Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lionel Debieve | 7188 | 87.20% | 8 | 30.77% |
Linus Walleij | 835 | 10.13% | 3 | 11.54% |
Corentin Labbe | 101 | 1.23% | 2 | 7.69% |
Etienne Carriere | 58 | 0.70% | 2 | 7.69% |
Arnd Bergmann | 28 | 0.34% | 1 | 3.85% |
Peter Ujfalusi | 9 | 0.11% | 1 | 3.85% |
Herbert Xu | 8 | 0.10% | 4 | 15.38% |
Kees Cook | 5 | 0.06% | 1 | 3.85% |
Eric Biggers | 4 | 0.05% | 1 | 3.85% |
Krzysztof Kozlowski | 4 | 0.05% | 1 | 3.85% |
Thomas Gleixner | 2 | 0.02% | 1 | 3.85% |
Liu Shixin | 1 | 0.01% | 1 | 3.85% |
Total | 8243 | 26 |
// SPDX-License-Identifier: GPL-2.0-only /* * This file is part of STM32 Crypto driver for Linux. * * Copyright (C) 2017, STMicroelectronics - All Rights Reserved * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/crypto.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <crypto/engine.h> #include <crypto/hash.h> #include <crypto/md5.h> #include <crypto/scatterwalk.h> #include <crypto/sha1.h> #include <crypto/sha2.h> #include <crypto/internal/hash.h> #define HASH_CR 0x00 #define HASH_DIN 0x04 #define HASH_STR 0x08 #define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04)) #define HASH_IMR 0x20 #define HASH_SR 0x24 #define HASH_CSR(x) (0x0F8 + ((x) * 0x04)) #define HASH_HREG(x) (0x310 + ((x) * 0x04)) #define HASH_HWCFGR 0x3F0 #define HASH_VER 0x3F4 #define HASH_ID 0x3F8 /* Control Register */ #define HASH_CR_INIT BIT(2) #define HASH_CR_DMAE BIT(3) #define HASH_CR_DATATYPE_POS 4 #define HASH_CR_MODE BIT(6) #define HASH_CR_MDMAT BIT(13) #define HASH_CR_DMAA BIT(14) #define HASH_CR_LKEY BIT(16) #define HASH_CR_ALGO_SHA1 0x0 #define HASH_CR_ALGO_MD5 0x80 #define HASH_CR_ALGO_SHA224 0x40000 #define HASH_CR_ALGO_SHA256 0x40080 #define HASH_CR_UX500_EMPTYMSG BIT(20) #define HASH_CR_UX500_ALGO_SHA1 BIT(7) #define HASH_CR_UX500_ALGO_SHA256 0x0 /* Interrupt */ #define HASH_DINIE BIT(0) #define HASH_DCIE BIT(1) /* Interrupt Mask */ #define HASH_MASK_CALC_COMPLETION BIT(0) #define HASH_MASK_DATA_INPUT BIT(1) /* Context swap register */ #define HASH_CSR_REGISTER_NUMBER 53 /* Status Flags */ #define HASH_SR_DATA_INPUT_READY BIT(0) #define HASH_SR_OUTPUT_READY BIT(1) #define HASH_SR_DMA_ACTIVE BIT(2) #define HASH_SR_BUSY BIT(3) /* STR Register */ #define HASH_STR_NBLW_MASK GENMASK(4, 0) #define HASH_STR_DCAL BIT(8) #define HASH_FLAGS_INIT BIT(0) #define HASH_FLAGS_OUTPUT_READY BIT(1) #define HASH_FLAGS_CPU BIT(2) #define HASH_FLAGS_DMA_READY BIT(3) #define HASH_FLAGS_DMA_ACTIVE BIT(4) #define HASH_FLAGS_HMAC_INIT BIT(5) #define HASH_FLAGS_HMAC_FINAL BIT(6) #define HASH_FLAGS_HMAC_KEY BIT(7) #define HASH_FLAGS_FINAL BIT(15) #define HASH_FLAGS_FINUP BIT(16) #define HASH_FLAGS_ALGO_MASK GENMASK(21, 18) #define HASH_FLAGS_MD5 BIT(18) #define HASH_FLAGS_SHA1 BIT(19) #define HASH_FLAGS_SHA224 BIT(20) #define HASH_FLAGS_SHA256 BIT(21) #define HASH_FLAGS_ERRORS BIT(22) #define HASH_FLAGS_HMAC BIT(23) #define HASH_OP_UPDATE 1 #define HASH_OP_FINAL 2 enum stm32_hash_data_format { HASH_DATA_32_BITS = 0x0, HASH_DATA_16_BITS = 0x1, HASH_DATA_8_BITS = 0x2, HASH_DATA_1_BIT = 0x3 }; #define HASH_BUFLEN 256 #define HASH_LONG_KEY 64 #define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8) #define HASH_QUEUE_LENGTH 16 #define HASH_DMA_THRESHOLD 50 #define HASH_AUTOSUSPEND_DELAY 50 struct stm32_hash_ctx { struct crypto_engine_ctx enginectx; struct stm32_hash_dev *hdev; struct crypto_shash *xtfm; unsigned long flags; u8 key[HASH_MAX_KEY_SIZE]; int keylen; }; struct stm32_hash_request_ctx { struct stm32_hash_dev *hdev; unsigned long flags; unsigned long op; u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32)); size_t digcnt; size_t bufcnt; size_t buflen; /* DMA */ struct scatterlist *sg; unsigned int offset; unsigned int total; struct scatterlist sg_key; dma_addr_t dma_addr; size_t dma_ct; int nents; u8 data_type; u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32)); /* Export Context */ u32 *hw_context; }; struct stm32_hash_algs_info { struct ahash_alg *algs_list; size_t size; }; struct stm32_hash_pdata { struct stm32_hash_algs_info *algs_info; size_t algs_info_size; bool has_sr; bool has_mdmat; bool broken_emptymsg; bool ux500; }; struct stm32_hash_dev { struct list_head list; struct device *dev; struct clk *clk; struct reset_control *rst; void __iomem *io_base; phys_addr_t phys_base; u32 dma_mode; u32 dma_maxburst; bool polled; struct ahash_request *req; struct crypto_engine *engine; int err; unsigned long flags; struct dma_chan *dma_lch; struct completion dma_completion; const struct stm32_hash_pdata *pdata; }; struct stm32_hash_drv { struct list_head dev_list; spinlock_t lock; /* List protection access */ }; static struct stm32_hash_drv stm32_hash = { .