Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tudor-Dan Ambarus | 3115 | 50.69% | 3 | 8.33% |
Radu Alexe | 1590 | 25.87% | 3 | 8.33% |
Iuliana Prodan | 988 | 16.08% | 8 | 22.22% |
Horia Geantă | 307 | 5.00% | 11 | 30.56% |
Herbert Xu | 68 | 1.11% | 3 | 8.33% |
Michael Walle | 22 | 0.36% | 1 | 2.78% |
Fuqian Huang | 15 | 0.24% | 1 | 2.78% |
Gaurav Jain | 14 | 0.23% | 1 | 2.78% |
Waiman Long | 14 | 0.23% | 1 | 2.78% |
Fabio Estevam | 4 | 0.07% | 1 | 2.78% |
Andrey Smirnov | 4 | 0.07% | 1 | 2.78% |
Kim Phillips | 3 | 0.05% | 1 | 2.78% |
Lee Jones | 1 | 0.02% | 1 | 2.78% |
Total | 6145 | 36 |
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * caam - Freescale FSL CAAM support for Public Key Cryptography * * Copyright 2016 Freescale Semiconductor, Inc. * Copyright 2018-2019 NXP * * There is no Shared Descriptor for PKC so that the Job Descriptor must carry * all the desired key parameters, input and output pointers. */ #include "compat.h" #include "regs.h" #include "intern.h" #include "jr.h" #include "error.h" #include "desc_constr.h" #include "sg_sw_sec4.h" #include "caampkc.h" #include <linux/dma-mapping.h> #include <linux/kernel.h> #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB) #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \ SIZEOF_RSA_PRIV_F1_PDB) #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \ SIZEOF_RSA_PRIV_F2_PDB) #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \ SIZEOF_RSA_PRIV_F3_PDB) #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */ /* buffer filled with zeros, used for padding */ static u8 *zero_buffer; /* * variable used to avoid double free of resources in case * algorithm registration was unsuccessful */ static bool init_done; struct caam_akcipher_alg { struct akcipher_alg akcipher; bool registered; }; static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req) { struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE); if (edesc->sec4_sg_bytes) dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, DMA_TO_DEVICE); } static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct rsa_pub_pdb *pdb = &edesc->pdb.pub; dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); } static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); } static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; size_t p_sz = key->p_sz; size_t q_sz = key->q_sz; dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); } static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; size_t p_sz = key->p_sz; size_t q_sz = key->q_sz; dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); } /* RSA Job Completion handler */ static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) { struct akcipher_request *req = context; struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); struct rsa_edesc *edesc; int ecode = 0; bool has_bklog; if (err) ecode = caam_jr_strstatus(dev, err); edesc = req_ctx->edesc; has_bklog = edesc->bklog; rsa_pub_unmap(dev, edesc, req); rsa_io_unmap(dev, edesc, req); kfree(edesc); /* * If no backlog flag, the completion of the request is done * by CAAM, not crypto engine. */ if (!has_bklog) akcipher_request_complete(req, ecode); else crypto_finalize_akcipher_request(jrp->engine, req, ecode); } static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err, void *context) { struct akcipher_request *req = context; struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); struct rsa_edesc *edesc; int ecode = 0; bool has_bklog; if (err) ecode = caam_jr_strstatus(dev, err); edesc = req_ctx->edesc; has_bklog = edesc->bklog; switch (key->priv_form) { case FORM1: rsa_priv_f1_unmap(dev, edesc, req); break; case FORM2: rsa_priv_f2_unmap(dev, edesc, req); break; case FORM3: rsa_priv_f3_unmap(dev, edesc, req); } rsa_io_unmap(dev, edesc, req); kfree(edesc); /* * If no backlog flag, the completion of the request is done * by CAAM, not crypto engine. */ if (!has_bklog) akcipher_request_complete(req, ecode); else crypto_finalize_akcipher_request(jrp->engine, req, ecode); } /** * caam_rsa_count_leading_zeros - Count leading zeros, need it to strip, * from a given scatterlist * * @sgl : scatterlist to count zeros from * @nbytes: number of zeros, in bytes, to strip * @flags : operation flags */ static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, unsigned int nbytes, unsigned int flags) { struct sg_mapping_iter miter; int lzeros, ents; unsigned int len; unsigned int tbytes = nbytes; const u8 *buff; ents = sg_nents_for_len(sgl, nbytes); if (ents < 0) return ents; sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); lzeros = 0; len = 0; while (nbytes > 0) { /* do not strip more than given bytes */ while (len && !