Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tomeu Vizoso | 2510 | 64.05% | 6 | 12.24% |
Dmitry Osipenko | 1304 | 33.27% | 32 | 65.31% |
Viresh Kumar | 75 | 1.91% | 3 | 6.12% |
Chanwoo Choi | 14 | 0.36% | 3 | 6.12% |
MyungJoo Ham | 10 | 0.26% | 1 | 2.04% |
Thomas Gleixner | 2 | 0.05% | 1 | 2.04% |
Randy Dunlap | 2 | 0.05% | 1 | 2.04% |
Gustavo A. R. Silva | 1 | 0.03% | 1 | 2.04% |
Yangtao Li | 1 | 0.03% | 1 | 2.04% |
Total | 3919 | 49 |
// SPDX-License-Identifier: GPL-2.0-only /* * A devfreq driver for NVIDIA Tegra SoCs * * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved. * Copyright (C) 2014 Google, Inc */ #include <linux/clk.h> #include <linux/cpufreq.h> #include <linux/devfreq.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/reset.h> #include <linux/workqueue.h> #include <soc/tegra/fuse.h> #include "governor.h" #define ACTMON_GLB_STATUS 0x0 #define ACTMON_GLB_PERIOD_CTRL 0x4 #define ACTMON_DEV_CTRL 0x0 #define ACTMON_DEV_CTRL_K_VAL_SHIFT 10 #define ACTMON_DEV_CTRL_ENB_PERIODIC BIT(18) #define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN BIT(20) #define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN BIT(21) #define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT 23 #define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT 26 #define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN BIT(29) #define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN BIT(30) #define ACTMON_DEV_CTRL_ENB BIT(31) #define ACTMON_DEV_CTRL_STOP 0x00000000 #define ACTMON_DEV_UPPER_WMARK 0x4 #define ACTMON_DEV_LOWER_WMARK 0x8 #define ACTMON_DEV_INIT_AVG 0xc #define ACTMON_DEV_AVG_UPPER_WMARK 0x10 #define ACTMON_DEV_AVG_LOWER_WMARK 0x14 #define ACTMON_DEV_COUNT_WEIGHT 0x18 #define ACTMON_DEV_AVG_COUNT 0x20 #define ACTMON_DEV_INTR_STATUS 0x24 #define ACTMON_INTR_STATUS_CLEAR 0xffffffff #define ACTMON_DEV_INTR_CONSECUTIVE_UPPER BIT(31) #define ACTMON_DEV_INTR_CONSECUTIVE_LOWER BIT(30) #define ACTMON_ABOVE_WMARK_WINDOW 1 #define ACTMON_BELOW_WMARK_WINDOW 3 #define ACTMON_BOOST_FREQ_STEP 16000 /* * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128 */ #define ACTMON_AVERAGE_WINDOW_LOG2 6 #define ACTMON_SAMPLING_PERIOD 12 /* ms */ #define ACTMON_DEFAULT_AVG_BAND 6 /* 1/10 of % */ #define KHZ 1000 #define KHZ_MAX (ULONG_MAX / KHZ) /* Assume that the bus is saturated if the utilization is 25% */ #define BUS_SATURATION_RATIO 25 /** * struct tegra_devfreq_device_config - configuration specific to an ACTMON * device * * Coefficients and thresholds are percentages unless otherwise noted */ struct tegra_devfreq_device_config { u32 offset; u32 irq_mask; /* Factors applied to boost_freq every consecutive watermark breach */ unsigned int boost_up_coeff; unsigned int boost_down_coeff; /* Define the watermark bounds when applied to the current avg */ unsigned int boost_up_threshold; unsigned int boost_down_threshold; /* * Threshold of activity (cycles translated to kHz) below which the * CPU frequency isn't to be taken into account. This is to avoid * increasing the EMC frequency when the CPU is very busy but not * accessing the bus often. */ u32 avg_dependency_threshold; }; enum tegra_actmon_device { MCALL = 0, MCCPU, }; static const struct tegra_devfreq_device_config tegra124_device_configs[] = { { /* MCALL: All memory accesses (including from the CPUs) */ .offset = 0x1c0, .irq_mask = 1 << 26, .boost_up_coeff = 200, .boost_down_coeff = 50, .boost_up_threshold = 60, .boost_down_threshold = 40, }, { /* MCCPU: memory accesses from the CPUs */ .offset = 0x200, .irq_mask = 1 << 25, .boost_up_coeff = 800, .boost_down_coeff = 40, .boost_up_threshold = 27, .boost_down_threshold = 10, .avg_dependency_threshold = 16000, /* 16MHz in kHz units */ }, }; static const struct tegra_devfreq_device_config tegra30_device_configs[] = { { /* MCALL: All memory accesses (including from the CPUs) */ .offset = 0x1c0, .irq_mask = 1 << 26, .boost_up_coeff = 200, .boost_down_coeff = 50, .boost_up_threshold = 20, .boost_down_threshold = 10, }, { /* MCCPU: memory accesses from the CPUs */ .offset = 0x200, .irq_mask = 1 << 25, .boost_up_coeff = 