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list), .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock), }; static void stm32_hash_dma_callback(void *param); static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset) { return readl_relaxed(hdev->io_base + offset); } static inline void stm32_hash_write(struct stm32_hash_dev *hdev, u32 offset, u32 value) { writel_relaxed(value, hdev->io_base + offset); } static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev) { u32 status; /* The Ux500 lacks the special status register, we poll the DCAL bit instead */ if (!hdev->pdata->has_sr) return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status, !(status & HASH_STR_DCAL), 10, 10000); return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status, !(status & HASH_SR_BUSY), 10, 10000); } static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length) { u32 reg; reg = stm32_hash_read(hdev, HASH_STR); reg &= ~(HASH_STR_NBLW_MASK); reg |= (8U * ((length) % 4U)); stm32_hash_write(hdev, HASH_STR, reg); } static int stm32_hash_write_key(struct stm32_hash_dev *hdev) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 reg; int keylen = ctx->keylen; void *key = ctx->key; if (keylen) { stm32_hash_set_nblw(hdev, keylen); while (keylen > 0) { stm32_hash_write(hdev, HASH_DIN, *(u32 *)key); keylen -= 4; key += 4; } reg = stm32_hash_read(hdev, HASH_STR); reg |= HASH_STR_DCAL; stm32_hash_write(hdev, HASH_STR, reg); return -EINPROGRESS; } return 0; } static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev, int bufcnt) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm); u32 reg = HASH_CR_INIT; if (!(hdev->flags & HASH_FLAGS_INIT)) { switch (rctx->flags & HASH_FLAGS_ALGO_MASK) { case HASH_FLAGS_MD5: reg |= HASH_CR_ALGO_MD5; break; case HASH_FLAGS_SHA1: if (hdev->pdata->ux500) reg |= HASH_CR_UX500_ALGO_SHA1; else reg |= HASH_CR_ALGO_SHA1; break; case HASH_FLAGS_SHA224: reg |= HASH_CR_ALGO_SHA224; break; case HASH_FLAGS_SHA256: if (hdev->pdata->ux500) reg |= HASH_CR_UX500_ALGO_SHA256; else reg |= HASH_CR_ALGO_SHA256; break; default: reg |= HASH_CR_ALGO_MD5; } reg |= (rctx->data_type << HASH_CR_DATATYPE_POS); if (rctx->flags & HASH_FLAGS_HMAC) { hdev->flags |= HASH_FLAGS_HMAC; reg |= HASH_CR_MODE; if (ctx->keylen > HASH_LONG_KEY) reg |= HASH_CR_LKEY; } /* * On the Ux500 we need to set a special flag to indicate that * the message is zero length. */ if (hdev->pdata->ux500 && bufcnt == 0) reg |= HASH_CR_UX500_EMPTYMSG; if (!hdev->polled) stm32_hash_write(hdev, HASH_IMR, HASH_DCIE); stm32_hash_write(hdev, HASH_CR, reg); hdev->flags |= HASH_FLAGS_INIT; dev_dbg(hdev->dev, "Write Control %x\n", reg); } } static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx) { size_t count; while ((rctx->bufcnt < rctx->buflen) && rctx->total) { count = min(rctx->sg->length - rctx->offset, rctx->total); count = min(count, rctx->buflen - rctx->bufcnt); if (count <= 0) { if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) { rctx->sg = sg_next(rctx->sg); continue; } else { break; } } scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg, rctx->offset, count, 0); rctx->bufcnt += count; rctx->offset += count; rctx->total -= count; if (rctx->offset == rctx->sg->length) { rctx->sg = sg_next(rctx->sg); if (rctx->sg) rctx->offset = 0; else rctx->total = 0; } } } static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev, const u8 *buf, size_t length, int final) { unsigned int count, len32; const u32 *buffer = (const u32 *)buf; u32 reg; if (final) hdev->flags |= HASH_FLAGS_FINAL; len32 = DIV_ROUND_UP(length, sizeof(u32)); dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n", __func__, length, final, len32); hdev->flags |= HASH_FLAGS_CPU; stm32_hash_write_ctrl(hdev, length); if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; if ((hdev->flags & HASH_FLAGS_HMAC) && (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) { hdev->flags |= HASH_FLAGS_HMAC_KEY; stm32_hash_write_key(hdev); if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; } for (count = 0; count < len32; count++) stm32_hash_write(hdev, HASH_DIN, buffer[count]); if (final) { if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; stm32_hash_set_nblw(hdev, length); reg = stm32_hash_read(hdev, HASH_STR); reg |= HASH_STR_DCAL; stm32_hash_write(hdev, HASH_STR, reg); if (hdev->flags & HASH_FLAGS_HMAC) { if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; stm32_hash_write_key(hdev); } return -EINPROGRESS; } return 0; } static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req); int bufcnt, err = 0, final; dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags); final = (rctx->flags & HASH_FLAGS_FINUP); while ((rctx->total >= rctx->buflen) || (rctx->bufcnt + rctx->total >= rctx->buflen)) { stm32_hash_append_sg(rctx); bufcnt = rctx->bufcnt; rctx->bufcnt = 0; err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0); } stm32_hash_append_sg(rctx); if (final) { bufcnt = rctx->bufcnt; rctx->bufcnt = 0; err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 1); /* If we have an IRQ, wait for that, else poll for completion */ if (hdev->polled) { if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; hdev->flags |= HASH_FLAGS_OUTPUT_READY; err = 0; } } return err; } static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev, struct scatterlist *sg, int length, int mdma) { struct dma_async_tx_descriptor *in_desc; dma_cookie_t cookie; u32 reg; int err; in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!in_desc) { dev_err(hdev->dev, "dmaengine_prep_slave error\n"); return -ENOMEM; } reinit_completion(&hdev->dma_completion); in_desc->callback = stm32_hash_dma_callback; in_desc->callback_param = hdev; hdev->flags |= HASH_FLAGS_FINAL; hdev->flags |= HASH_FLAGS_DMA_ACTIVE; reg = stm32_hash_read(hdev, HASH_CR); if (!hdev->pdata->has_mdmat) { if (mdma) reg |= HASH_CR_MDMAT; else reg &= ~HASH_CR_MDMAT; } reg |= HASH_CR_DMAE; stm32_hash_write(hdev, HASH_CR, reg); stm32_hash_set_nblw(hdev, length); cookie = dmaengine_submit(in_desc); err = dma_submit_error(cookie); if (err) return -ENOMEM; dma_async_issue_pending(hdev->dma_lch); if (!wait_for_completion_timeout(&hdev->dma_completion, msecs_to_jiffies(100))) err = -ETIMEDOUT; if (dma_async_is_tx_complete(hdev->dma_lch, cookie, NULL, NULL) != DMA_COMPLETE) err = -ETIMEDOUT; if (err) { dev_err(hdev->dev, "DMA Error %i\n", err); dmaengine_terminate_all(hdev->dma_lch); return err; } return -EINPROGRESS; } static void stm32_hash_dma_callback(void *param) { struct stm32_hash_dev *hdev = param; complete(&hdev->dma_completion); hdev->flags |= HASH_FLAGS_DMA_READY; } static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm); int err; if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) { err = stm32_hash_write_key(hdev); if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; } else { if (!(hdev->flags & HASH_FLAGS_HMAC_KEY)) sg_init_one(&rctx->sg_key, ctx->key, ALIGN(ctx->keylen, sizeof(u32))); rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE); if (rctx->dma_ct == 0) { dev_err(hdev->dev, "dma_map_sg error\n"); return -ENOMEM; } err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0); dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE); } return err; } static int stm32_hash_dma_init(struct stm32_hash_dev *hdev) { struct dma_slave_config dma_conf; struct dma_chan *chan; int err; memset(&dma_conf, 0, sizeof(dma_conf)); dma_conf.direction = DMA_MEM_TO_DEV; dma_conf.dst_addr = hdev->phys_base + HASH_DIN; dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_conf.src_maxburst = hdev->dma_maxburst; dma_conf.dst_maxburst = hdev->dma_maxburst; dma_conf.device_fc = false; chan = dma_request_chan(hdev->dev, "in"); if (IS_ERR(chan)) return PTR_ERR(chan); hdev->dma_lch = chan; err = dmaengine_slave_config(hdev->dma_lch, &dma_conf); if (err) { dma_release_channel(hdev->dma_lch); hdev->dma_lch = NULL; dev_err(hdev->dev, "Couldn't configure DMA slave.\n"); return err; } init_completion(&hdev->dma_completion); return 0; } static int stm32_hash_dma_send(struct stm32_hash_dev *hdev) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req); struct scatterlist sg[1], *tsg; int err = 0, len = 0, reg, ncp = 0; unsigned int i; u32 *buffer = (void *)rctx->buffer; rctx->sg = hdev->req->src; rctx->total = hdev->req->nbytes; rctx->nents = sg_nents(rctx->sg); if (rctx->nents < 0) return -EINVAL; stm32_hash_write_ctrl(hdev, rctx->total); if (hdev->flags & HASH_FLAGS_HMAC) { err = stm32_hash_hmac_dma_send(hdev); if (err != -EINPROGRESS) return err; } for_each_sg(rctx->sg, tsg, rctx->nents, i) { len = sg->length; sg[0] = *tsg; if (sg_is_last(sg)) { if (hdev->dma_mode == 1) { len = (ALIGN(sg->length, 16) - 16); ncp = sg_pcopy_to_buffer( rctx->sg, rctx->nents, rctx->buffer, sg->length - len, rctx->total - sg->length + len); sg->length = len; } else { if (!