&qcom_cpufreq_hw_driver); } postcore_initcall(qcom_cpufreq_hw_init); static void __exit qcom_cpufreq_hw_exit(void) { platform_driver_unregister(&qcom_cpufreq_hw_driver); } module_exit(qcom_cpufreq_hw_exit); MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1