Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mauro Carvalho Chehab | 4307 | 94.58% | 33 | 73.33% |
Joe Perches | 167 | 3.67% | 2 | 4.44% |
Jean Delvare | 56 | 1.23% | 2 | 4.44% |
Borislav Petkov | 11 | 0.24% | 1 | 2.22% |
Jingoo Han | 6 | 0.13% | 1 | 2.22% |
Alexander A. Klimov | 2 | 0.04% | 1 | 2.22% |
Colin Ian King | 1 | 0.02% | 1 | 2.22% |
Thomas Gleixner | 1 | 0.02% | 1 | 2.22% |
Michal Marek | 1 | 0.02% | 1 | 2.22% |
Robert Richter | 1 | 0.02% | 1 | 2.22% |
Jesper Juhl | 1 | 0.02% | 1 | 2.22% |
Total | 4554 | 45 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel 7300 class Memory Controllers kernel module (Clarksboro) * * Copyright (c) 2010 by: * Mauro Carvalho Chehab * * Red Hat Inc. https://www.redhat.com * * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet * http://www.intel.com/Assets/PDF/datasheet/318082.pdf * * TODO: The chipset allow checking for PCI Express errors also. Currently, * the driver covers only memory error errors * * This driver uses "csrows" EDAC attribute to represent DIMM slot# */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/slab.h> #include <linux/edac.h> #include <linux/mmzone.h> #include "edac_module.h" /* * Alter this version for the I7300 module when modifications are made */ #define I7300_REVISION " Ver: 1.0.0" #define EDAC_MOD_STR "i7300_edac" #define i7300_printk(level, fmt, arg...) \ edac_printk(level, "i7300", fmt, ##arg) #define i7300_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg) /*********************************************** * i7300 Limit constants Structs and static vars ***********************************************/ /* * Memory topology is organized as: * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0) * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0) * Each channel can have to 8 DIMM sets (called as SLOTS) * Slots should generally be filled in pairs * Except on Single Channel mode of operation * just slot 0/channel0 filled on this mode * On normal operation mode, the two channels on a branch should be * filled together for the same SLOT# * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four * channels on both branches should be filled */ /* Limits for i7300 */ #define MAX_SLOTS 8 #define MAX_BRANCHES 2 #define MAX_CH_PER_BRANCH 2 #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES) #define MAX_MIR 3 #define to_channel(ch, branch) ((((branch)) << 1) | (ch)) #define to_csrow(slot, ch, branch) \ (to_channel(ch, branch) | ((slot) << 2)) /* Device name and register DID (Device ID) */ struct i7300_dev_info { const char *ctl_name; /* name for this device */ u16 fsb_mapping_errors; /* DID for the branchmap,control */ }; /* Table of devices attributes supported by this driver */ static const struct i7300_dev_info i7300_devs[] = { { .ctl_name = "I7300", .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, }, }; struct i7300_dimm_info { int megabytes; /* size, 0 means not present */ }; /* driver private data structure */ struct i7300_pvt { struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */ struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */ struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */ struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */ u16 tolm; /* top of low memory */ u64 ambase; /* AMB BAR */ u32 mc_settings; /* Report several settings */ u32 mc_settings_a; u16 mir[MAX_MIR]; /* Memory Interleave Reg*/ u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */ u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */ /* DIMM information matrix, allocating architecture maximums */ struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS]; /* Temporary buffer for use when preparing error messages */ char *tmp_prt_buffer; }; /* FIXME: Why do we need to have this static? */ static struct edac_pci_ctl_info *i7300_pci; /*************************************************** * i7300 Register definitions for memory enumeration ***************************************************/ /* * Device 16, * Function 0: System Address (not documented) * Function 1: Memory Branch Map, Control, Errors Register */ /* OFFSETS for Function 0 */ #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */ #define MAXCH 0x56 /* Max Channel Number */ #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */ /* OFFSETS for Function 1 */ #define MC_SETTINGS 0x40 #define IS_MIRRORED(mc) ((mc) & (1 << 16)) #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5)) #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31)) #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8)) #define MC_SETTINGS_A 0x58 #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14)) #define TOLM 0x6C #define MIR0 