(IS_ALIGNED(sg->length, sizeof(u32)))) { len = sg->length; sg->length = ALIGN(sg->length, sizeof(u32)); } } } rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1, DMA_TO_DEVICE); if (rctx->dma_ct == 0) { dev_err(hdev->dev, "dma_map_sg error\n"); return -ENOMEM; } err = stm32_hash_xmit_dma(hdev, sg, len, !sg_is_last(sg)); dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE); if (err == -ENOMEM) return err; } if (hdev->dma_mode == 1) { if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; reg = stm32_hash_read(hdev, HASH_CR); reg &= ~HASH_CR_DMAE; reg |= HASH_CR_DMAA; stm32_hash_write(hdev, HASH_CR, reg); if (ncp) { memset(buffer + ncp, 0, DIV_ROUND_UP(ncp, sizeof(u32)) - ncp); writesl(hdev->io_base + HASH_DIN, buffer, DIV_ROUND_UP(ncp, sizeof(u32))); } stm32_hash_set_nblw(hdev, ncp); reg = stm32_hash_read(hdev, HASH_STR); reg |= HASH_STR_DCAL; stm32_hash_write(hdev, HASH_STR, reg); err = -EINPROGRESS; } if (hdev->flags & HASH_FLAGS_HMAC) { if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; err = stm32_hash_hmac_dma_send(hdev); } return err; } static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx) { struct stm32_hash_dev *hdev = NULL, *tmp; spin_lock_bh(&stm32_hash.lock); if (!ctx->hdev) { list_for_each_entry(tmp, &stm32_hash.dev_list, list) { hdev = tmp; break; } ctx->hdev = hdev; } else { hdev = ctx->hdev; } spin_unlock_bh(&stm32_hash.lock); return hdev; } static bool stm32_hash_dma_aligned_data(struct ahash_request *req) { struct scatterlist *sg; struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); int i; if (req->nbytes <= HASH_DMA_THRESHOLD) return false; if (sg_nents(req->src) > 1) { if (hdev->dma_mode == 1) return false; for_each_sg(req->src, sg, sg_nents(req->src), i) { if ((!IS_ALIGNED(sg->length, sizeof(u32))) && (!sg_is_last(sg))) return false; } } if (req->src->offset % 4) return false; return true; } static int stm32_hash_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); rctx->hdev = hdev; rctx->flags = HASH_FLAGS_CPU; rctx->digcnt = crypto_ahash_digestsize(tfm); switch (rctx->digcnt) { case MD5_DIGEST_SIZE: rctx->flags |= HASH_FLAGS_MD5; break; case SHA1_DIGEST_SIZE: rctx->flags |= HASH_FLAGS_SHA1; break; case SHA224_DIGEST_SIZE: rctx->flags |= HASH_FLAGS_SHA224; break; case SHA256_DIGEST_SIZE: rctx->flags |= HASH_FLAGS_SHA256; break; default: return -EINVAL; } rctx->bufcnt = 0; rctx->buflen = HASH_BUFLEN; rctx->total = 0; rctx->offset = 0; rctx->data_type = HASH_DATA_8_BITS; memset(rctx->buffer, 0, HASH_BUFLEN); if (ctx->flags & HASH_FLAGS_HMAC) rctx->flags |= HASH_FLAGS_HMAC; dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags); return 0; } static int stm32_hash_update_req(struct stm32_hash_dev *hdev) { return stm32_hash_update_cpu(hdev); } static int stm32_hash_final_req(struct stm32_hash_dev *hdev) { struct ahash_request *req = hdev->req; struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); int err; int buflen = rctx->bufcnt; rctx->bufcnt = 0; if (!(rctx->flags & HASH_FLAGS_CPU)) err = stm32_hash_dma_send(hdev); else err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1); /* If we have an IRQ, wait for that, else poll for completion */ if (hdev->polled) { if (stm32_hash_wait_busy(hdev)) return -ETIMEDOUT; hdev->flags |= HASH_FLAGS_OUTPUT_READY; /* Caller will call stm32_hash_finish_req() */ err = 0; } return err; } static void stm32_hash_emptymsg_fallback(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash); struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_dev *hdev = rctx->hdev; int ret; dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n", ctx->keylen); if (!ctx->xtfm) { dev_err(hdev->dev, "no fallback engine\n"); return; } if (ctx->keylen) { ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen); if (ret) { dev_err(hdev->dev, "failed to set key ret=%d\n", ret); return; } } ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest); if (ret) dev_err(hdev->dev, "shash digest error\n"); } static void stm32_hash_copy_hash(struct ahash_request *req) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_dev *hdev = rctx->hdev; __be32 *hash = (void *)rctx->digest; unsigned int i, hashsize; if (hdev->pdata->broken_emptymsg && !req->nbytes) return stm32_hash_emptymsg_fallback(req); switch (rctx->flags & HASH_FLAGS_ALGO_MASK) { case HASH_FLAGS_MD5: hashsize = MD5_DIGEST_SIZE; break; case HASH_FLAGS_SHA1: hashsize = SHA1_DIGEST_SIZE; break; case HASH_FLAGS_SHA224: hashsize = SHA224_DIGEST_SIZE; break; case HASH_FLAGS_SHA256: hashsize = SHA256_DIGEST_SIZE; break; default: return; } for (i = 0; i < hashsize / sizeof(u32); i++) { if (hdev->pdata->ux500) hash[i] = cpu_to_be32(stm32_hash_read(hdev, HASH_UX500_HREG(i))); else hash[i] = cpu_to_be32(stm32_hash_read(hdev, HASH_HREG(i))); } } static int stm32_hash_finish(struct ahash_request *req) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); if (!req->result) return -EINVAL; memcpy(req->result, rctx->digest, rctx->digcnt); return 0; } static void stm32_hash_finish_req(struct ahash_request *req, int err) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_dev *hdev = rctx->hdev; if (!err && (HASH_FLAGS_FINAL & hdev->flags)) { stm32_hash_copy_hash(req); err = stm32_hash_finish(req); hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU | HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY | HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC | HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL | HASH_FLAGS_HMAC_KEY); } else { rctx->flags |= HASH_FLAGS_ERRORS; } pm_runtime_mark_last_busy(hdev->dev); pm_runtime_put_autosuspend(hdev->dev); crypto_finalize_hash_request(hdev->engine, req, err); } static int stm32_hash_hw_init(struct stm32_hash_dev *hdev, struct stm32_hash_request_ctx *rctx) { pm_runtime_get_sync(hdev->dev); if (!(HASH_FLAGS_INIT & hdev->flags)) { stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT); stm32_hash_write(hdev, HASH_STR, 0); stm32_hash_write(hdev, HASH_DIN, 0); stm32_hash_write(hdev, HASH_IMR, 0); hdev->err = 0; } return 0; } static int stm32_hash_one_request(struct crypto_engine *engine, void *areq); static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq); static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev, struct ahash_request *req) { return crypto_transfer_hash_request_to_engine(hdev->engine, req); } static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq) { struct ahash_request *req = container_of(areq, struct ahash_request, base); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); struct stm32_hash_request_ctx *rctx; if (!hdev) return -ENODEV; hdev->req = req; rctx = ahash_request_ctx(req); dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n", rctx->op, req->nbytes); return stm32_hash_hw_init(hdev, rctx); } static int stm32_hash_one_request(struct crypto_engine *engine, void *areq) { struct ahash_request *req = container_of(areq, struct ahash_request, base); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); struct stm32_hash_request_ctx *rctx; int err = 0; if (!hdev) return -ENODEV; hdev->req = req; rctx = ahash_request_ctx(req); if (rctx->op == HASH_OP_UPDATE) err = stm32_hash_update_req(hdev); else if (rctx->op == HASH_OP_FINAL) err = stm32_hash_final_req(hdev); if (err != -EINPROGRESS) /* done task will not finish it, so do it here */ stm32_hash_finish_req(req, err); return 0; } static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct stm32_hash_dev *hdev = ctx->hdev; rctx->op = op; return stm32_hash_handle_queue(hdev, req); } static int stm32_hash_update(struct ahash_request *req) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU)) return 0; rctx->total = req->nbytes; rctx->sg = req->src; rctx->offset = 0; if ((rctx->bufcnt + rctx->total < rctx->buflen)) { stm32_hash_append_sg(rctx); return 0; } return stm32_hash_enqueue(req, HASH_OP_UPDATE); } static int stm32_hash_final(struct ahash_request *req) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); rctx->flags |= HASH_FLAGS_FINUP; return stm32_hash_enqueue(req, HASH_OP_FINAL); } static int stm32_hash_finup(struct ahash_request *req) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); int err1, err2; rctx->flags |= HASH_FLAGS_FINUP; if (hdev->dma_lch && stm32_hash_dma_aligned_data(req)) rctx->flags &= ~HASH_FLAGS_CPU; err1 = stm32_hash_update(req); if (err1 == -EINPROGRESS || err1 == -EBUSY) return err1; /* * final() has to be always called to cleanup resources * even if update() failed, except EINPROGRESS */ err2 = stm32_hash_final(req); return err1 ?: err2; } static int stm32_hash_digest(struct ahash_request *req) { return stm32_hash_init(req) ?: stm32_hash_finup(req); } static int stm32_hash_export(struct ahash_request *req, void *out) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); u32 *preg; unsigned int i; int ret; pm_runtime_get_sync(hdev->dev); ret = stm32_hash_wait_busy(hdev); if (ret) return ret; rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER, sizeof(u32), GFP_KERNEL); preg = rctx->hw_context; if (!hdev->pdata->ux500) *preg++ = stm32_hash_read(hdev, HASH_IMR); *preg++ = stm32_hash_read(hdev, HASH_STR); *preg++ = stm32_hash_read(hdev, HASH_CR); for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++) *preg++ = stm32_hash_read(hdev, HASH_CSR(i)); pm_runtime_mark_last_busy(hdev->dev); pm_runtime_put_autosuspend(hdev->dev); memcpy(out, rctx, sizeof(*rctx)); return 0; } static int stm32_hash_import(struct ahash_request *req, const void *in) { struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req); struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req)); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); const u32 *preg = in; u32 reg; unsigned int i; memcpy(rctx, in, sizeof(*rctx)); preg = rctx->hw_context; pm_runtime_get_sync(hdev->dev); if (!hdev->pdata->ux500) stm32_hash_write(hdev, HASH_IMR, *preg++); stm32_hash_write(hdev, HASH_STR, *preg++); stm32_hash_write(hdev, HASH_CR, *preg); reg = *preg++ | HASH_CR_INIT; stm32_hash_write(hdev, HASH_CR, reg); for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++) stm32_hash_write(hdev, HASH_CSR(i), *preg++); pm_runtime_mark_last_busy(hdev->dev); pm_runtime_put_autosuspend(hdev->dev); kfree(rctx->hw_context); return 0; } static int stm32_hash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm); if (keylen <= HASH_MAX_KEY_SIZE) { memcpy(ctx->key, key, keylen); ctx->keylen = keylen; } else { return -ENOMEM; } return 0; } static int stm32_hash_init_fallback(struct crypto_tfm *tfm) { struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm); struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx); const char *name = crypto_tfm_alg_name(tfm); struct crypto_shash *xtfm; /* The fallback is only needed on Ux500 */ if (!hdev->pdata->ux500) return 0; xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(xtfm)) { dev_err(hdev->dev, "failed to allocate %s fallback\n", name); return PTR_ERR(xtfm); } dev_info(hdev->dev, "allocated %s fallback\n", name); ctx->xtfm = xtfm; return 0; } static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, const char *algs_hmac_name) { struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm); crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct stm32_hash_request_ctx)); ctx->keylen = 0; if (algs_hmac_name) ctx->flags |= HASH_FLAGS_HMAC; ctx->enginectx.op.do_one_request = stm32_hash_one_request; ctx->enginectx.op.prepare_request = stm32_hash_prepare_req; ctx->enginectx.op.unprepare_request = NULL; return stm32_hash_init_fallback(tfm); } static int stm32_hash_cra_init(struct crypto_tfm *tfm) { return stm32_hash_cra_init_algs(tfm, NULL); } static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm) { return stm32_hash_cra_init_algs(tfm, "md5"); } static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm) { return stm32_hash_cra_init_algs(tfm, "sha1"); } static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm) { return stm32_hash_cra_init_algs(tfm, "sha224"); } static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm) { return stm32_hash_cra_init_algs(tfm, "sha256"); } static void stm32_hash_cra_exit(struct crypto_tfm *tfm) { struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->xtfm) crypto_free_shash(ctx->xtfm); } static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id) { struct stm32_hash_dev *hdev = dev_id; if (HASH_FLAGS_CPU & hdev->flags) { if (HASH_FLAGS_OUTPUT_READY & hdev->flags) { hdev->flags &= ~HASH_FLAGS_OUTPUT_READY; goto finish; } } else if (HASH_FLAGS_DMA_READY & hdev->flags) { if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) { hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE; goto finish; } } return IRQ_HANDLED; finish: /* Finish current request */ stm32_hash_finish_req(hdev->req, 0); return IRQ_HANDLED; } static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id) { struct stm32_hash_dev *hdev = dev_id; u32 reg; reg = stm32_hash_read(hdev, HASH_SR); if (reg & HASH_SR_OUTPUT_READY) { reg &= ~HASH_SR_OUTPUT_READY; stm32_hash_write(hdev, HASH_SR, reg); hdev->flags |= HASH_FLAGS_OUTPUT_READY; /* Disable IT*/ stm32_hash_write(hdev, HASH_IMR, 0); return IRQ_WAKE_THREAD; } return IRQ_NONE; } static struct ahash_alg algs_md5[] = { { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .export = stm32_hash_export, .import = stm32_hash_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "md5", .cra_driver_name = "stm32-md5", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .export = stm32_hash_export, .import = stm32_hash_import, .setkey = stm32_hash_setkey, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "hmac(md5)", .cra_driver_name = "stm32-hmac-md5", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_md5_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, }; static