800, .boost_down_coeff = 40, .boost_up_threshold = 27, .boost_down_threshold = 10, .avg_dependency_threshold = 16000, /* 16MHz in kHz units */ }, }; /** * struct tegra_devfreq_device - state specific to an ACTMON device * * Frequencies are in kHz. */ struct tegra_devfreq_device { const struct tegra_devfreq_device_config *config; void __iomem *regs; /* Average event count sampled in the last interrupt */ u32 avg_count; /* * Extra frequency to increase the target by due to consecutive * watermark breaches. */ unsigned long boost_freq; /* Optimal frequency calculated from the stats for this device */ unsigned long target_freq; }; struct tegra_devfreq_soc_data { const struct tegra_devfreq_device_config *configs; /* Weight value for count measurements */ unsigned int count_weight; }; struct tegra_devfreq { struct devfreq *devfreq; struct reset_control *reset; struct clk *clock; void __iomem *regs; struct clk *emc_clock; unsigned long max_freq; unsigned long cur_freq; struct notifier_block clk_rate_change_nb; struct delayed_work cpufreq_update_work; struct notifier_block cpu_rate_change_nb; struct tegra_devfreq_device devices[2]; unsigned int irq; bool started; const struct tegra_devfreq_soc_data *soc; }; struct tegra_actmon_emc_ratio { unsigned long cpu_freq; unsigned long emc_freq; }; static const struct tegra_actmon_emc_ratio actmon_emc_ratios[] = { { 1400000, KHZ_MAX }, { 1200000, 750000 }, { 1100000, 600000 }, { 1000000, 500000 }, { 800000, 375000 }, { 500000, 200000 }, { 250000, 100000 }, }; static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset) { return readl_relaxed(tegra->regs + offset); } static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset) { writel_relaxed(val, tegra->regs + offset); } static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset) { return readl_relaxed(dev->regs + offset); } static void device_writel(struct tegra_devfreq_device *dev, u32 val, u32 offset) { writel_relaxed(val, dev->regs + offset); } static unsigned long do_percent(unsigned long long val, unsigned int pct) { val = val * pct; do_div(val, 100); /* * High freq + high boosting percent + large polling interval are * resulting in integer overflow when watermarks are calculated. */ return min_t(u64, val, U32_MAX); } static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra, struct tegra_devfreq_device *dev) { u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ; u32 band = avg_band_freq * tegra->devfreq->profile->polling_ms; u32 avg; avg = min(dev->avg_count, U32_MAX - band); device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK); avg = max(dev->avg_count, band); device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK); } static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra, struct tegra_devfreq_device *dev) { u32 val = tegra->cur_freq * tegra->devfreq->profile->polling_ms; device_writel(dev, do_percent(val, dev->config->boost_up_threshold), ACTMON_DEV_UPPER_WMARK); device_writel(dev, do_percent(val, dev->config->boost_down_threshold), ACTMON_DEV_LOWER_WMARK); } static void actmon_isr_device(struct tegra_devfreq *tegra, struct tegra_devfreq_device *dev) { u32 intr_status, dev_ctrl; dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT); tegra_devfreq_update_avg_wmark(tegra, dev); intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS); dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL); if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) { /* * new_boost = min(old_boost * up_coef + step, max_freq) */ dev->boost_freq = do_percent(dev->boost_freq, dev->config->boost_up_coeff); dev->boost_freq += ACTMON_BOOST_FREQ_STEP; dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN; if (dev->boost_freq >= tegra->max_freq) { dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN; dev->boost_freq = tegra->max_freq; } } else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) { /* * new_boost = old_boost * down_coef * or 0 if (old_boost * down_coef < step / 2) */ dev->boost_freq = do_percent(dev->boost_freq, dev->config->boost_down_coeff); dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN; if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1)) { dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN; dev->boost_freq = 0; } } device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL); device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS); } static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra, unsigned long cpu_freq) { unsigned int i; const struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios; for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) { if (cpu_freq >= ratio->cpu_freq) { if (ratio->emc_freq >= tegra->max_freq) return tegra->max_freq; else return ratio->emc_freq; } } return 0; } static unsigned long actmon_device_target_freq(struct tegra_devfreq *tegra, struct tegra_devfreq_device *dev) { unsigned int avg_sustain_coef; unsigned long target_freq; target_freq = dev->avg_count / tegra->devfreq->profile->polling_ms; avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold; target_freq = do_percent(target_freq, avg_sustain_coef); return target_freq; } static void actmon_update_target(struct tegra_devfreq *tegra, struct tegra_devfreq_device *dev) { unsigned long cpu_freq = 0; unsigned long static_cpu_emc_freq = 0; dev->target_freq = actmon_device_target_freq(tegra, dev); if (dev->config->avg_dependency_threshold && dev->config->avg_dependency_threshold <= dev->target_freq) { cpu_freq = cpufreq_quick_get(0); static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq); dev->target_freq += dev->boost_freq; dev->target_freq = max(dev->target_freq, static_cpu_emc_freq); } else { dev->target_freq += dev->boost_freq; } } static irqreturn_t actmon_thread_isr(int irq, void *data) { struct tegra_devfreq *tegra = data; bool handled = false; unsigned int i; u32 val; mutex_lock(&tegra->devfreq->lock); val = actmon_readl(tegra, ACTMON_GLB_STATUS); for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) { if (val & tegra->devices[i].config->irq_mask) { actmon_isr_device(tegra, tegra->devices + i); handled = true; } } if (handled) update_devfreq(tegra->devfreq); mutex_unlock(&tegra->devfreq->lock); return handled ? IRQ_HANDLED : IRQ_NONE; } static int tegra_actmon_clk_notify_cb(struct notifier_block *nb, unsigned long action, void *ptr) { struct clk_notifier_data *data = ptr; struct tegra_devfreq *tegra; struct tegra_devfreq_device *dev; unsigned int i; if (action != POST_RATE_CHANGE) return NOTIFY_OK; tegra = container_of(nb, struct tegra_devfreq, clk_rate_change_nb); tegra->cur_freq = data->new_rate / KHZ; for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) { dev = &tegra->devices[i]; tegra_devfreq_update_wmark(tegra, dev); } return NOTIFY_OK; } static void tegra_actmon_delayed_update(struct work_struct *work) { struct tegra_devfreq *tegra = container_of(work, struct tegra_devfreq, cpufreq_update_work.work); mutex_lock(&tegra->devfreq->lock); update_devfreq(tegra->devfreq); mutex_unlock(&tegra->devfreq->lock); } static unsigned long tegra_actmon_cpufreq_contribution(struct tegra_devfreq *tegra, unsigned int cpu_freq) { struct tegra_devfreq_device *actmon_dev = &tegra->devices[MCCPU]; unsigned long static_cpu_emc_freq, dev_freq; dev_freq = actmon_device_target_freq(tegra, actmon_dev); /* check whether CPU's freq is taken into account at all */ if (dev_freq < actmon_dev->config->avg_dependency_threshold) return 0; static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq); if (dev_freq + actmon_dev->boost_freq >= static_cpu_emc_freq) return 0; return static_cpu_emc_freq; } static int tegra_actmon_cpu_notify_cb(struct notifier_block *nb, unsigned long action, void *ptr) { struct cpufreq_freqs *freqs = ptr; struct tegra_devfreq *tegra; unsigned long old, new, delay; if (action != CPUFREQ_POSTCHANGE) return NOTIFY_OK; tegra = container_of(nb, struct tegra_devfreq, cpu_rate_change_nb); /* * Quickly check whether CPU frequency should be taken into account * at all, without blocking CPUFreq's core. */ if (mutex_trylock(&tegra->devfreq->lock)) { old = tegra_actmon_cpufreq_contribution(tegra, freqs->old); new = tegra_actmon_cpufreq_contribution(tegra, freqs->new); mutex_unlock(&tegra->devfreq->lock); /* * If