*buff && lzeros < nbytes) { lzeros++; len--; buff++; } if (len && *buff) break; sg_miter_next(&miter); buff = miter.addr; len = miter.length; nbytes -= lzeros; lzeros = 0; } miter.consumed = lzeros; sg_miter_stop(&miter); nbytes -= lzeros; return tbytes - nbytes; } static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, size_t desclen) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct device *dev = ctx->dev; struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); struct caam_rsa_key *key = &ctx->key; struct rsa_edesc *edesc; gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; int src_nents, dst_nents; int mapped_src_nents, mapped_dst_nents; unsigned int diff_size = 0; int lzeros; if (req->src_len > key->n_sz) { /* * strip leading zeros and * return the number of zeros to skip */ lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len - key->n_sz, sg_flags); if (lzeros < 0) return ERR_PTR(lzeros); req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src, lzeros); req_ctx->fixup_src_len = req->src_len - lzeros; } else { /* * input src is less then n key modulus, * so there will be zero padding */ diff_size = key->n_sz - req->src_len; req_ctx->fixup_src = req->src; req_ctx->fixup_src_len = req->src_len; } src_nents = sg_nents_for_len(req_ctx->fixup_src, req_ctx->fixup_src_len); dst_nents = sg_nents_for_len(req->dst, req->dst_len); mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); if (unlikely(!mapped_src_nents)) { dev_err(dev, "unable to map source\n"); return ERR_PTR(-ENOMEM); } mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); if (unlikely(!mapped_dst_nents)) { dev_err(dev, "unable to map destination\n"); goto src_fail; } if (!diff_size && mapped_src_nents == 1) sec4_sg_len = 0; /* no need for an input hw s/g table */ else sec4_sg_len = mapped_src_nents + !!diff_size; sec4_sg_index = sec4_sg_len; if (mapped_dst_nents > 1) sec4_sg_len += pad_sg_nents(mapped_dst_nents); else sec4_sg_len = pad_sg_nents(sec4_sg_len); sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); /* allocate space for base edesc, hw desc commands and link tables */ edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, flags); if (!edesc) goto dst_fail; edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; if (diff_size) dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size, 0); if (sec4_sg_index) sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len, edesc->sec4_sg + !!diff_size, 0); if (mapped_dst_nents > 1) sg_to_sec4_sg_last(req->dst, req->dst_len, edesc->sec4_sg + sec4_sg_index, 0); /* Save nents for later use in Job Descriptor */ edesc->src_nents = src_nents; edesc->dst_nents = dst_nents; req_ctx->edesc = edesc; if (!sec4_sg_bytes) return edesc; edesc->mapped_src_nents = mapped_src_nents; edesc->mapped_dst_nents = mapped_dst_nents; edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { dev_err(dev, "unable to map S/G table\n"); goto sec4_sg_fail; } edesc->sec4_sg_bytes = sec4_sg_bytes; print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ", DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, edesc->sec4_sg_bytes, 1); return edesc; sec4_sg_fail: kfree(edesc); dst_fail: dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); src_fail: dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); return ERR_PTR(-ENOMEM); } static int akcipher_do_one_req(struct crypto_engine *engine, void *areq) { struct akcipher_request *req = container_of(areq, struct akcipher_request, base); struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct device *jrdev = ctx->dev; u32 *desc = req_ctx->edesc->hw_desc; int ret; req_ctx->edesc->bklog = true; ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req); if (ret == -ENOSPC && engine->retry_support) return ret; if (ret != -EINPROGRESS) { rsa_pub_unmap(jrdev, req_ctx->edesc, req); rsa_io_unmap(jrdev, req_ctx->edesc, req); kfree(req_ctx->edesc); } else { ret = 0; } return ret; } static int set_rsa_pub_pdb(struct akcipher_request *req, struct rsa_edesc *edesc) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct device *dev = ctx->dev; struct rsa_pub_pdb *pdb = &edesc->pdb.pub; int sec4_sg_index = 0; pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->n_dma)) { dev_err(dev, "Unable to map RSA modulus