0x80 #define MIR1 0x84 #define MIR2 0x88 /* * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it * seems that we cannot use this information directly for the same usage. * Each memory slot may have up to 2 AMB interfaces, one for income and another * for outcome interface to the next slot. * For now, the driver just stores the AMB present registers, but rely only at * the MTR info to detect memory. * Datasheet is also not clear about how to map each AMBPRESENT registers to * one of the 4 available channels. */ #define AMBPRESENT_0 0x64 #define AMBPRESENT_1 0x66 static const u16 mtr_regs[MAX_SLOTS] = { 0x80, 0x84, 0x88, 0x8c, 0x82, 0x86, 0x8a, 0x8e }; /* * Defines to extract the vaious fields from the * MTRx - Memory Technology Registers */ #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8)) #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7)) #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4) #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4) #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0) #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) #define MTR_DRAM_BANKS_ADDR_BITS 2 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) /************************************************ * i7300 Register definitions for error detection ************************************************/ /* * Device 16.1: FBD Error Registers */ #define FERR_FAT_FBD 0x98 static const char *ferr_fat_fbd_name[] = { [22] = "Non-Redundant Fast Reset Timeout", [2] = ">Tmid Thermal event with intelligent throttling disabled", [1] = "Memory or FBD configuration CRC read error", [0] = "Memory Write error on non-redundant retry or " "FBD configuration Write error on retry", }; #define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3) #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22)) #define FERR_NF_FBD 0xa0 static const char *ferr_nf_fbd_name[] = { [24] = "DIMM-Spare Copy Completed", [23] = "DIMM-Spare Copy Initiated", [22] = "Redundant Fast Reset Timeout", [21] = "Memory Write error on redundant retry", [18] = "SPD protocol Error", [17] = "FBD Northbound parity error on FBD Sync Status", [16] = "Correctable Patrol Data ECC", [15] = "Correctable Resilver- or Spare-Copy Data ECC", [14] = "Correctable Mirrored Demand Data ECC", [13] = "Correctable Non-Mirrored Demand Data ECC", [11] = "Memory or FBD configuration CRC read error", [10] = "FBD Configuration Write error on first attempt", [9] = "Memory Write error on first attempt", [8] = "Non-Aliased Uncorrectable Patrol Data ECC", [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC", [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC", [4] = "Aliased Uncorrectable Patrol Data ECC", [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC", [2] = "Aliased Uncorrectable Mirrored Demand Data ECC", [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC", [0] = "Uncorrectable Data ECC on Replay", }; #define GET_FBD_NF_IDX(fbderr) (((fbderr) >> 28) & 3) #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\ (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\ (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\ (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ (1 << 1) | (1 << 0)) #define EMASK_FBD 0xa8 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\ (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\ (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\ (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\ (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\ (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\ (1 << 1) | (1 << 0)) /* * Device 16.2: Global Error Registers */ #define FERR_GLOBAL_HI 0x48 static const char *ferr_global_hi_name[] = { [3] = "FSB 3 Fatal Error", [2] = "FSB 2 Fatal Error", [1] = "FSB 1 Fatal Error", [0] = "FSB 0 Fatal Error", }; #define ferr_global_hi_is_fatal(errno) 1 #define FERR_GLOBAL_LO 0x40 static const char *ferr_global_lo_name[] = { [31] = "Internal MCH Fatal Error", [30] = "Intel QuickData Technology Device Fatal Error", [29] = "FSB1 Fatal Error", [28] = "FSB0 Fatal Error", [27] = "FBD Channel 3 Fatal Error", [26] = "FBD Channel 2 Fatal Error", [25] = "FBD Channel 1 Fatal Error", [24] = "FBD Channel 0 Fatal Error", [23] = "PCI Express Device 7Fatal Error", [22] = "PCI Express Device 6 Fatal Error", [21] = "PCI Express Device 5 Fatal Error", [20] = "PCI Express Device 4 Fatal Error", [19] = "PCI Express Device 3 Fatal Error", [18] = "PCI Express Device 2 Fatal Error", [17] = "PCI Express Device 1 Fatal Error", [16] = "ESI Fatal Error", [15] = "Internal MCH Non-Fatal Error", [14] = "Intel QuickData Technology Device Non Fatal Error", [13] = "FSB1 Non-Fatal Error", [12] = "FSB 