CPU's frequency shouldn't be taken into account at * the moment, then there is no need to update the devfreq's * state because ISR will re-check CPU's frequency on the * next interrupt. */ if (old == new) return NOTIFY_OK; } /* * CPUFreq driver should support CPUFREQ_ASYNC_NOTIFICATION in order * to allow asynchronous notifications. This means we can't block * here for too long, otherwise CPUFreq's core will complain with a * warning splat. */ delay = msecs_to_jiffies(ACTMON_SAMPLING_PERIOD); schedule_delayed_work(&tegra->cpufreq_update_work, delay); return NOTIFY_OK; } static void tegra_actmon_configure_device(struct tegra_devfreq *tegra, struct tegra_devfreq_device *dev) { u32 val = 0; /* reset boosting on governor's restart */ dev->boost_freq = 0; dev->target_freq = tegra->cur_freq; dev->avg_count = tegra->cur_freq * tegra->devfreq->profile->polling_ms; device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG); tegra_devfreq_update_avg_wmark(tegra, dev); tegra_devfreq_update_wmark(tegra, dev); device_writel(dev, tegra->soc->count_weight, ACTMON_DEV_COUNT_WEIGHT); device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS); val |= ACTMON_DEV_CTRL_ENB_PERIODIC; val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1) << ACTMON_DEV_CTRL_K_VAL_SHIFT; val |= (ACTMON_BELOW_WMARK_WINDOW - 1) << ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT; val |= (ACTMON_ABOVE_WMARK_WINDOW - 1) << ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT; val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN; val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN; val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN; val |= ACTMON_DEV_CTRL_ENB; device_writel(dev, val, ACTMON_DEV_CTRL); } static void tegra_actmon_stop_devices(struct tegra_devfreq *tegra) { struct tegra_devfreq_device *dev = tegra->devices; unsigned int i; for (i = 0; i < ARRAY_SIZE(tegra->devices); i++, dev++) { device_writel(dev, ACTMON_DEV_CTRL_STOP, ACTMON_DEV_CTRL); device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS); } } static int tegra_actmon_resume(struct tegra_devfreq *tegra) { unsigned int i; int err; if (!tegra->devfreq->profile->polling_ms || !tegra->started) return 0; actmon_writel(tegra, tegra->devfreq->profile->polling_ms - 1, ACTMON_GLB_PERIOD_CTRL); /* * CLK notifications are needed in order to reconfigure the upper * consecutive watermark in accordance to the actual clock rate * to avoid unnecessary upper interrupts. */ err = clk_notifier_register(tegra->emc_clock, &tegra->clk_rate_change_nb); if (err) { dev_err(tegra->devfreq->dev.parent, "Failed to register rate change notifier\n"); return err; } tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ; for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) tegra_actmon_configure_device(tegra, &tegra->devices[i]); /* * We are estimating CPU's memory bandwidth requirement based on * amount of memory accesses and system's load, judging by CPU's * frequency. We also don't want to receive events about CPU's * frequency transaction when governor is stopped, hence notifier * is registered dynamically. */ err = cpufreq_register_notifier(&tegra->cpu_rate_change_nb, CPUFREQ_TRANSITION_NOTIFIER); if (err) { dev_err(tegra->devfreq->dev.parent, "Failed to register rate change notifier: %d\n", err); goto err_stop; } enable_irq(tegra->irq); return 0; err_stop: tegra_actmon_stop_devices(tegra); clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb); return err; } static int tegra_actmon_start(struct tegra_devfreq *tegra) { int ret = 0; if (!tegra->started) { tegra->started = true; ret = tegra_actmon_resume(tegra); if (ret) tegra->started = false; } return ret; } static void tegra_actmon_pause(struct tegra_devfreq *tegra) { if (!tegra->devfreq->profile->polling_ms || !tegra->started) return; disable_irq(tegra->irq); cpufreq_unregister_notifier(&tegra->cpu_rate_change_nb, CPUFREQ_TRANSITION_NOTIFIER); cancel_delayed_work_sync(&tegra->cpufreq_update_work); tegra_actmon_stop_devices(tegra); clk_notifier_unregister(tegra->emc_clock, &tegra->clk_rate_change_nb); } static void tegra_actmon_stop(struct