memory\n"); return -ENOMEM; } pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->e_dma)) { dev_err(dev, "Unable to map RSA public exponent memory\n"); dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); return -ENOMEM; } if (edesc->mapped_src_nents > 1) { pdb->sgf |= RSA_PDB_SGF_F; pdb->f_dma = edesc->sec4_sg_dma; sec4_sg_index += edesc->mapped_src_nents; } else { pdb->f_dma = sg_dma_address(req_ctx->fixup_src); } if (edesc->mapped_dst_nents > 1) { pdb->sgf |= RSA_PDB_SGF_G; pdb->g_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); } else { pdb->g_dma = sg_dma_address(req->dst); } pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; pdb->f_len = req_ctx->fixup_src_len; return 0; } static int set_rsa_priv_f1_pdb(struct akcipher_request *req, struct rsa_edesc *edesc) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct device *dev = ctx->dev; struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; int sec4_sg_index = 0; pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->n_dma)) { dev_err(dev, "Unable to map modulus memory\n"); return -ENOMEM; } pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->d_dma)) { dev_err(dev, "Unable to map RSA private exponent memory\n"); dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); return -ENOMEM; } if (edesc->mapped_src_nents > 1) { pdb->sgf |= RSA_PRIV_PDB_SGF_G; pdb->g_dma = edesc->sec4_sg_dma; sec4_sg_index += edesc->mapped_src_nents; } else { struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); pdb->g_dma = sg_dma_address(req_ctx->fixup_src); } if (edesc->mapped_dst_nents > 1) { pdb->sgf |= RSA_PRIV_PDB_SGF_F; pdb->f_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); } else { pdb->f_dma = sg_dma_address(req->dst); } pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; return 0; } static int set_rsa_priv_f2_pdb(struct akcipher_request *req, struct rsa_edesc *edesc) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct device *dev = ctx->dev; struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; int sec4_sg_index = 0; size_t p_sz = key->p_sz; size_t q_sz = key->q_sz; pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->d_dma)) { dev_err(dev, "Unable to map RSA private exponent memory\n"); return -ENOMEM; } pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->p_dma)) { dev_err(dev, "Unable to map RSA prime factor p memory\n"); goto unmap_d; } pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->q_dma)) { dev_err(dev, "Unable to map RSA prime factor q memory\n"); goto unmap_p; } pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, pdb->tmp1_dma)) { dev_err(dev, "Unable to map RSA tmp1 memory\n"); goto unmap_q; } pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, pdb->tmp2_dma)) { dev_err(dev, "Unable to map RSA tmp2 memory\n"); goto unmap_tmp1; } if (edesc->mapped_src_nents > 1) { pdb->sgf |= RSA_PRIV_PDB_SGF_G; pdb->g_dma = edesc->sec4_sg_dma; sec4_sg_index += edesc->mapped_src_nents; } else { struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); pdb->g_dma = sg_dma_address(req_ctx->fixup_src); } if (edesc->mapped_dst_nents > 1) { pdb->sgf |= RSA_PRIV_PDB_SGF_F; pdb->f_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); } else { pdb->f_dma = sg_dma_address(req->dst); } pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; return 0; unmap_tmp1: dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); unmap_q: dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); unmap_p: dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); unmap_d: dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); return -ENOMEM; } static int set_rsa_priv_f3_pdb(struct akcipher_request *req, struct rsa_edesc *edesc) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct device *dev = ctx->dev; struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; int sec4_sg_index = 0; size_t p_sz = key->p_sz; size_t q_sz = key->q_sz; pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->p_dma)) { dev_err(dev, "Unable to map RSA prime factor p memory\n"); return -ENOMEM; } pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->q_dma)) { dev_err(dev, "Unable to map RSA prime factor q memory\n"); goto unmap_p; } pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->dp_dma)) { dev_err(dev, "Unable to map RSA exponent dp memory\n"); goto unmap_q; } pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->dq_dma)) { dev_err(dev, "Unable to map RSA exponent dq memory\n"); goto