0 Non-Fatal Error", [11] = "FBD Channel 3 Non-Fatal Error", [10] = "FBD Channel 2 Non-Fatal Error", [9] = "FBD Channel 1 Non-Fatal Error", [8] = "FBD Channel 0 Non-Fatal Error", [7] = "PCI Express Device 7 Non-Fatal Error", [6] = "PCI Express Device 6 Non-Fatal Error", [5] = "PCI Express Device 5 Non-Fatal Error", [4] = "PCI Express Device 4 Non-Fatal Error", [3] = "PCI Express Device 3 Non-Fatal Error", [2] = "PCI Express Device 2 Non-Fatal Error", [1] = "PCI Express Device 1 Non-Fatal Error", [0] = "ESI Non-Fatal Error", }; #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1) #define NRECMEMA 0xbe #define NRECMEMA_BANK(v) (((v) >> 12) & 7) #define NRECMEMA_RANK(v) (((v) >> 8) & 15) #define NRECMEMB 0xc0 #define NRECMEMB_IS_WR(v) ((v) & (1 << 31)) #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff) #define NRECMEMB_RAS(v) ((v) & 0xffff) #define REDMEMA 0xdc #define REDMEMB 0x7c #define RECMEMA 0xe0 #define RECMEMA_BANK(v) (((v) >> 12) & 7) #define RECMEMA_RANK(v) (((v) >> 8) & 15) #define RECMEMB 0xe4 #define RECMEMB_IS_WR(v) ((v) & (1 << 31)) #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff) #define RECMEMB_RAS(v) ((v) & 0xffff) /******************************************** * i7300 Functions related to error detection ********************************************/ /** * get_err_from_table() - Gets the error message from a table * @table: table name (array of char *) * @size: number of elements at the table * @pos: position of the element to be returned * * This is a small routine that gets the pos-th element of a table. If the * element doesn't exist (or it is empty), it returns "reserved". * Instead of calling it directly, the better is to call via the macro * GET_ERR_FROM_TABLE(), that automatically checks the table size via * ARRAY_SIZE() macro */ static const char *get_err_from_table(const char *table[], int size, int pos) { if (unlikely(pos >= size)) return "Reserved"; if (unlikely(!table[pos])) return "Reserved"; return table[pos]; } #define GET_ERR_FROM_TABLE(table, pos) \ get_err_from_table(table, ARRAY_SIZE(table), pos) /** * i7300_process_error_global() - Retrieve the hardware error information from * the hardware global error registers and * sends it to dmesg * @mci: struct mem_ctl_info pointer */ static void i7300_process_error_global(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; u32 errnum, error_reg; unsigned long errors; const char *specific; bool is_fatal; pvt = mci->pvt_info; /* read in the 1st FATAL error register */ pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, &error_reg); if (unlikely(error_reg)) { errors = error_reg; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_global_hi_name)); specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum); is_fatal = ferr_global_hi_is_fatal(errnum); /* Clear the error bit */ pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, error_reg); goto error_global; } pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, &error_reg); if (unlikely(error_reg)) { errors = error_reg; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_global_lo_name)); specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum); is_fatal = ferr_global_lo_is_fatal(errnum); /* Clear the error bit */ pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, error_reg); goto error_global; } return; error_global: i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n", is_fatal ? "Fatal" : "NOT fatal", specific); } /** * i7300_process_fbd_error() - Retrieve the hardware error information from * the FBD error registers and sends it via * EDAC error API calls * @mci: struct mem_ctl_info pointer */ static void i7300_process_fbd_error(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; u32 errnum, value, error_reg; u16 val16; unsigned branch, channel, bank, rank, cas, ras; u32 syndrome; unsigned long errors; const char *specific; bool is_wr; pvt = mci->pvt_info; /* read in the 1st FATAL error register */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, &error_reg); if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) { errors = error_reg & FERR_FAT_FBD_ERR_MASK ; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_fat_fbd_name)); specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum); branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0; pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, NRECMEMA, &val16); bank = NRECMEMA_BANK(val16); rank = NRECMEMA_RANK(val16); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, NRECMEMB, &value); is_wr = NRECMEMB_IS_WR(value); cas = NRECMEMB_CAS(value); ras = NRECMEMB_RAS(value); /* Clean the error register */ pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, error_reg); snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))", bank, ras, cas, errors, specific); edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, branch, -1, rank, is_wr ? "Write error" : "Read error", pvt->tmp_prt_buffer); } /* read in the 1st NON-FATAL error register */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, &error_reg); if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) { errors = error_reg & FERR_NF_FBD_ERR_MASK; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_nf_fbd_name)); specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum); branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0; pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, REDMEMA, &syndrome); pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, RECMEMA, &val16); bank = RECMEMA_BANK(val16); rank = RECMEMA_RANK(val16); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, RECMEMB, &value); is_wr = RECMEMB_IS_WR(value); cas = RECMEMB_CAS(value); ras = RECMEMB_RAS(value); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, REDMEMB, &value); channel = (branch << 1); /* Second channel ? */ channel += !!(value & BIT(17)); /* Clear the error bit */ pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, error_reg); /* Form out message */ snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))", bank, ras, cas, errors, specific); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, syndrome, branch >> 1, channel % 2, rank, is_wr ? "Write error" : "Read error", pvt->tmp_prt_buffer); } return; } /** * i7300_check_error() - Calls the error checking subroutines * @mci: struct mem_ctl_info pointer */ static void i7300_check_error(struct mem_ctl_info *mci) { i7300_process_error_global(mci); i7300_process_fbd_error(mci); }; /** * i7300_clear_error() - Clears the error registers * @mci: struct mem_ctl_info pointer */ static void i7300_clear_error(struct mem_ctl_info *mci) { struct i7300_pvt *pvt = mci->pvt_info; u32 value; /* * All error values are RWC - we need to read and write 1 to the * bit that we want to cleanup */ /* Clear global error registers */ pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, &value); pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, value); pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, &value); pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, value); /* Clear FBD error registers */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, &value); pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, value); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, &value); pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, value); } /** * i7300_enable_error_reporting() - Enable the memory reporting logic at the * hardware * @mci: struct mem_ctl_info pointer */ static void i7300_enable_error_reporting(struct mem_ctl_info *mci) { struct i7300_pvt *pvt = mci->pvt_info; u32 fbd_error_mask; /* Read the FBD Error Mask Register */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, EMASK_FBD, &fbd_error_mask); /* Enable with a '0' */ fbd_error_mask &= ~(EMASK_FBD_ERR_MASK); pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, EMASK_FBD, fbd_error_mask); } /************************************************ * i7300 Functions related to memory enumberation ************************************************/ /** * decode_mtr() - Decodes the MTR descriptor, filling the edac structs * @pvt: pointer to the private data struct used by i7300 driver * @slot: DIMM slot (0 to 7) * @ch: Channel number within the branch (0 or 1) * @branch: Branch number (0 or 1) * @dinfo: Pointer to DIMM info where dimm size is stored * @dimm: Pointer to the struct dimm_info that corresponds to that element */ static int decode_mtr(struct i7300_pvt *pvt, int slot, int ch, int branch, struct i7300_dimm_info *dinfo, struct dimm_info *dimm) { int mtr, ans, addrBits, channel; channel = to_channel(ch, branch); mtr = pvt->mtr[slot][branch]; ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0; edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n", slot, channel, ans ? "" : "NOT "); /* Determine if there is a DIMM present in this DIMM slot */ if (!ans) return 0; /* Start with the number of bits for a Bank * on the DRAM */ addrBits = MTR_DRAM_BANKS_ADDR_BITS; /* Add thenumber of ROW bits */ addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); /* add the number of COLUMN bits */ addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); /* add the number of RANK bits */ addrBits += MTR_DIMM_RANKS(mtr); addrBits += 6; /* add 64 bits per DIMM */ addrBits -= 20; /* divide by 2^^20 */ addrBits -= 3; /* 8 bits per bytes */ dinfo->megabytes = 