tegra_devfreq *tegra) { tegra_actmon_pause(tegra); tegra->started = false; } static int tegra_devfreq_target(struct device *dev, unsigned long *freq, u32 flags) { struct dev_pm_opp *opp; int ret; opp = devfreq_recommended_opp(dev, freq, flags); if (IS_ERR(opp)) { dev_err(dev, "Failed to find opp for %lu Hz\n", *freq); return PTR_ERR(opp); } ret = dev_pm_opp_set_opp(dev, opp); dev_pm_opp_put(opp); return ret; } static int tegra_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *stat) { struct tegra_devfreq *tegra = dev_get_drvdata(dev); struct tegra_devfreq_device *actmon_dev; unsigned long cur_freq; cur_freq = READ_ONCE(tegra->cur_freq); /* To be used by the tegra governor */ stat->private_data = tegra; /* The below are to be used by the other governors */ stat->current_frequency = cur_freq * KHZ; actmon_dev = &tegra->devices[MCALL]; /* Number of cycles spent on memory access */ stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT); /* The bus can be considered to be saturated way before 100% */ stat->busy_time *= 100 / BUS_SATURATION_RATIO; /* Number of cycles in a sampling period */ stat->total_time = tegra->devfreq->profile->polling_ms * cur_freq; stat->busy_time = min(stat->busy_time, stat->total_time); return 0; } static struct devfreq_dev_profile tegra_devfreq_profile = { .polling_ms = ACTMON_SAMPLING_PERIOD, .target = tegra_devfreq_target, .get_dev_status = tegra_devfreq_get_dev_status, .is_cooling_device = true, }; static int tegra_governor_get_target(struct devfreq *devfreq, unsigned long *freq) { struct devfreq_dev_status *stat; struct tegra_devfreq *tegra; struct tegra_devfreq_device *dev; unsigned long target_freq = 0; unsigned int i; int err; err = devfreq_update_stats(devfreq); if (err) return err; stat = &devfreq->last_status; tegra = stat->private_data; for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) { dev = &tegra->devices[i]; actmon_update_target(tegra, dev); target_freq = max(target_freq, dev->target_freq); } /* * tegra-devfreq driver operates with KHz units, while OPP table * entries use Hz units. Hence we need to convert the units for the * devfreq core. */ *freq = target_freq * KHZ; return 0; } static int tegra_governor_event_handler(struct devfreq *devfreq, unsigned int event, void *data) { struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent); unsigned int *new_delay = data; int ret = 0; /* * Couple devfreq-device with the governor early because it is * needed at the moment of governor's start (used by ISR). */ tegra->devfreq = devfreq; switch (event) { case DEVFREQ_GOV_START: devfreq_monitor_start(devfreq); ret = tegra_actmon_start(tegra); break; case DEVFREQ_GOV_STOP: tegra_actmon_stop(tegra); devfreq_monitor_stop(devfreq); break; case DEVFREQ_GOV_UPDATE_INTERVAL: /* * ACTMON hardware supports up to 256 milliseconds for the * sampling period. */ if (*new_delay > 256) { ret = -EINVAL; break; } tegra_actmon_pause(tegra); devfreq_update_interval(devfreq, new_delay); ret = tegra_actmon_resume(tegra); break; case DEVFREQ_GOV_SUSPEND: tegra_actmon_stop(tegra); devfreq_monitor_suspend(devfreq); break; case DEVFREQ_GOV_RESUME: devfreq_monitor_resume(devfreq); ret = tegra_actmon_start(tegra); break; } return ret; } static struct devfreq_governor tegra_devfreq_governor = { .name = "tegra_actmon", .attrs = DEVFREQ_GOV_ATTR_POLLING_INTERVAL, .flags = DEVFREQ_GOV_FLAG_IMMUTABLE | DEVFREQ_GOV_FLAG_IRQ_DRIVEN, .get_target_freq = tegra_governor_get_target, .event_handler = tegra_governor_event_handler, }; static void devm_tegra_devfreq_deinit_hw(void *data) { struct tegra_devfreq *tegra = data; reset_control_reset(tegra->reset); clk_disable_unprepare(tegra->clock); } static int devm_tegra_devfreq_init_hw(struct device *dev, struct tegra_devfreq *tegra) { int err; err = clk_prepare_enable(tegra->clock); if (err) { dev_err(dev, "Failed to prepare and enable ACTMON clock\n"); return err; } err = devm_add_action_or_reset(dev, devm_tegra_devfreq_deinit_hw, tegra); if (err) return err; err = reset_control_reset(tegra->reset); if (err) { dev_err(dev, "Failed to reset hardware: %d\n", err); return