struct ahash_alg algs_sha1[] = { { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .export = stm32_hash_export, .import = stm32_hash_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "sha1", .cra_driver_name = "stm32-sha1", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .export = stm32_hash_export, .import = stm32_hash_import, .setkey = stm32_hash_setkey, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "hmac(sha1)", .cra_driver_name = "stm32-hmac-sha1", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_sha1_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, }; static struct ahash_alg algs_sha224[] = { { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .export = stm32_hash_export, .import = stm32_hash_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "sha224", .cra_driver_name = "stm32-sha224", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .setkey = stm32_hash_setkey, .export = stm32_hash_export, .import = stm32_hash_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "hmac(sha224)", .cra_driver_name = "stm32-hmac-sha224", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_sha224_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, }; static struct ahash_alg algs_sha256[] = { { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .export = stm32_hash_export, .import = stm32_hash_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "sha256", .cra_driver_name = "stm32-sha256", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, { .init = stm32_hash_init, .update = stm32_hash_update, .final = stm32_hash_final, .finup = stm32_hash_finup, .digest = stm32_hash_digest, .export = stm32_hash_export, .import = stm32_hash_import, .setkey = stm32_hash_setkey, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct stm32_hash_request_ctx), .base = { .cra_name = "hmac(sha256)", .cra_driver_name = "stm32-hmac-sha256", .cra_priority = 200, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct stm32_hash_ctx), .cra_alignmask = 3, .cra_init = stm32_hash_cra_sha256_init, .cra_exit = stm32_hash_cra_exit, .cra_module = THIS_MODULE, } } }, }; static int stm32_hash_register_algs(struct stm32_hash_dev *hdev) { unsigned int i, j; int err; for (i = 0; i < hdev->pdata->algs_info_size; i++) { for (j = 0; j < hdev->pdata->algs_info[i].size; j++) { err = crypto_register_ahash( &hdev->pdata->algs_info[i].algs_list[j]); if (err) goto err_algs; } } return 0; err_algs: dev_err(hdev->dev, "Algo %d : %d failed\n", i, j); for (; i--; ) { for (; j--;) crypto_unregister_ahash( &hdev->pdata->algs_info[i].algs_list[j]); } return err; } static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev) { unsigned int i, j; for (i = 0; i < hdev->pdata->algs_info_size; i++) { for (j = 0; j < hdev->pdata->algs_info[i].size; j++) crypto_unregister_ahash( &hdev->pdata->algs_info[i].algs_list[j]); } return 0; } static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = { { .algs_list = algs_sha1, .size = ARRAY_SIZE(algs_sha1), }, { .algs_list = algs_sha256, .size = ARRAY_SIZE(algs_sha256), }, }; static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = { .algs_info = stm32_hash_algs_info_ux500, .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500), .broken_emptymsg = true, .ux500 = true, }; static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = { { .algs_list = algs_md5, .size = ARRAY_SIZE(algs_md5), }, { .algs_list = algs_sha1, .size = ARRAY_SIZE(algs_sha1), }, }; static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = { .algs_info = stm32_hash_algs_info_stm32f4, .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4), .has_sr = true, .has_mdmat = true, }; static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = { { .algs_list = algs_md5, .size = ARRAY_SIZE(algs_md5), }, { .algs_list = algs_sha1, .size = ARRAY_SIZE(algs_sha1), }, { .algs_list = algs_sha224, .size = ARRAY_SIZE(algs_sha224), }, { .algs_list = algs_sha256, .size = ARRAY_SIZE(algs_sha256), }, }; static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = { .algs_info = stm32_hash_algs_info_stm32f7, .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7), .has_sr = true, .has_mdmat = true, }; static const struct of_device_id stm32_hash_of_match[] = { { .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500, }, { .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4, }, { .