1 << addrBits; edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n", MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); edac_dbg(2, "\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single"); edac_dbg(2, "\t\tNUMROW: %s\n", MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : "65,536 - 16 rows"); edac_dbg(2, "\t\tNUMCOL: %s\n", MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : "reserved"); edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes); /* * The type of error detection actually depends of the * mode of operation. When it is just one single memory chip, at * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code. * In normal or mirrored mode, it uses Lockstep mode, * with the possibility of using an extended algorithm for x8 memories * See datasheet Sections 7.3.6 to 7.3.8 */ dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes); dimm->grain = 8; dimm->mtype = MEM_FB_DDR2; if (IS_SINGLE_MODE(pvt->mc_settings_a)) { dimm->edac_mode = EDAC_SECDED; edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n"); } else { edac_dbg(2, "\t\tECC code is on Lockstep mode\n"); if (MTR_DRAM_WIDTH(mtr) == 8) dimm->edac_mode = EDAC_S8ECD8ED; else dimm->edac_mode = EDAC_S4ECD4ED; } /* ask what device type on this row */ if (MTR_DRAM_WIDTH(mtr) == 8) { edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n", IS_SCRBALGO_ENHANCED(pvt->mc_settings) ? "enhanced" : "normal"); dimm->dtype = DEV_X8; } else dimm->dtype = DEV_X4; return mtr; } /** * print_dimm_size() - Prints dump of the memory organization * @pvt: pointer to the private data struct used by i7300 driver * * Useful for debug. If debug is disabled, this routine do nothing */ static void print_dimm_size(struct i7300_pvt *pvt) { #ifdef CONFIG_EDAC_DEBUG struct i7300_dimm_info *dinfo; char *p; int space, n; int channel, slot; space = PAGE_SIZE; p = pvt->tmp_prt_buffer; n = snprintf(p, space, " "); p += n; space -= n; for (channel = 0; channel < MAX_CHANNELS; channel++) { n = snprintf(p, space, "channel %d | ", channel); p += n; space -= n; } edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; n = snprintf(p, space, "-------------------------------" "------------------------------"); p += n; space -= n; edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; for (slot = 0; slot < MAX_SLOTS; slot++) { n = snprintf(p, space, "csrow/SLOT %d ", slot); p += n; space -= n; for (channel = 0; channel < MAX_CHANNELS; channel++) { dinfo = &pvt->dimm_info[slot][channel]; n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); p += n; space -= n; } edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; } n = snprintf(p, space, "-------------------------------" "------------------------------"); p += n; space -= n; edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; #endif } /** * i7300_init_csrows() - Initialize the 'csrows' table within * the mci control structure with the * addressing of memory. * @mci: struct mem_ctl_info pointer */ static int i7300_init_csrows(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; struct i7300_dimm_info *dinfo; int rc = -ENODEV; int mtr; int ch, branch, slot, channel, max_channel, max_branch; struct dimm_info *dimm; pvt = mci->pvt_info; edac_dbg(2, "Memory Technology Registers:\n"); if (IS_SINGLE_MODE(pvt->mc_settings_a)) { max_branch = 1; max_channel = 1; } else { max_branch = MAX_BRANCHES; max_channel = MAX_CH_PER_BRANCH; } /* Get the AMB present registers for the four channels */ for (branch = 0; branch < max_branch; branch++) { /* Read and dump branch 0's MTRs */ channel = to_channel(0, branch); pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_0, &pvt->ambpresent[channel]); edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n", channel, pvt->ambpresent[channel]); if (max_channel == 1) continue; channel = to_channel(1, branch); pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_1, &pvt->ambpresent[channel]); edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n", channel, pvt->ambpresent[channel]); } /* Get the set of MTR[0-7] regs by each branch */ for (slot = 0; slot < MAX_SLOTS; slot++) { int where = mtr_regs[slot]; for (branch = 0; branch < max_branch; branch++) { pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], where, &pvt->mtr[slot][branch]); for (ch = 0; ch < max_channel; ch++) { int channel = to_channel(ch, branch); dimm = edac_get_dimm(mci, branch, ch, slot); dinfo = &pvt->dimm_info[slot][channel]; mtr = decode_mtr(pvt, slot, ch, branch, dinfo, dimm); /* if no DIMMS on this row, continue */ if (!MTR_DIMMS_PRESENT(mtr)) continue; rc = 0; } } } return rc; } /** * decode_mir() - Decodes Memory Interleave Register (MIR) info * @mir_no: number of