err; } return err; } static int tegra_devfreq_config_clks_nop(struct device *dev, struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, bool scaling_down) { /* We want to skip clk configuration via dev_pm_opp_set_opp() */ return 0; } static int tegra_devfreq_probe(struct platform_device *pdev) { u32 hw_version = BIT(tegra_sku_info.soc_speedo_id); struct tegra_devfreq_device *dev; struct tegra_devfreq *tegra; struct devfreq *devfreq; unsigned int i; long rate; int err; const char *clk_names[] = { "actmon", NULL }; struct dev_pm_opp_config config = { .supported_hw = &hw_version, .supported_hw_count = 1, .clk_names = clk_names, .config_clks = tegra_devfreq_config_clks_nop, }; tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); if (!tegra) return -ENOMEM; tegra->soc = of_device_get_match_data(&pdev->dev); tegra->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(tegra->regs)) return PTR_ERR(tegra->regs); tegra->reset = devm_reset_control_get(&pdev->dev, "actmon"); if (IS_ERR(tegra->reset)) { dev_err(&pdev->dev, "Failed to get reset\n"); return PTR_ERR(tegra->reset); } tegra->clock = devm_clk_get(&pdev->dev, "actmon"); if (IS_ERR(tegra->clock)) { dev_err(&pdev->dev, "Failed to get actmon clock\n"); return PTR_ERR(tegra->clock); } tegra->emc_clock = devm_clk_get(&pdev->dev, "emc"); if (IS_ERR(tegra->emc_clock)) return dev_err_probe(&pdev->dev, PTR_ERR(tegra->emc_clock), "Failed to get emc clock\n"); err = platform_get_irq(pdev, 0); if (err < 0) return err; tegra->irq = err; irq_set_status_flags(tegra->irq, IRQ_NOAUTOEN); err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL, actmon_thread_isr, IRQF_ONESHOT, "tegra-devfreq", tegra); if (err) { dev_err(&pdev->dev, "Interrupt request failed: %d\n", err); return err; } err = devm_pm_opp_set_config(&pdev->dev, &config); if (err) { dev_err(&pdev->dev, "Failed to set OPP config: %d\n", err); return err; } err = devm_pm_opp_of_add_table_indexed(&pdev->dev, 0); if (err) { dev_err(&pdev->dev, "Failed to add OPP table: %d\n", err); return err; } err = devm_tegra_devfreq_init_hw(&pdev->dev, tegra); if (err) return err; rate = clk_round_rate(tegra->emc_clock, ULONG_MAX); if (rate <= 0) { dev_err(&pdev->dev, "Failed to round clock rate: %ld\n", rate); return rate ?: -EINVAL; } tegra->max_freq = rate / KHZ; for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) { dev = tegra->devices + i; dev->config = tegra->soc->configs + i; dev->regs = tegra->regs + dev->config->offset; } platform_set_drvdata(pdev, tegra); tegra->clk_rate_change_nb.notifier_call = tegra_actmon_clk_notify_cb; tegra->cpu_rate_change_nb.notifier_call = tegra_actmon_cpu_notify_cb; INIT_DELAYED_WORK(&tegra->cpufreq_update_work, tegra_actmon_delayed_update); err = devm_devfreq_add_governor(&pdev->dev, &tegra_devfreq_governor); if (err) { dev_err(&pdev->dev, "Failed to add governor: %d\n", err); return err; } tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock); devfreq = devm_devfreq_add_device(&pdev->dev, &tegra_devfreq_profile, "tegra_actmon", NULL); if (IS_ERR(devfreq)) { dev_err(&pdev->dev, "Failed to add device: %pe\n", devfreq); return PTR_ERR(devfreq); } return 0; } static const struct tegra_devfreq_soc_data tegra124_soc = { .configs = tegra124_device_configs, /* * Activity counter is incremented every 256 memory transactions, * and each transaction takes 4 EMC clocks. */ .count_weight = 4 * 256, }; static const struct tegra_devfreq_soc_data tegra30_soc = { .configs = tegra30_device_configs, .count_weight = 2 * 256, }; static const struct of_device_id tegra_devfreq_of_match[] = { { .compatible = "nvidia,tegra30-actmon", .data = &tegra30_soc, }, { .compatible = "nvidia,tegra124-actmon", .data = &tegra124_soc, }, { }, }; MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match); static struct platform_driver tegra_devfreq_driver = { .probe = tegra_devfreq_probe, .driver = { .name = "tegra-devfreq", .of_match_table = tegra_devfreq_of_match, }, }; module_platform_driver(tegra_devfreq_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Tegra devfreq driver"); MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1