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7, }, {}, }; MODULE_DEVICE_TABLE(of, stm32_hash_of_match); static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev, struct device *dev) { hdev->pdata = of_device_get_match_data(dev); if (!hdev->pdata) { dev_err(dev, "no compatible OF match\n"); return -EINVAL; } if (of_property_read_u32(dev->of_node, "dma-maxburst", &hdev->dma_maxburst)) { dev_info(dev, "dma-maxburst not specified, using 0\n"); hdev->dma_maxburst = 0; } return 0; } static int stm32_hash_probe(struct platform_device *pdev) { struct stm32_hash_dev *hdev; struct device *dev = &pdev->dev; struct resource *res; int ret, irq; hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL); if (!hdev) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); hdev->io_base = devm_ioremap_resource(dev, res); if (IS_ERR(hdev->io_base)) return PTR_ERR(hdev->io_base); hdev->phys_base = res->start; ret = stm32_hash_get_of_match(hdev, dev); if (ret) return ret; irq = platform_get_irq_optional(pdev, 0); if (irq < 0 && irq != -ENXIO) return irq; if (irq > 0) { ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler, stm32_hash_irq_thread, IRQF_ONESHOT, dev_name(dev), hdev); if (ret) { dev_err(dev, "Cannot grab IRQ\n"); return ret; } } else { dev_info(dev, "No IRQ, use polling mode\n"); hdev->polled = true; } hdev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(hdev->clk)) return dev_err_probe(dev, PTR_ERR(hdev->clk), "failed to get clock for hash\n"); ret = clk_prepare_enable(hdev->clk); if (ret) { dev_err(dev, "failed to enable hash clock (%d)\n", ret); return ret; } pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); hdev->rst = devm_reset_control_get(&pdev->dev, NULL); if (IS_ERR(hdev->rst)) { if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_reset; } } else { reset_control_assert(hdev->rst); udelay(2); reset_control_deassert(hdev->rst); } hdev->dev = dev; platform_set_drvdata(pdev, hdev); ret = stm32_hash_dma_init(hdev); switch (ret) { case 0: break; case -ENOENT: case -ENODEV: dev_info(dev, "DMA mode not available\n"); break; default: dev_err(dev, "DMA init error %d\n", ret); goto err_dma; } spin_lock(&stm32_hash.lock); list_add_tail(&hdev->list, &stm32_hash.dev_list); spin_unlock(&stm32_hash.lock); /* Initialize crypto engine */ hdev->engine = crypto_engine_alloc_init(dev, 1); if (!hdev->engine) { ret = -ENOMEM; goto err_engine; } ret = crypto_engine_start(hdev->engine); if (ret) goto err_engine_start; if (hdev->pdata->ux500) /* FIXME: implement DMA mode for Ux500 */ hdev->dma_mode = 0; else hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR); /* Register algos */ ret = stm32_hash_register_algs(hdev); if (ret) goto err_algs; dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n", stm32_hash_read(hdev, HASH_VER), hdev->dma_mode); pm_runtime_put_sync(dev); return 0; err_algs: err_engine_start: crypto_engine_exit(hdev->engine); err_engine: spin_lock(&stm32_hash.lock); list_del(&hdev->list); spin_unlock(&stm32_hash.lock); err_dma: if (hdev->dma_lch) dma_release_channel(hdev->dma_lch); err_reset: pm_runtime_disable(dev); pm_runtime_put_noidle(dev); clk_disable_unprepare(hdev->clk); return ret; } static int stm32_hash_remove(struct platform_device *pdev) { struct stm32_hash_dev *hdev; int ret; hdev = platform_get_drvdata(pdev); if (!hdev) return -ENODEV; ret = pm_runtime_resume_and_get(hdev->dev); if (ret < 0) return ret; stm32_hash_unregister_algs(hdev); crypto_engine_exit(hdev->engine); spin_lock(&stm32_hash.lock); list_del(&hdev->list); spin_unlock(&stm32_hash.lock); if (hdev->dma_lch) dma_release_channel(hdev->dma_lch); pm_runtime_disable(hdev->dev); pm_runtime_put_noidle(hdev->dev); clk_disable_unprepare(hdev->clk); return 0; } #ifdef CONFIG_PM static int stm32_hash_runtime_suspend(struct device *dev) { struct stm32_hash_dev *hdev = dev_get_drvdata(dev); clk_disable_unprepare(hdev->clk); return 0; } static int stm32_hash_runtime_resume(struct device *dev) { struct stm32_hash_dev *hdev = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(hdev->clk); if (ret) { dev_err(hdev->dev, "Failed to prepare_enable clock\n"); return ret; } return 0; } #endif static const struct dev_pm_ops stm32_hash_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend, stm32_hash_runtime_resume, NULL) }; static struct platform_driver stm32_hash_driver = { .probe = stm32_hash_probe, .remove = stm32_hash_remove, .driver = { .name = "stm32-hash", .pm = &stm32_hash_pm_ops, .of_match_table = stm32_hash_of_match, } }; module_platform_driver(stm32_hash_driver); MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver"); MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1