the MIR register to decode * @mir: array with the MIR data cached on the driver */ static void decode_mir(int mir_no, u16 mir[MAX_MIR]) { if (mir[mir_no] & 3) edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n", mir_no, (mir[mir_no] >> 4) & 0xfff, (mir[mir_no] & 1) ? "B0" : "", (mir[mir_no] & 2) ? "B1" : ""); } /** * i7300_get_mc_regs() - Get the contents of the MC enumeration registers * @mci: struct mem_ctl_info pointer * * Data read is cached internally for its usage when needed */ static int i7300_get_mc_regs(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; u32 actual_tolm; int i, rc; pvt = mci->pvt_info; pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE, (u32 *) &pvt->ambase); edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase); /* Get the Branch Map regs */ pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm); pvt->tolm >>= 12; edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm, pvt->tolm); actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28)); edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n", actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28); /* Get memory controller settings */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS, &pvt->mc_settings); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A, &pvt->mc_settings_a); if (IS_SINGLE_MODE(pvt->mc_settings_a)) edac_dbg(0, "Memory controller operating on single mode\n"); else edac_dbg(0, "Memory controller operating on %smirrored mode\n", IS_MIRRORED(pvt->mc_settings) ? "" : "non-"); edac_dbg(0, "Error detection is %s\n", IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); edac_dbg(0, "Retry is %s\n", IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled"); /* Get Memory Interleave Range registers */ pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0, &pvt->mir[0]); pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1, &pvt->mir[1]); pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2, &pvt->mir[2]); /* Decode the MIR regs */ for (i = 0; i < MAX_MIR; i++) decode_mir(i, pvt->mir); rc = i7300_init_csrows(mci); if (rc < 0) return rc; /* Go and determine the size of each DIMM and place in an * orderly matrix */ print_dimm_size(pvt); return 0; } /************************************************* * i7300 Functions related to device probe/release *************************************************/ /** * i7300_put_devices() - Release the PCI devices * @mci: struct mem_ctl_info pointer */ static void i7300_put_devices(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; int branch; pvt = mci->pvt_info; /* Decrement usage count for devices */ for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++) pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]); pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs); pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map); } /** * i7300_get_devices() - Find and perform 'get' operation on the MCH's * device/functions we want to reference for this driver * @mci: struct mem_ctl_info pointer * * Access and prepare the several devices for usage: * I7300 devices used by this driver: * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0 * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1 */ static int i7300_get_devices(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; struct pci_dev *pdev; pvt = mci->pvt_info; /* Attempt to 'get' the MCH register we want */ pdev = NULL; while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev))) { /* Store device 16 funcs 1 and 2 */ switch (PCI_FUNC(pdev->devfn)) { case 1: if (!pvt->pci_dev_16_1_fsb_addr_map) pvt->pci_dev_16_1_fsb_addr_map = pci_dev_get(pdev); break; case 2: if (!pvt->pci_dev_16_2_fsb_err_regs) pvt->pci_dev_16_2_fsb_err_regs = pci_dev_get(pdev); break; } } if (!pvt->pci_dev_16_1_fsb_addr_map || !pvt->pci_dev_16_2_fsb_err_regs) { /* At least one device was not found */ i7300_printk(KERN_ERR, "'system address,Process Bus' device not found:" "vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR); goto error; } edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", pci_name(pvt->pci_dev_16_0_fsb_ctlr), pvt->pci_dev_16_0_fsb_ctlr->vendor, pvt->pci_dev_16_0_fsb_ctlr->device); edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", pci_name(pvt->pci_dev_16_1_fsb_addr_map), pvt->pci_dev_16_1_fsb_addr_map->vendor, pvt->pci_dev_16_1_fsb_addr_map->device); edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", pci_name(pvt->pci_dev_16_2_fsb_err_regs), pvt->pci_dev_16_2_fsb_err_regs->vendor, pvt->pci_dev_16_2_fsb_err_regs->device); pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0, NULL); if (!pvt->pci_dev_2x_0_fbd_branch[0]) { i7300_printk(KERN_ERR, "MC: 'BRANCH 0' device not found:" "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0); goto error; } pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB1, NULL); if (!pvt->pci_dev_2x_0_fbd_branch[1]) { i7300_printk(KERN_ERR, "MC: 'BRANCH 1' device not found:" "vendor 0x%x device 0x%x Func 0 " "(broken BIOS?)