unmap_dp; } pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); if (dma_mapping_error(dev, pdb->c_dma)) { dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); goto unmap_dq; } pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, pdb->tmp1_dma)) { dev_err(dev, "Unable to map RSA tmp1 memory\n"); goto unmap_qinv; } pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, pdb->tmp2_dma)) { dev_err(dev, "Unable to map RSA tmp2 memory\n"); goto unmap_tmp1; } if (edesc->mapped_src_nents > 1) { pdb->sgf |= RSA_PRIV_PDB_SGF_G; pdb->g_dma = edesc->sec4_sg_dma; sec4_sg_index += edesc->mapped_src_nents; } else { struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); pdb->g_dma = sg_dma_address(req_ctx->fixup_src); } if (edesc->mapped_dst_nents > 1) { pdb->sgf |= RSA_PRIV_PDB_SGF_F; pdb->f_dma = edesc->sec4_sg_dma + sec4_sg_index * sizeof(struct sec4_sg_entry); } else { pdb->f_dma = sg_dma_address(req->dst); } pdb->sgf |= key->n_sz; pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; return 0; unmap_tmp1: dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); unmap_qinv: dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); unmap_dq: dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); unmap_dp: dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); unmap_q: dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); unmap_p: dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); return -ENOMEM; } static int akcipher_enqueue_req(struct device *jrdev, void (*cbk)(struct device *jrdev, u32 *desc, u32 err, void *context), struct akcipher_request *req) { struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); struct rsa_edesc *edesc = req_ctx->edesc; u32 *desc = edesc->hw_desc; int ret; req_ctx->akcipher_op_done = cbk; /* * Only the backlog request are sent to crypto-engine since the others * can be handled by CAAM, if free, especially since JR has up to 1024 * entries (more than the 10 entries from crypto-engine). */ if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine, req); else ret = caam_jr_enqueue(jrdev, desc, cbk, req); if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { switch (key->priv_form) { case FORM1: rsa_priv_f1_unmap(jrdev, edesc, req); break; case FORM2: rsa_priv_f2_unmap(jrdev, edesc, req); break; case FORM3: rsa_priv_f3_unmap(jrdev, edesc, req); break; default: rsa_pub_unmap(jrdev, edesc, req); } rsa_io_unmap(jrdev, edesc, req); kfree(edesc); } return ret; } static int caam_rsa_enc(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; struct device *jrdev = ctx->dev; struct rsa_edesc *edesc; int ret; if (unlikely(!key->n || !key->e)) return -EINVAL; if (req->dst_len < key->n_sz) { req->dst_len = key->n_sz; dev_err(jrdev, "Output buffer length less than parameter n\n"); return -EOVERFLOW; } /* Allocate extended descriptor */ edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Set RSA Encrypt Protocol Data Block */ ret = set_rsa_pub_pdb(req, edesc); if (ret) goto init_fail; /* Initialize Job Descriptor */ init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); return akcipher_enqueue_req(jrdev, rsa_pub_done, req); init_fail: rsa_io_unmap(jrdev, edesc, req); kfree(edesc); return ret; } static int caam_rsa_dec_priv_f1(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct device *jrdev = ctx->dev; struct rsa_edesc *edesc; int ret; /* Allocate extended descriptor */ edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ ret = set_rsa_priv_f1_pdb(req, edesc); if (ret) goto init_fail; /* Initialize Job Descriptor */ init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); init_fail: rsa_io_unmap(jrdev, edesc, req); kfree(edesc); return ret; } static int caam_rsa_dec_priv_f2(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct device *jrdev = ctx->dev; struct rsa_edesc *edesc; int ret; /* Allocate extended descriptor */ edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ ret = set_rsa_priv_f2_pdb(req, edesc); if (ret) goto init_fail; /* Initialize Job Descriptor */ init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); init_fail: rsa_io_unmap(jrdev, edesc, req); kfree(edesc); return ret; } static int caam_rsa_dec_priv_f3(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct device *jrdev = ctx->dev; struct rsa_edesc *edesc; int ret; /* Allocate extended descriptor */ edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ ret = set_rsa_priv_f3_pdb(req, edesc); if (ret) goto init_fail; /* Initialize Job Descriptor */ init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); init_fail: rsa_io_unmap(jrdev, edesc, req); kfree(edesc); return ret; } static int caam_rsa_dec(struct akcipher_request *req) { struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; int ret; if (unlikely(!key->n || !key->d)) return -EINVAL; if (req->dst_len < key->n_sz) { req->dst_len = key->n_sz; dev_err(ctx->dev, "Output buffer length less than parameter n\n"); return -EOVERFLOW; } if (key->priv_form == FORM3) ret = caam_rsa_dec_priv_f3(req); else if (key->priv_form == FORM2) ret = caam_rsa_dec_priv_f2(req); else ret = caam_rsa_dec_priv_f1(req); return ret; } static void caam_rsa_free_key(struct caam_rsa_key *key) { kfree_sensitive(key->d); kfree_sensitive(key->p); kfree_sensitive(key->q); kfree_sensitive(key->dp); kfree_sensitive(key->dq); kfree_sensitive(key->qinv); kfree_sensitive(key->tmp1); kfree_sensitive(key->tmp2); kfree(key->e); kfree(key->n); memset(key, 0, sizeof(*key)); } static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) { while (!**ptr && *nbytes) { (*ptr)++; (*nbytes)--; } } /** * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. * dP, dQ and qInv could decode to less than corresponding p, q length, as the * BER-encoding requires that the minimum number of bytes be used to encode the * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate * length. * * @ptr : pointer to {dP, dQ, qInv} CRT member * @nbytes: length in bytes of {dP, dQ, qInv} CRT member * @dstlen: length in bytes of corresponding p or q prime factor */ static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) { u8 *dst; caam_rsa_drop_leading_zeros(&ptr, &nbytes); if (!nbytes) return NULL; dst = kzalloc(dstlen, GFP_KERNEL); if (!dst) return NULL; memcpy(dst + (dstlen - nbytes), ptr, nbytes); return dst; } /** * caam_read_raw_data - Read a raw byte stream as a positive integer. * The function skips buffer's leading zeros, copies the remained data * to a buffer allocated in the GFP_KERNEL zone and returns * the address of the new buffer. * * @buf : The data to read * @nbytes: The amount of data to read */ static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) { caam_rsa_drop_leading_zeros(&buf, nbytes); if (!*nbytes) return NULL; return kmemdup(buf, *nbytes, GFP_KERNEL); } static int caam_rsa_check_key_length(unsigned int len) { if (len > 4096) return -EINVAL; return 0; } static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct rsa_key raw_key = {NULL}; struct caam_rsa_key *rsa_key = &ctx->key; int ret; /* Free the old RSA key if any */ caam_rsa_free_key(rsa_key); ret = rsa_parse_pub_key(&raw_key, key, keylen); if (ret) return ret; /* Copy key in DMA zone */ rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_KERNEL); if (!rsa_key->e) goto err; /* * Skip leading zeros and copy the positive integer to a buffer * allocated in the GFP_KERNEL zone. The decryption descriptor * expects a positive integer for the RSA modulus and uses its length as * decryption output length. */ rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); if (!rsa_key->n) goto err; if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { caam_rsa_free_key(rsa_key); return -EINVAL; } rsa_key->e_sz = raw_key.e_sz; rsa_key->n_sz = raw_key.n_sz; return 0; err: caam_rsa_free_key(rsa_key); return -ENOMEM; } static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, struct rsa_key *raw_key) { struct caam_rsa_key *rsa_key = &ctx->key; size_t p_sz = raw_key->p_sz; size_t q_sz = raw_key->q_sz; unsigned aligned_size; rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); if (!rsa_key->p) return; rsa_key->p_sz = p_sz; rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); if (!rsa_key->q) goto free_p; rsa_key->q_sz = q_sz; aligned_size = ALIGN(raw_key->p_sz, dma_get_cache_alignment()); rsa_key->tmp1 = kzalloc(aligned_size, GFP_KERNEL); if (!rsa_key->tmp1) goto free_q; aligned_size = ALIGN(raw_key->q_sz, dma_get_cache_alignment()); rsa_key->tmp2 = kzalloc(aligned_size, GFP_KERNEL); if (!rsa_key->tmp2) goto free_tmp1; rsa_key->priv_form = FORM2; rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); if (!rsa_key->dp) goto free_tmp2; rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); if (!rsa_key->dq) goto free_dp; rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, q_sz); if (!rsa_key->qinv) goto free_dq; rsa_key->priv_form = FORM3; return; free_dq: kfree_sensitive(rsa_key->dq); free_dp: kfree_sensitive(rsa_key->dp); free_tmp2: kfree_sensitive(rsa_key->tmp2); free_tmp1: kfree_sensitive(rsa_key->tmp1); free_q: kfree_sensitive(rsa_key->q); free_p: kfree_sensitive(rsa_key->p); } static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, unsigned int keylen) { struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct rsa_key raw_key = {NULL}; struct caam_rsa_key *rsa_key = &ctx->key; int ret; /* Free the old RSA key if any */ caam_rsa_free_key(rsa_key); ret = rsa_parse_priv_key(&raw_key, key, keylen); if (ret) return ret; /* Copy key in DMA zone */ rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_KERNEL); if (!rsa_key->d) goto err; rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_KERNEL); if (!rsa_key->e) goto err; /* * Skip leading zeros and copy the positive integer to a buffer * allocated in the GFP_KERNEL zone. The decryption descriptor * expects a positive integer for the RSA modulus and uses its length as * decryption output length. */ rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); if (!rsa_key->n) goto err; if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { caam_rsa_free_key(rsa_key); return -EINVAL; } rsa_key->d_sz = raw_key.d_sz; rsa_key->e_sz = raw_key.e_sz; rsa_key->n_sz = raw_key.n_sz; caam_rsa_set_priv_key_form(ctx, &raw_key); return 0; err: caam_rsa_free_key(rsa_key); return -ENOMEM; } static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) { struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); return ctx->key.n_sz; } /* Per session pkc's driver context creation function */ static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) { struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); akcipher_set_reqsize(tfm, sizeof(struct caam_rsa_req_ctx)); ctx->dev = caam_jr_alloc(); if (IS_ERR(ctx->dev)) { pr_err("Job Ring Device allocation for transform failed\n"); return PTR_ERR(ctx->dev); } ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer, CAAM_RSA_MAX_INPUT_SIZE - 1, DMA_TO_DEVICE); if (dma_mapping_error(ctx->dev, ctx->padding_dma)) { dev_err(ctx->dev, "unable to map padding\n"); caam_jr_free(ctx->dev); return -ENOMEM; } ctx->enginectx.op.do_one_request = akcipher_do_one_req; return 0; } /* Per session pkc's driver context cleanup function */ static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) { struct caam_rsa_ctx *ctx = akcipher_tfm_ctx_dma(tfm); struct caam_rsa_key *key = &ctx->key; dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE - 1, DMA_TO_DEVICE); caam_rsa_free_key(key); caam_jr_free(ctx->dev); } static struct caam_akcipher_alg caam_rsa = { .akcipher = { .encrypt = caam_rsa_enc, .decrypt = caam_rsa_dec, .set_pub_key = caam_rsa_set_pub_key, .set_priv_key = caam_rsa_set_priv_key, .max_size = caam_rsa_max_size, .init = caam_rsa_init_tfm, .exit = caam_rsa_exit_tfm, .base = { .cra_name = "rsa", .cra_driver_name = "rsa-caam", .cra_priority = 3000, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct caam_rsa_ctx) + CRYPTO_DMA_PADDING, }, } }; /* Public Key Cryptography module initialization handler */ int caam_pkc_init(struct device *ctrldev) { struct caam_drv_private *priv = dev_get_drvdata(ctrldev); u32 pk_inst, pkha; int err; init_done = false; /* Determine public key hardware accelerator presence. */ if (priv->era < 10) { pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) & CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; } else { pkha = rd_reg32(&priv->ctrl->vreg.pkha); pk_inst = pkha & CHA_VER_NUM_MASK; /* * Newer CAAMs support partially disabled functionality. If this is the * case, the number is non-zero, but this bit is set to indicate that * no encryption or decryption is supported. Only signing and verifying * is supported. */ if (pkha & CHA_VER_MISC_PKHA_NO_CRYPT) pk_inst = 0; } /* Do not register algorithms if PKHA is not present. */ if (!pk_inst) return 0; /* allocate zero buffer, used for padding input */ zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_KERNEL); if (!zero_buffer) return -ENOMEM; err = crypto_register_akcipher(&caam_rsa.akcipher); if (err) { kfree(zero_buffer); dev_warn(ctrldev, "%s alg registration failed\n", caam_rsa.akcipher.base.cra_driver_name); } else { init_done = true; caam_rsa.registered = true; dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); } return err; } void caam_pkc_exit(void) { if (!init_done) return; if (caam_rsa.registered) crypto_unregister_akcipher(&caam_rsa.akcipher); kfree(zero_buffer); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1