Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alan Cox | 3979 | 64.00% | 4 | 7.69% |
Andrei Konovalov | 641 | 10.31% | 1 | 1.92% |
Doug Thompson | 475 | 7.64% | 6 | 11.54% |
Peter Tyser | 462 | 7.43% | 2 | 3.85% |
Mauro Carvalho Chehab | 215 | 3.46% | 11 | 21.15% |
Dave Peterson | 127 | 2.04% | 7 | 13.46% |
Dave Jiang | 72 | 1.16% | 4 | 7.69% |
Joe Perches | 54 | 0.87% | 1 | 1.92% |
Mark A. Grondona | 50 | 0.80% | 1 | 1.92% |
Mark Gross | 40 | 0.64% | 1 | 1.92% |
Brian Pomerantz | 33 | 0.53% | 2 | 3.85% |
Mike Chan | 21 | 0.34% | 1 | 1.92% |
Jean Delvare | 15 | 0.24% | 2 | 3.85% |
Aristeu Sergio Rozanski Filho | 9 | 0.14% | 2 | 3.85% |
Randy Dunlap | 8 | 0.13% | 1 | 1.92% |
Jingoo Han | 6 | 0.10% | 1 | 1.92% |
Hitoshi Mitake | 4 | 0.06% | 1 | 1.92% |
Konstantin Olifer | 3 | 0.05% | 1 | 1.92% |
Alexander A. Klimov | 1 | 0.02% | 1 | 1.92% |
Borislav Petkov | 1 | 0.02% | 1 | 1.92% |
Martin Olsson | 1 | 0.02% | 1 | 1.92% |
Total | 6217 | 52 |
/* * Intel e752x Memory Controller kernel module * (C) 2004 Linux Networx (http://lnxi.com) * This file may be distributed under the terms of the * GNU General Public License. * * Implement support for the e7520, E7525, e7320 and i3100 memory controllers. * * Datasheets: * https://www.intel.in/content/www/in/en/chipsets/e7525-memory-controller-hub-datasheet.html * ftp://download.intel.com/design/intarch/datashts/31345803.pdf * * Written by Tom Zimmerman * * Contributors: * Thayne Harbaugh at realmsys.com (?) * Wang Zhenyu at intel.com * Dave Jiang at mvista.com * */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/edac.h> #include "edac_module.h" #define EDAC_MOD_STR "e752x_edac" static int report_non_memory_errors; static int force_function_unhide; static int sysbus_parity = -1; static struct edac_pci_ctl_info *e752x_pci; #define e752x_printk(level, fmt, arg...) \ edac_printk(level, "e752x", fmt, ##arg) #define e752x_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "e752x", fmt, ##arg) #ifndef PCI_DEVICE_ID_INTEL_7520_0 #define PCI_DEVICE_ID_INTEL_7520_0 0x3590 #endif /* PCI_DEVICE_ID_INTEL_7520_0 */ #ifndef PCI_DEVICE_ID_INTEL_7520_1_ERR #define PCI_DEVICE_ID_INTEL_7520_1_ERR 0x3591 #endif /* PCI_DEVICE_ID_INTEL_7520_1_ERR */ #ifndef PCI_DEVICE_ID_INTEL_7525_0 #define PCI_DEVICE_ID_INTEL_7525_0 0x359E #endif /* PCI_DEVICE_ID_INTEL_7525_0 */ #ifndef PCI_DEVICE_ID_INTEL_7525_1_ERR #define PCI_DEVICE_ID_INTEL_7525_1_ERR 0x3593 #endif /* PCI_DEVICE_ID_INTEL_7525_1_ERR */ #ifndef PCI_DEVICE_ID_INTEL_7320_0 #define PCI_DEVICE_ID_INTEL_7320_0 0x3592 #endif /* PCI_DEVICE_ID_INTEL_7320_0 */ #ifndef PCI_DEVICE_ID_INTEL_7320_1_ERR #define PCI_DEVICE_ID_INTEL_7320_1_ERR 0x3593 #endif /* PCI_DEVICE_ID_INTEL_7320_1_ERR */ #ifndef PCI_DEVICE_ID_INTEL_3100_0 #define PCI_DEVICE_ID_INTEL_3100_0 0x35B0 #endif /* PCI_DEVICE_ID_INTEL_3100_0 */ #ifndef PCI_DEVICE_ID_INTEL_3100_1_ERR #define PCI_DEVICE_ID_INTEL_3100_1_ERR 0x35B1 #endif /* PCI_DEVICE_ID_INTEL_3100_1_ERR */ #define E752X_NR_CSROWS 8 /* number of csrows */ /* E752X register addresses - device 0 function 0 */ #define E752X_MCHSCRB 0x52 /* Memory Scrub register (16b) */ /* * 6:5 Scrub Completion Count * 3:2 Scrub Rate (i3100 only) * 01=fast 10=normal * 1:0 Scrub Mode enable * 00=off 10=on */ #define E752X_DRB 0x60 /* DRAM row boundary register (8b) */ #define E752X_DRA 0x70 /* DRAM row attribute register (8b) */ /* * 31:30 Device width row 7 * 01=x8 10=x4 11=x8 DDR2 * 27:26 Device width row 6 * 23:22 Device width row 5 * 19:20 Device width row 4 * 15:14 Device width row 3 * 11:10 Device width row 2 * 7:6 Device width row 1 * 3:2 Device width row 0 */ #define E752X_DRC 0x7C /* DRAM controller mode reg (32b) */ /* FIXME:IS THIS RIGHT? */ /* * 22 Number channels 0=1,1=2 * 19:18 DRB Granularity 32/64MB */ #define E752X_DRM 0x80 /* Dimm mapping register */ #define E752X_DDRCSR 0x9A /* DDR control and status reg (16b) */ /* * 14:12 1 single A, 2 single B, 3 dual */ #define E752X_TOLM 0xC4 /* DRAM top of low memory reg (16b) */ #define E752X_REMAPBASE 0xC6 /* DRAM remap base address reg (16b) */ #define E752X_REMAPLIMIT 0xC8 /* DRAM remap limit address reg (16b) */ #define E752X_REMAPOFFSET 0xCA /* DRAM remap limit offset reg (16b) */ /* E752X register addresses - device 0 function 1 */ #define E752X_FERR_GLOBAL 0x40 /* Global first error register (32b) */ #define E752X_NERR_GLOBAL 0x44 /* Global next error register (32b) */ #define E752X_HI_FERR 0x50 /* Hub interface first error reg (8b) */ #define E752X_HI_NERR 0x52 /* Hub interface next error reg (8b) */ #define E752X_HI_ERRMASK 0x54 /* Hub interface error mask reg (8b) */ #define E752X_HI_SMICMD 0x5A /* Hub interface SMI command reg (8b) */ #define E752X_SYSBUS_FERR 0x60 /* System buss first error reg (16b) */ #define E752X_SYSBUS_NERR 0x62 /* System buss next error reg (16b) */ #define E752X_SYSBUS_ERRMASK 0x64 /* System buss error mask reg (16b) */ #define E752X_SYSBUS_SMICMD 0x6A /* System buss SMI command reg (16b) */ #define E752X_BUF_FERR 