\n", PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB1); goto error; } return 0; error: i7300_put_devices(mci); return -ENODEV; } /** * i7300_init_one() - Probe for one instance of the device * @pdev: struct pci_dev pointer * @id: struct pci_device_id pointer - currently unused */ static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id) { struct mem_ctl_info *mci; struct edac_mc_layer layers[3]; struct i7300_pvt *pvt; int rc; /* wake up device */ rc = pci_enable_device(pdev); if (rc == -EIO) return rc; edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); /* We only are looking for func 0 of the set */ if (PCI_FUNC(pdev->devfn) != 0) return -ENODEV; /* allocate a new MC control structure */ layers[0].type = EDAC_MC_LAYER_BRANCH; layers[0].size = MAX_BRANCHES; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = MAX_CH_PER_BRANCH; layers[1].is_virt_csrow = true; layers[2].type = EDAC_MC_LAYER_SLOT; layers[2].size = MAX_SLOTS; layers[2].is_virt_csrow = true; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (mci == NULL) return -ENOMEM; edac_dbg(0, "MC: mci = %p\n", mci); mci->pdev = &pdev->dev; /* record ptr to the generic device */ pvt = mci->pvt_info; pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */ pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!pvt->tmp_prt_buffer) { edac_mc_free(mci); return -ENOMEM; } /* 'get' the pci devices we want to reserve for our use */ if (i7300_get_devices(mci)) goto fail0; mci->mc_idx = 0; mci->mtype_cap = MEM_FLAG_FB_DDR2; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = "i7300_edac.c"; mci->ctl_name = i7300_devs[0].ctl_name; mci->dev_name = pci_name(pdev); mci->ctl_page_to_phys = NULL; /* Set the function pointer to an actual operation function */ mci->edac_check = i7300_check_error; /* initialize the MC control structure 'csrows' table * with the mapping and control information */ if (i7300_get_mc_regs(mci)) { edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n"); mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ } else { edac_dbg(1, "MC: Enable error reporting now\n"); i7300_enable_error_reporting(mci); } /* add this new MC control structure to EDAC's list of MCs */ if (edac_mc_add_mc(mci)) { edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); /* FIXME: perhaps some code should go here that disables error * reporting if we just enabled it */ goto fail1; } i7300_clear_error(mci); /* allocating generic PCI control info */ i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); if (!i7300_pci) { printk(KERN_WARNING "%s(): Unable to create PCI control\n", __func__); printk(KERN_WARNING "%s(): PCI error report via EDAC not setup\n", __func__); } return 0; /* Error exit unwinding stack */ fail1: i7300_put_devices(mci); fail0: kfree(pvt->tmp_prt_buffer); edac_mc_free(mci); return -ENODEV; } /** * i7300_remove_one() - Remove the driver * @pdev: struct pci_dev pointer */ static void i7300_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; char *tmp; edac_dbg(0, "\n"); if (i7300_pci) edac_pci_release_generic_ctl(i7300_pci); mci = edac_mc_del_mc(&pdev->dev); if (!mci) return; tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer; /* retrieve references to resources, and free those resources */ i7300_put_devices(mci); kfree(tmp); edac_mc_free(mci); } /* * pci_device_id: table for which devices we are looking for * * Has only 8086:360c PCI ID */ static const struct pci_device_id i7300_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)}, {0,} /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, i7300_pci_tbl); /* * i7300_driver: pci_driver structure for this module */ static struct pci_driver i7300_driver = { .name = "i7300_edac", .probe = i7300_init_one, .remove = i7300_remove_one, .id_table = i7300_pci_tbl, }; /** * i7300_init() - Registers the driver */ static int __init i7300_init(void) { int pci_rc; edac_dbg(2, "\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&i7300_driver); return (pci_rc < 0) ? pci_rc : 0; } /** * i7300_exit() - Unregisters the driver */ static void __exit i7300_exit(void) { edac_dbg(2, "\n"); pci_unregister_driver(&i7300_driver); } module_init(i7300_init); module_exit(i7300_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)"); MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - " I7300_REVISION); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1