0x70 /* Memory buffer first error reg (8b) */ #define E752X_BUF_NERR 0x72 /* Memory buffer next error reg (8b) */ #define E752X_BUF_ERRMASK 0x74 /* Memory buffer error mask reg (8b) */ #define E752X_BUF_SMICMD 0x7A /* Memory buffer SMI cmd reg (8b) */ #define E752X_DRAM_FERR 0x80 /* DRAM first error register (16b) */ #define E752X_DRAM_NERR 0x82 /* DRAM next error register (16b) */ #define E752X_DRAM_ERRMASK 0x84 /* DRAM error mask register (8b) */ #define E752X_DRAM_SMICMD 0x8A /* DRAM SMI command register (8b) */ #define E752X_DRAM_RETR_ADD 0xAC /* DRAM Retry address register (32b) */ #define E752X_DRAM_SEC1_ADD 0xA0 /* DRAM first correctable memory */ /* error address register (32b) */ /* * 31 Reserved * 30:2 CE address (64 byte block 34:6 * 1 Reserved * 0 HiLoCS */ #define E752X_DRAM_SEC2_ADD 0xC8 /* DRAM first correctable memory */ /* error address register (32b) */ /* * 31 Reserved * 30:2 CE address (64 byte block 34:6) * 1 Reserved * 0 HiLoCS */ #define E752X_DRAM_DED_ADD 0xA4 /* DRAM first uncorrectable memory */ /* error address register (32b) */ /* * 31 Reserved * 30:2 CE address (64 byte block 34:6) * 1 Reserved * 0 HiLoCS */ #define E752X_DRAM_SCRB_ADD 0xA8 /* DRAM 1st uncorrectable scrub mem */ /* error address register (32b) */ /* * 31 Reserved * 30:2 CE address (64 byte block 34:6 * 1 Reserved * 0 HiLoCS */ #define E752X_DRAM_SEC1_SYNDROME 0xC4 /* DRAM first correctable memory */ /* error syndrome register (16b) */ #define E752X_DRAM_SEC2_SYNDROME 0xC6 /* DRAM second correctable memory */ /* error syndrome register (16b) */ #define E752X_DEVPRES1 0xF4 /* Device Present 1 register (8b) */ /* 3100 IMCH specific register addresses - device 0 function 1 */ #define I3100_NSI_FERR 0x48 /* NSI first error reg (32b) */ #define I3100_NSI_NERR 0x4C /* NSI next error reg (32b) */ #define I3100_NSI_SMICMD 0x54 /* NSI SMI command register (32b) */ #define I3100_NSI_EMASK 0x90 /* NSI error mask register (32b) */ /* ICH5R register addresses - device 30 function 0 */ #define ICH5R_PCI_STAT 0x06 /* PCI status register (16b) */ #define ICH5R_PCI_2ND_STAT 0x1E /* PCI status secondary reg (16b) */ #define ICH5R_PCI_BRIDGE_CTL 0x3E /* PCI bridge control register (16b) */ enum e752x_chips { E7520 = 0, E7525 = 1, E7320 = 2, I3100 = 3 }; /* * Those chips Support single-rank and dual-rank memories only. * * On e752x chips, the odd rows are present only on dual-rank memories. * Dividing the rank by two will provide the dimm# * * i3100 MC has a different mapping: it supports only 4 ranks. * * The mapping is (from 1 to n): * slot single-ranked double-ranked * dimm #1 -> rank #4 NA * dimm #2 -> rank #3 NA * dimm #3 -> rank #2 Ranks 2 and 3 * dimm #4 -> rank $1 Ranks 1 and 4 * * FIXME: The current mapping for i3100 considers that it supports up to 8 * ranks/chanel, but datasheet says that the MC supports only 4 ranks. */ struct e752x_pvt { struct pci_dev *dev_d0f0; struct pci_dev *dev_d0f1; u32 tolm; u32 remapbase; u32 remaplimit; int mc_symmetric; u8 map[8]; int map_type; const struct e752x_dev_info *dev_info; }; struct e752x_dev_info { u16 err_dev; u16 ctl_dev; const char *ctl_name; }; struct e752x_error_info { u32 ferr_global; u32 nerr_global; u32 nsi_ferr; /* 3100 only */ u32 nsi_nerr; /* 3100 only */ u8 hi_ferr; /* all but 3100 */ u8 hi_nerr; /* all but 3100 */ u16 sysbus_ferr; u16 sysbus_nerr; u8 buf_ferr; u8 buf_nerr; u16 dram_ferr; u16 dram_nerr; u32 dram_sec1_add; u32 dram_sec2_add; u16 dram_sec1_syndrome; u16 dram_sec2_syndrome; u32 dram_ded_add; u32 dram_scrb_add; u32 dram_retr_add; }; static const struct e752x_dev_info e752x_devs[] = { [E7520] = { .err_dev = PCI_DEVICE_ID_INTEL_7520_1_ERR, .ctl_dev = PCI_DEVICE_ID_INTEL_7520_0, .ctl_name = "E7520"}, [E7525] = { .err_dev = PCI_DEVICE_ID_INTEL_7525_1_ERR, .ctl_dev = PCI_DEVICE_ID_INTEL_7525_0, .ctl_name = "E7525"}, [E7320] = { .err_dev = PCI_DEVICE_ID_INTEL_7320_1_ERR, .ctl_dev = PCI_DEVICE_ID_INTEL_7320_0, .ctl_name = "E7320"}, [I3100] = { .err_dev = PCI_DEVICE_ID_INTEL_3100_1_ERR, .ctl_dev = PCI_DEVICE_ID_INTEL_3100_0, .ctl_name = "3100"}, }; /* Valid scrub rates for the e752x/3100 hardware memory scrubber. We * map the scrubbing bandwidth to a hardware register value. The 'set' * operation finds the 'matching or higher value'. Note that scrubbing * on the e752x can only be enabled/disabled. The 3100 supports * a normal and fast mode. */ #define SDRATE_EOT 0xFFFFFFFF struct scrubrate { u32 bandwidth; /* bandwidth consumed by scrubbing in bytes/sec */ u16 scrubval; /* register value for scrub rate */ }; /* Rate below assumes same performance as i3100 using PC3200 DDR2 in * normal mode. e752x bridges don't support choosing normal or fast mode, * so the scrubbing bandwidth value isn't all that important - scrubbing is * either on or off. */ static const struct scrubrate scrubrates_e752x[] = { {0, 0x00}, /* Scrubbing Off */ {500000, 0x02}, /* Scrubbing On */ {SDRATE_EOT, 0x00} /* End of Table */ }; /* Fast mode: 2 GByte PC3200 DDR2 scrubbed in 33s = 63161283 bytes/s * Normal mode: 125 (32000 / 256) times slower than fast mode. */ static const struct scrubrate scrubrates_i3100[] = { {0, 0x00}, /* Scrubbing Off */ {500000, 0x0a}, /* Normal mode - 32k clocks */ {62500000, 0x06}, /* Fast mode - 256 clocks */ {SDRATE_EOT, 0x00} /* End of Table */ }; static unsigned long ctl_page_to_phys(struct mem_ctl_info *mci, unsigned long page) { u32 remap; struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info; edac_dbg(3, "\n"); if (page < pvt->tolm) return page; if ((page >= 0x100000) && (page < pvt->remapbase)) return page; remap = (page - pvt->tolm) + pvt->remapbase; if (remap < pvt->remaplimit) return remap; e752x_printk(KERN_ERR, "Invalid page %lx - out of range\n", page); return pvt->tolm - 1; } static void do_process_ce(struct mem_ctl_info *mci, u16 error_one, u32 sec1_add, u16 sec1_syndrome) { u32 page; int row; int channel; int i; struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info; edac_dbg(3, "\n"); /* convert the addr to 4k page */ page = sec1_add >> (PAGE_SHIFT - 4); /* FIXME - check for -1 */ if (pvt->mc_symmetric) { /* chip select are bits 14 & 13 */ row = ((page >> 1) & 3); e752x_printk(KERN_WARNING, "Test row %d Table %d %d %d %d %d %d %d %d\n", row, pvt->map[0], pvt->map[1], pvt->map[2], pvt->map[3], pvt->map[4], pvt->map[5], pvt->map[6], pvt->map[7]); /* test for channel remapping */ for (i = 0; i < 8; i++) { if (pvt->map[i] == row) break; } e752x_printk(KERN_WARNING, "Test computed row %d\n", i); if (i < 8) row = i; else e752x_mc_printk(mci, KERN_WARNING, "row %d not found in remap table\n", row); } else row = edac_mc_find_csrow_by_page(mci, page); /* 0 = channel A, 1 = channel B */ channel = !(error_one & 1); /* e752x mc reads 34:6 of the DRAM linear address */ edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, page, offset_in_page(sec1_add << 4), sec1_syndrome, row, channel, -1, "e752x CE", ""); } static inline void process_ce(struct mem_ctl_info *mci, u16 error_one, u32 sec1_add, u16 sec1_syndrome, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_process_ce(mci, error_one, sec1_add, sec1_syndrome); } static void do_process_ue(struct mem_ctl_info *mci, u16 error_one, u32 ded_add, u32 scrb_add) { u32 error_2b, block_page; int row; struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info; edac_dbg(3, "\n"); if (error_one & 0x0202) { error_2b = ded_add; /* convert to 4k address */ block_page = error_2b >> (PAGE_SHIFT - 4); row = pvt->mc_symmetric ? /* chip select are bits 14 & 13 */ ((block_page >> 1) & 3) : edac_mc_find_csrow_by_page(mci, block_page); /* e752x mc reads 34:6 of the DRAM linear address */ edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, block_page, offset_in_page(error_2b << 4), 0, row, -1, -1, "e752x UE from Read", ""); } if (error_one & 0x0404) { error_2b = scrb_add; /* convert to 4k address */ block_page = error_2b >> (PAGE_SHIFT - 4); row = pvt->mc_symmetric ? /* chip select are bits 14 & 13 */ ((block_page >> 1) & 3) : edac_mc_find_csrow_by_page(mci, block_page); /* e752x mc reads 34:6 of the DRAM linear address */ edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, block_page, offset_in_page(error_2b << 4), 0, row, -1, -1, "e752x UE from Scruber", ""); } } static inline void process_ue(struct mem_ctl_info *mci, u16 error_one, u32 ded_add, u32 scrb_add, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_process_ue(mci, error_one, ded_add, scrb_add); } static inline void process_ue_no_info_wr(struct mem_ctl_info *mci, int *error_found, int handle_error) { *error_found = 1; if (!handle_error) return; edac_dbg(3, "\n"); edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, -1, -1, -1, "e752x UE log memory write", ""); } static void do_process_ded_retry(struct mem_ctl_info *mci, u16 error, u32 retry_add) { u32 error_1b, page; int row; struct e752x_pvt *pvt = (struct e752x_pvt *)mci->pvt_info; error_1b = retry_add; page = error_1b >> (PAGE_SHIFT - 4); /* convert the addr to 4k page */ /* chip select are bits 14 & 13 */ row = pvt->mc_symmetric ? ((page >> 1) & 3) : edac_mc_find_csrow_by_page(mci, page); e752x_mc_printk(mci, KERN_WARNING, "CE page 0x%lx, row %d : Memory read retry\n", (long unsigned int)page, row); } static inline void process_ded_retry(struct mem_ctl_info *mci, u16 error, u32 retry_add, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_process_ded_retry(mci, error, retry_add); } static inline void process_threshold_ce(struct mem_ctl_info *mci, u16 error, int *error_found, int handle_error) { *error_found = 1; if (handle_error) e752x_mc_printk(mci, KERN_WARNING, "Memory threshold CE\n"); } static char *global_message[11] = { "PCI Express C1", "PCI Express C", "PCI Express B1", "PCI Express B", "PCI Express A1", "PCI Express A", "DMA Controller", "HUB or NS Interface", "System Bus", "DRAM Controller", /* 9th entry */ "Internal Buffer" }; #define DRAM_ENTRY 9 static char *fatal_message[2] = { "Non-Fatal ", "Fatal " }; static void do_global_error(int fatal, u32 errors) { int i; for (i = 0; i < 11; i++) { if (errors & (1 << i)) { /* If the error is from DRAM Controller OR * we are to report ALL errors, then * report the error */ if ((i == DRAM_ENTRY) || report_non_memory_errors) e752x_printk(KERN_WARNING, "%sError %s\n", fatal_message[fatal], global_message[i]); } } } static inline void global_error(int fatal, u32 errors, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_global_error(fatal, errors); } static char *hub_message[7] = { "HI Address or Command Parity", "HI Illegal Access", "HI Internal Parity", "Out of Range Access", "HI Data Parity", "Enhanced Config Access", "Hub Interface Target Abort" }; static void do_hub_error(int fatal, u8 errors) { int i; for (i = 0; i < 7; i++) { if (errors & (1 << i)) e752x_printk(KERN_WARNING, "%sError %s\n", fatal_message[fatal], hub_message[i]); } } static inline void hub_error(int fatal, u8 errors, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_hub_error(fatal, errors); } #define NSI_FATAL_MASK 0x0c080081 #define NSI_NON_FATAL_MASK 0x23a0ba64 #define NSI_ERR_MASK (NSI_FATAL_MASK | NSI_NON_FATAL_MASK) static char *nsi_message[30] = { "NSI Link Down", /* NSI_FERR/NSI_NERR bit 0, fatal error */ "", /* reserved */ "NSI Parity Error", /* bit 2, non-fatal */ "", /* reserved */ "", /* reserved */ "Correctable Error Message", /* bit 5, non-fatal */ "Non-Fatal Error Message", /* bit 6, non-fatal */ "Fatal Error Message", /* bit 7, fatal */ "", /* reserved */ "Receiver Error", /* bit 9, non-fatal */ "", /* reserved */ "Bad TLP", /* bit 11, non-fatal */ "Bad DLLP", /* bit 12, non-fatal */ "REPLAY_NUM Rollover", /* bit 13, non-fatal */ "", /* reserved */ "Replay Timer Timeout", /* bit 15, non-fatal */ "", /* reserved */ "", /* reserved */ "", /* reserved */ "Data Link Protocol Error", /* bit 19, fatal */ "", /* reserved */ "Poisoned TLP", /* bit 21, non-fatal */ "", /* reserved */ "Completion Timeout", /* bit 23, non-fatal */ "Completer Abort", /* bit 24, non-fatal */ "Unexpected Completion", /* bit 25, non-fatal */ "Receiver Overflow", /* bit 26, fatal */ "Malformed TLP", /* bit 27, fatal */ "", /* reserved */ "Unsupported Request" /* bit 29, non-fatal */ }; static void do_nsi_error(int fatal, u32 errors) { int i; for (i = 0; i < 30; i++) { if (errors & (1 << i)) printk(KERN_WARNING "%sError %s\n", fatal_message[fatal], nsi_message[i]); } } static inline void nsi_error(int fatal, u32 errors, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_nsi_error(fatal, errors); } static char *membuf_message[4] = { "Internal PMWB to DRAM parity", "Internal PMWB to System Bus Parity", "Internal System Bus or IO to PMWB Parity", "Internal DRAM to PMWB Parity" }; static void do_membuf_error(u8 errors) { int i; for (i = 0; i < 4; i++) { if (errors & (1 << i)) e752x_printk(KERN_WARNING, "Non-Fatal Error %s\n", membuf_message[i]); } } static inline void membuf_error(u8 errors, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_membuf_error(errors); } static char *sysbus_message[10] = { "Addr or Request Parity", "Data Strobe Glitch", "Addr Strobe Glitch", "Data Parity", "Addr Above TOM", "Non DRAM Lock Error", "MCERR", "BINIT", "Memory Parity", "IO Subsystem Parity" }; static void do_sysbus_error(int fatal, u32 errors) { int i; for (i = 0; i < 10; i++) { if (errors & (1 << i)) e752x_printk(KERN_WARNING, "%sError System Bus %s\n", fatal_message[fatal], sysbus_message[i]); } } static inline void sysbus_error(int fatal, u32 errors, int *error_found, int handle_error) { *error_found = 1; if (handle_error) do_sysbus_error(fatal, errors); } static void e752x_check_hub_interface(struct e752x_error_info *info, int *error_found, int handle_error) { u8 stat8; //pci_read_config_byte(dev,E752X_HI_FERR,&stat8); stat8 = info->hi_ferr; if (stat8 & 0x7f) { /* Error, so process */ stat8 &= 0x7f; if (stat8 & 0x2b) hub_error(1, stat8 & 0x2b, error_found, handle_error); if (stat8 & 0x54) hub_error(0, stat8 & 0x54, error_found, handle_error); } //pci_read_config_byte(dev,E752X_HI_NERR,&stat8); stat8 = info->hi_nerr; if (stat8 & 0x7f) { /* Error, so process */ stat8 &= 0x7f; if (stat8 & 0x2b) hub_error(1, stat8 & 0x2b, error_found, handle_error); if (stat8 & 0x54) hub_error(0, stat8 & 0x54, error_found, handle_error); } } static void e752x_check_ns_interface(struct e752x_error_info *info, int *error_found, int handle_error) { u32 stat32; stat32 = info->nsi_ferr; if (stat32 & NSI_ERR_MASK) { /* Error, so process */ if (stat32 & NSI_FATAL_MASK) /* check for fatal errors */ nsi_error(1, stat32 & NSI_FATAL_MASK, error_found, handle_error); if (stat32 & NSI_NON_FATAL_MASK) /* check for non-fatal ones */ nsi_error(0, stat32 & NSI_NON_FATAL_MASK, error_found, handle_error); } stat32 = info->nsi_nerr; if (stat32 & NSI_ERR_MASK) { if (stat32 & NSI_FATAL_MASK) nsi_error(1, stat32 & NSI_FATAL_MASK, error_found, handle_error); if (stat32 & NSI_NON_FATAL_MASK) nsi_error(0, stat32 & NSI_NON_FATAL_MASK, error_found, handle_error); } } static void e752x_check_sysbus(struct e752x_error_info *info, int *error_found, int handle_error) { u32 stat32, error32; //pci_read_config_dword(dev,E752X_SYSBUS_FERR,&stat32); stat32 = info->sysbus_ferr + (info->sysbus_nerr << 16); if (stat32 == 0) return; /* no errors */ error32 = (stat32 >> 16) & 0x3ff; stat32 = stat32 & 0x3ff; if (stat32 & 0x087) sysbus_error(1, stat32 & 0x087, error_found, handle_error); if (stat32 & 0x378) sysbus_error(0, stat32 & 0x378, error_found, handle_error); if (error32 & 0x087) sysbus_error(1, error32 & 0x087, error_found, handle_error); if (error32 & 0x378) sysbus_error(0, error32 & 0x378, error_found, handle_error); } static void e752x_check_membuf(struct e752x_error_info *info, int *error_found, int handle_error) { u8 stat8; stat8 = info->buf_ferr; if (stat8 & 0x0f) { /* Error, so process */ stat8 &= 0x0f; membuf_error(stat8, error_found, handle_error); } stat8 = info->buf_nerr; if (stat8 & 0x0f) { /* Error, so process */ stat8 &= 0x0f; membuf_error(stat8, error_found, handle_error); } } static void e752x_check_dram(struct mem_ctl_info *mci, struct e752x_error_info *info, int *error_found, int handle_error) { u16 error_one, error_next; error_one = info->dram_ferr; error_next = info->dram_nerr; /* decode and report errors */ if (error_one & 0x0101) /* check first error correctable */ process_ce(mci, error_one, info->dram_sec1_add, info->dram_sec1_syndrome, error_found, handle_error); if (error_next & 0x0101) /* check next error correctable */ process_ce(mci, error_next, info->dram_sec2_add, info->dram_sec2_syndrome, error_found, handle_error); if (error_one & 0x4040) process_ue_no_info_wr(mci, error_found, handle_error); if (error_next & 0x4040) process_ue_no_info_wr(mci, error_found, handle_error); if (error_one & 0x2020) process_ded_retry(mci, error_one, info->dram_retr_add, error_found, handle_error); if (error_next & 0x2020) process_ded_retry(mci, error_next, info->dram_retr_add, error_found, handle_error); if (error_one & 0x0808) process_threshold_ce(mci, error_one, error_found, handle_error); if (error_next & 0x0808) process_threshold_ce(mci, error_next, error_found, handle_error); if (error_one & 0x0606) process_ue(mci, error_one, info->dram_ded_add, info->dram_scrb_add, error_found, handle_error); if (error_next & 0x0606) process_ue(mci, error_next, info->dram_ded_add, info->dram_scrb_add, error_found, handle_error); } static void e752x_get_error_info(struct mem_ctl_info *mci, struct e752x_error_info *info) { struct pci_dev *dev; struct e752x_pvt *pvt; memset(info, 0, sizeof(*info)); pvt = (struct e752x_pvt *)mci->pvt_info; dev = pvt->dev_d0f1; pci_read_config_dword(dev, E752X_FERR_GLOBAL, &info->ferr_global); if (info->ferr_global) { if (pvt->dev_info->err_dev == PCI_DEVICE_ID_INTEL_3100_1_ERR) { pci_read_config_dword(dev, I3100_NSI_FERR, &info->nsi_ferr); info->hi_ferr = 0; } else { pci_read_config_byte(dev, E752X_HI_FERR, &info->hi_ferr); info->nsi_ferr = 0; } pci_read_config_word(dev, E752X_SYSBUS_FERR, &info->sysbus_ferr); pci_read_config_byte(dev, E752X_BUF_FERR, &info->buf_ferr); pci_read_config_word(dev, E752X_DRAM_FERR, &info->dram_ferr); pci_read_config_dword(dev, E752X_DRAM_SEC1_ADD, &info->dram_sec1_add); pci_read_config_word(dev, E752X_DRAM_SEC1_SYNDROME, &info->dram_sec1_syndrome); pci_read_config_dword(dev, E752X_DRAM_DED_ADD, &info->dram_ded_add); pci_read_config_dword(dev, E752X_DRAM_SCRB_ADD, &info->dram_scrb_add); pci_read_config_dword(dev, E752X_DRAM_RETR_ADD, &info->dram_retr_add); /* ignore the reserved bits just in case */ if (info->hi_ferr & 0x7f) pci_write_config_byte(dev, E752X_HI_FERR, info->hi_ferr); if (info->nsi_ferr & NSI_ERR_MASK) pci_write_config_dword(dev, I3100_NSI_FERR, info->nsi_ferr); if (info->sysbus_ferr) pci_write_config_word(dev, E752X_SYSBUS_FERR, info->sysbus_ferr); if (info->buf_ferr & 0x0f) pci_write_config_byte(dev, E752X_BUF_FERR, info->buf_ferr); if (info->dram_ferr) pci_write_bits16(pvt->dev_d0f1, E752X_DRAM_FERR, info->dram_ferr, info->dram_ferr); pci_write_config_dword(dev, E752X_FERR_GLOBAL, info->ferr_global); } pci_read_config_dword(dev, E752X_NERR_GLOBAL, &info->nerr_global); if (info->nerr_global) { if (pvt->dev_info->err_dev == PCI_DEVICE_ID_INTEL_3100_1_ERR) { pci_read_config_dword(dev, I3100_NSI_NERR, &info->nsi_nerr); info->hi_nerr = 0; } else { pci_read_config_byte(dev, E752X_HI_NERR, &info->hi_nerr); info->nsi_nerr = 0; } pci_read_config_word(dev, E752X_SYSBUS_NERR, &info->sysbus_nerr); pci_read_config_byte(dev, E752X_BUF_NERR, &info->buf_nerr); pci_read_config_word(dev, E752X_DRAM_NERR, &info->dram_nerr); pci_read_config_dword(dev, E752X_DRAM_SEC2_ADD, &info->dram_sec2_add); pci_read_config_word(dev, E752X_DRAM_SEC2_SYNDROME, &info->dram_sec2_syndrome); if (info->hi_nerr & 0x7f) pci_write_config_byte(dev, E752X_HI_NERR, info->hi_nerr); if (info->nsi_nerr & NSI_ERR_MASK) pci_write_config_dword(dev, I3100_NSI_NERR, info->nsi_nerr); if (info->sysbus_nerr) pci_write_config_word(dev, E752X_SYSBUS_NERR, info->sysbus_nerr); if (info->buf_nerr & 0x0f) pci_write_config_byte(dev, E752X_BUF_NERR, info->buf_nerr); if (info->dram_nerr) pci_write_bits16(pvt->dev_d0f1, E752X_DRAM_NERR, info->dram_nerr, info->dram_nerr); pci_write_config_dword(dev, E752X_NERR_GLOBAL, info->nerr_global); } } static int e752x_process_error_info(struct mem_ctl_info *mci, struct e752x_error_info *info, int handle_errors) { u32 error32, stat32; int error_found; error_found = 0; error32 = (info->ferr_global >> 18) & 0x3ff; stat32 = (info->ferr_global >> 4) & 0x7ff; if (error32) global_error(1, error32, &error_found, handle_errors); if (stat32) global_error(0, stat32, &error_found, handle_errors); error32 = (info->nerr_global >> 18) & 0x3ff; stat32 = (info->nerr_global >> 4) & 0x7ff; if (error32) global_error(1, error32, &error_found, handle_errors); if (stat32) global_error(0, stat32, &error_found, handle_errors); e752x_check_hub_interface(info, &error_found, handle_errors); e752x_check_ns_interface(info, &error_found, handle_errors); e752x_check_sysbus(info, &error_found, handle_errors); e752x_check_membuf(info, &error_found, handle_errors); e752x_check_dram(mci, info, &error_found, handle_errors); return error_found; } static void e752x_check(struct mem_ctl_info *mci) { struct e752x_error_info info; e752x_get_error_info(mci, &info); e752x_process_error_info(mci, &info, 1); } /* Program byte/sec bandwidth scrub rate to hardware */ static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) { const struct scrubrate *scrubrates; struct e752x_pvt *pvt = (struct e752x_pvt *) mci->pvt_info; struct pci_dev *pdev = pvt->dev_d0f0; int i; if (pvt->dev_info->ctl_dev == PCI_DEVICE_ID_INTEL_3100_0) scrubrates = scrubrates_i3100; else scrubrates = scrubrates_e752x; /* Translate the desired scrub rate to a e752x/3100 register value. * Search for the bandwidth that is equal or greater than the * desired rate and program the cooresponding register value. */ for (i = 0; scrubrates[i].bandwidth != SDRATE_EOT; i++) if (scrubrates[i].bandwidth >= new_bw) break; if (scrubrates[i].bandwidth == SDRATE_EOT) return -1; pci_write_config_word(pdev, E752X_MCHSCRB, scrubrates[i].scrubval); return scrubrates[i].bandwidth; } /* Convert current scrub rate value into byte/sec bandwidth */ static int get_sdram_scrub_rate(struct mem_ctl_info *mci) { const struct scrubrate *scrubrates; struct e752x_pvt *pvt = (struct e752x_pvt *) mci->pvt_info; struct pci_dev *pdev = pvt->dev_d0f0; u16 scrubval; int i; if (pvt->dev_info->ctl_dev == PCI_DEVICE_ID_INTEL_3100_0) scrubrates = scrubrates_i3100; else scrubrates = scrubrates_e752x; /* Find the bandwidth matching the memory scrubber configuration */ pci_read_config_word(pdev, E752X_MCHSCRB, &scrubval); scrubval = scrubval & 0x0f; for (i = 0; scrubrates[i].bandwidth != SDRATE_EOT; i++) if (scrubrates[i].scrubval == scrubval) break; if (scrubrates[i].bandwidth == SDRATE_EOT) { e752x_printk(KERN_WARNING, "Invalid sdram scrub control value: 0x%x\n", scrubval); return -1; } return scrubrates[i].bandwidth; } /* Return 1 if dual channel mode is active. Else return 0. */ static inline int dual_channel_active(u16 ddrcsr) { return (((ddrcsr >> 12) & 3) == 3); } /* Remap csrow index numbers if map_type is "reverse" */ static inline int remap_csrow_index(struct mem_ctl_info *mci, int index) { struct e752x_pvt *pvt = mci->pvt_info; if (!pvt->map_type) return (7 - index); return (index); } static void e752x_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev, u16 ddrcsr) { struct csrow_info *csrow; enum edac_type edac_mode; unsigned long last_cumul_size; int index, mem_dev, drc_chan; int drc_drbg; /* DRB granularity 0=64mb, 1=128mb */ int drc_ddim; /* DRAM Data Integrity Mode 0=none, 2=edac */ u8 value; u32 dra, drc, cumul_size, i, nr_pages; dra = 0; for (index = 0; index < 4; index++) { u8 dra_reg; pci_read_config_byte(pdev, E752X_DRA + index, &dra_reg); dra |= dra_reg << (index * 8); } pci_read_config_dword(pdev, E752X_DRC, &drc); drc_chan = dual_channel_active(ddrcsr) ? 1 : 0; drc_drbg = drc_chan + 1; /* 128 in dual mode, 64 in single */ drc_ddim = (drc >> 20) & 0x3; /* The dram row boundary (DRB) reg values are boundary address for * each DRAM row with a granularity of 64 or 128MB (single/dual * channel operation). DRB regs are cumulative; therefore DRB7 will * contain the total memory contained in all eight rows. */ for (last_cumul_size = index = 0; index < mci->nr_csrows; index++) { /* mem_dev 0=x8, 1=x4 */ mem_dev = (dra >> (index * 4 + 2)) & 0x3; csrow = mci->csrows[remap_csrow_index(mci, index)]; mem_dev = (mem_dev == 2); pci_read_config_byte(pdev, E752X_DRB + index, &value); /* convert a 128 or 64 MiB DRB to a page size. */ cumul_size = value << (25 + drc_drbg - PAGE_SHIFT); edac_dbg(3, "(%d) cumul_size 0x%x\n", index, cumul_size); if (cumul_size == last_cumul_size) continue; /* not populated */ csrow->first_page = last_cumul_size; csrow->last_page = cumul_size - 1; nr_pages = cumul_size - last_cumul_size; last_cumul_size = cumul_size; /* * if single channel or x8 devices then SECDED * if dual channel and x4 then S4ECD4ED */ if (drc_ddim) { if (drc_chan && mem_dev) { edac_mode = EDAC_S4ECD4ED; mci->edac_cap |= EDAC_FLAG_S4ECD4ED; } else { edac_mode = EDAC_SECDED; mci->edac_cap |= EDAC_FLAG_SECDED; } } else edac_mode = EDAC_NONE; for (i = 0; i < csrow->nr_channels; i++) { struct dimm_info *dimm = csrow->channels[i]->dimm; edac_dbg(3, "Initializing rank at (%i,%i)\n", index, i); dimm->nr_pages = nr_pages / csrow->nr_channels; dimm->grain = 1 << 12; /* 4KiB - resolution of CELOG */ dimm->mtype = MEM_RDDR; /* only one type supported */ dimm->dtype = mem_dev ? DEV_X4 : DEV_X8; dimm->edac_mode = edac_mode; } } } static void e752x_init_mem_map_table(struct pci_dev *pdev, struct e752x_pvt *pvt) { int index; u8 value, last, row; last = 0; row = 0; for (index = 0; index < 8; index += 2) { pci_read_config_byte(pdev, E752X_DRB + index, &value); /* test if there is a dimm in this slot */ if (value == last) { /* no dimm in the slot, so flag it as empty */ pvt->map[index] = 0xff; pvt->map[index + 1] = 0xff; } else { /* there is a dimm in the slot */ pvt->map[index] = row; row++; last = value; /* test the next value to see if the dimm is double * sided */ pci_read_config_byte(pdev, E752X_DRB + index + 1, &value); /* the dimm is single sided, so flag as empty */ /* this is a double sided dimm to save the next row #*/ pvt->map[index + 1] = (value == last) ? 0xff : row; row++; last = value; } } } /* Return 0 on success or 1 on failure. */ static int e752x_get_devs(struct pci_dev *pdev, int dev_idx, struct e752x_pvt *pvt) { pvt->dev_d0f1 = pci_get_device(PCI_VENDOR_ID_INTEL, pvt->dev_info->err_dev, NULL); if (pvt->dev_d0f1 == NULL) { pvt->dev_d0f1 = pci_scan_single_device(pdev->bus, PCI_DEVFN(0, 1)); pci_dev_get(pvt->dev_d0f1); } if (pvt->dev_d0f1 == NULL) { e752x_printk(KERN_ERR, "error reporting device not found:" "vendor %x device 0x%x (broken BIOS?)\n", PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].err_dev); return 1; } pvt->dev_d0f0 = pci_get_device(PCI_VENDOR_ID_INTEL, e752x_devs[dev_idx].ctl_dev, NULL); if (pvt->dev_d0f0 == NULL) goto fail; return 0; fail: pci_dev_put(pvt->dev_d0f1); return 1; } /* Setup system bus parity mask register. * Sysbus parity supported on: * e7320/e7520/e7525 + Xeon */ static void e752x_init_sysbus_parity_mask(struct e752x_pvt *pvt) { char *cpu_id = cpu_data(0).x86_model_id; struct pci_dev *dev = pvt->dev_d0f1; int enable = 1; /* Allow module parameter override, else see if CPU supports parity */ if (sysbus_parity != -1) { enable = sysbus_parity; } else if (cpu_id[0] && !strstr(cpu_id, "Xeon")) { e752x_printk(KERN_INFO, "System Bus Parity not " "supported by CPU, disabling\n"); enable = 0; } if (enable) pci_write_config_word(dev, E752X_SYSBUS_ERRMASK, 0x0000); else pci_write_config_word(dev, E752X_SYSBUS_ERRMASK, 0x0309); } static void e752x_init_error_reporting_regs(struct e752x_pvt *pvt) { struct pci_dev *dev; dev = pvt->dev_d0f1; /* Turn off error disable & SMI in case the BIOS turned it on */ if (pvt->dev_info->err_dev == PCI_DEVICE_ID_INTEL_3100_1_ERR) { pci_write_config_dword(dev, I3100_NSI_EMASK, 0); pci_write_config_dword(dev, I3100_NSI_SMICMD, 0); } else { pci_write_config_byte(dev, E752X_HI_ERRMASK, 0x00); pci_write_config_byte(dev, E752X_HI_SMICMD, 0x00); } e752x_init_sysbus_parity_mask(pvt); pci_write_config_word(dev, E752X_SYSBUS_SMICMD, 0x00); pci_write_config_byte(dev, E752X_BUF_ERRMASK, 0x00); pci_write_config_byte(dev, E752X_BUF_SMICMD, 0x00); pci_write_config_byte(dev, E752X_DRAM_ERRMASK, 0x00); pci_write_config_byte(dev, E752X_DRAM_SMICMD, 0x00); } static int e752x_probe1(struct pci_dev *pdev, int dev_idx) { u16 pci_data; u8 stat8; struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct e752x_pvt *pvt; u16 ddrcsr; int drc_chan; /* Number of channels 0=1chan,1=2chan */ struct e752x_error_info discard; edac_dbg(0, "mci\n"); edac_dbg(0, "Starting Probe1\n"); /* check to see if device 0 function 1 is enabled; if it isn't, we * assume the BIOS has reserved it for a reason and is expecting * exclusive access, we take care not to violate that assumption and * fail the probe. */ pci_read_config_byte(pdev, E752X_DEVPRES1, &stat8); if (!force_function_unhide && !(stat8 & (1 << 5))) { printk(KERN_INFO "Contact your BIOS vendor to see if the " "E752x error registers can be safely un-hidden\n"); return -ENODEV; } stat8 |= (1 << 5); pci_write_config_byte(pdev, E752X_DEVPRES1, stat8); pci_read_config_word(pdev, E752X_DDRCSR, &ddrcsr); /* FIXME: should check >>12 or 0xf, true for all? */ /* Dual channel = 1, Single channel = 0 */ drc_chan = dual_channel_active(ddrcsr); layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = E752X_NR_CSROWS; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = drc_chan + 1; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (mci == NULL) return -ENOMEM; edac_dbg(3, "init mci\n"); mci->mtype_cap = MEM_FLAG_RDDR; /* 3100 IMCH supports SECDEC only */ mci->edac_ctl_cap = (dev_idx == I3100) ? EDAC_FLAG_SECDED : (EDAC_FLAG_NONE | EDAC_FLAG_SECDED | EDAC_FLAG_S4ECD4ED); /* FIXME - what if different memory types are in different csrows? */ mci->mod_name = EDAC_MOD_STR; mci->pdev = &pdev->dev; edac_dbg(3, "init pvt\n"); pvt = (struct e752x_pvt *)mci->pvt_info; pvt->dev_info = &e752x_devs[dev_idx]; pvt->mc_symmetric = ((ddrcsr & 0x10) != 0); if (e752x_get_devs(pdev, dev_idx, pvt)) { edac_mc_free(mci); return -ENODEV; } edac_dbg(3, "more mci init\n"); mci->ctl_name = pvt->dev_info->ctl_name; mci->dev_name = pci_name(pdev); mci->edac_check = e752x_check; mci->ctl_page_to_phys = ctl_page_to_phys; mci->set_sdram_scrub_rate = set_sdram_scrub_rate; mci->get_sdram_scrub_rate = get_sdram_scrub_rate; /* set the map type. 1 = normal, 0 = reversed * Must be set before e752x_init_csrows in case csrow mapping * is reversed. */ pci_read_config_byte(pdev, E752X_DRM, &stat8); pvt->map_type = ((stat8 & 0x0f) > ((stat8 >> 4) & 0x0f)); e752x_init_csrows(mci, pdev, ddrcsr); e752x_init_mem_map_table(pdev, pvt); if (dev_idx == I3100) mci->edac_cap = EDAC_FLAG_SECDED; /* the only mode supported */ else mci->edac_cap |= EDAC_FLAG_NONE; edac_dbg(3, "tolm, remapbase, remaplimit\n"); /* load the top of low memory, remap base, and remap limit vars */ pci_read_config_word(pdev, E752X_TOLM, &pci_data); pvt->tolm = ((u32) pci_data) << 4; pci_read_config_word(pdev, E752X_REMAPBASE, &pci_data); pvt->remapbase = ((u32) pci_data) << 14; pci_read_config_word(pdev, E752X_REMAPLIMIT, &pci_data); pvt->remaplimit = ((u32) pci_data) << 14; e752x_printk(KERN_INFO, "tolm = %x, remapbase = %x, remaplimit = %x\n", pvt->tolm, pvt->remapbase, pvt->remaplimit); /* Here we assume that we will never see multiple instances of this * type of memory controller. The ID is therefore hardcoded to 0. */ if (edac_mc_add_mc(mci)) { edac_dbg(3, "failed edac_mc_add_mc()\n"); goto fail; } e752x_init_error_reporting_regs(pvt); e752x_get_error_info(mci, &discard); /* clear other MCH errors */ /* allocating generic PCI control info */ e752x_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); if (!e752x_pci) { printk(KERN_WARNING "%s(): Unable to create PCI control\n", __func__); printk(KERN_WARNING "%s(): PCI error report via EDAC not setup\n", __func__); } /* get this far and it's successful */ edac_dbg(3, "success\n"); return 0; fail: pci_dev_put(pvt->dev_d0f0); pci_dev_put(pvt->dev_d0f1); edac_mc_free(mci); return -ENODEV; } /* returns count (>= 0), or negative on error */ static int e752x_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { edac_dbg(0, "\n"); /* wake up and enable device */ if (pci_enable_device(pdev) < 0) return -EIO; return e752x_probe1(pdev, ent->driver_data); } static void e752x_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; struct e752x_pvt *pvt; edac_dbg(0, "\n"); if (e752x_pci) edac_pci_release_generic_ctl(e752x_pci); if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) return; pvt = (struct e752x_pvt *)mci->pvt_info; pci_dev_put(pvt->dev_d0f0); pci_dev_put(pvt->dev_d0f1); edac_mc_free(mci); } static const struct pci_device_id e752x_pci_tbl[] = { { PCI_VEND_DEV(INTEL, 7520_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, E7520}, { PCI_VEND_DEV(INTEL, 7525_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, E7525}, { PCI_VEND_DEV(INTEL, 7320_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, E7320}, { PCI_VEND_DEV(INTEL, 3100_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, I3100}, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, e752x_pci_tbl); static struct pci_driver e752x_driver = { .name = EDAC_MOD_STR, .probe = e752x_init_one, .remove = e752x_remove_one, .id_table = e752x_pci_tbl, }; static int __init e752x_init(void) { int pci_rc; edac_dbg(3, "\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&e752x_driver); return (pci_rc < 0) ? pci_rc : 0; } static void __exit e752x_exit(void) { edac_dbg(3, "\n"); pci_unregister_driver(&e752x_driver); } module_init(e752x_init); module_exit(e752x_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Linux Networx (http://lnxi.com) Tom Zimmerman\n"); MODULE_DESCRIPTION("MC support for Intel e752x/3100 memory controllers"); module_param(force_function_unhide, int, 0444); MODULE_PARM_DESC(force_function_unhide, "if BIOS sets Dev0:Fun1 up as hidden:" " 1=force unhide and hope BIOS doesn't fight driver for " "Dev0:Fun1 access"); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); module_param(sysbus_parity, int, 0444); MODULE_PARM_DESC(sysbus_parity, "0=disable system bus parity checking," " 1=enable system bus parity checking, default=auto-detect"); module_param(report_non_memory_errors, int, 0644); MODULE_PARM_DESC(report_non_memory_errors, "0=disable non-memory error " "reporting, 1=enable non-memory error reporting");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1