Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmytro Laktyushkin | 2361 | 54.83% | 24 | 33.33% |
Harry Wentland | 1072 | 24.90% | 10 | 13.89% |
Alex Deucher | 166 | 3.86% | 3 | 4.17% |
Leo (Sunpeng) Li | 159 | 3.69% | 2 | 2.78% |
Hersen Wu | 105 | 2.44% | 3 | 4.17% |
Charlene Liu | 70 | 1.63% | 4 | 5.56% |
Jordan Lazare | 67 | 1.56% | 1 | 1.39% |
Roman Li | 59 | 1.37% | 4 | 5.56% |
Nicholas Kazlauskas | 49 | 1.14% | 4 | 5.56% |
Amy Zhang | 43 | 1.00% | 1 | 1.39% |
Aidan Wood | 30 | 0.70% | 1 | 1.39% |
David Francis | 28 | 0.65% | 1 | 1.39% |
Ken Chalmers | 24 | 0.56% | 2 | 2.78% |
Feifei Xu | 24 | 0.56% | 1 | 1.39% |
Qingqing Zhuo | 9 | 0.21% | 1 | 1.39% |
Evan Quan | 8 | 0.19% | 1 | 1.39% |
Bhawanpreet Lakha | 7 | 0.16% | 2 | 2.78% |
Jerry (Fangzhi) Zuo | 6 | 0.14% | 1 | 1.39% |
Dave Airlie | 6 | 0.14% | 2 | 2.78% |
Yongqiang Sun | 5 | 0.12% | 1 | 1.39% |
Anthony Koo | 4 | 0.09% | 1 | 1.39% |
Sam Ravnborg | 3 | 0.07% | 1 | 1.39% |
Jun Lei | 1 | 0.02% | 1 | 1.39% |
Total | 4306 | 72 |
/* * Copyright 2012-16 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include <linux/slab.h> #include "dce_clk_mgr.h" #include "reg_helper.h" #include "dmcu.h" #include "core_types.h" #include "dal_asic_id.h" #define TO_DCE_CLK_MGR(clocks)\ container_of(clocks, struct dce_clk_mgr, base) #define REG(reg) \ (clk_mgr_dce->regs->reg) #undef FN #define FN(reg_name, field_name) \ clk_mgr_dce->clk_mgr_shift->field_name, clk_mgr_dce->clk_mgr_mask->field_name #define CTX \ clk_mgr_dce->base.ctx #define DC_LOGGER \ clk_mgr->ctx->logger /* Max clock values for each state indexed by "enum clocks_state": */ static const struct state_dependent_clocks dce80_max_clks_by_state[] = { /* ClocksStateInvalid - should not be used */ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /* ClocksStateUltraLow - not expected to be used for DCE 8.0 */ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /* ClocksStateLow */ { .display_clk_khz = 352000, .pixel_clk_khz = 330000}, /* ClocksStateNominal */ { .display_clk_khz = 600000, .pixel_clk_khz = 400000 }, /* ClocksStatePerformance */ { .display_clk_khz = 600000, .pixel_clk_khz = 400000 } }; static const struct state_dependent_clocks dce110_max_clks_by_state[] = { /*ClocksStateInvalid - should not be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateUltraLow - currently by HW design team not supposed to be used*/ { .display_clk_khz = 352000, .pixel_clk_khz = 330000 }, /*ClocksStateLow*/ { .display_clk_khz = 352000, .pixel_clk_khz = 330000 }, /*ClocksStateNominal*/ { .display_clk_khz = 467000, .pixel_clk_khz = 400000 }, /*ClocksStatePerformance*/ { .display_clk_khz = 643000, .pixel_clk_khz = 400000 } }; static const struct state_dependent_clocks dce112_max_clks_by_state[] = { /*ClocksStateInvalid - should not be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateUltraLow - currently by HW design team not supposed to be used*/ { .display_clk_khz = 389189, .pixel_clk_khz = 346672 }, /*ClocksStateLow*/ { .display_clk_khz = 459000, .pixel_clk_khz = 400000 }, /*ClocksStateNominal*/ { .display_clk_khz = 667000, .pixel_clk_khz = 600000 }, /*ClocksStatePerformance*/ { .display_clk_khz = 1132000, .pixel_clk_khz = 600000 } }; static const struct state_dependent_clocks dce120_max_clks_by_state[] = { /*ClocksStateInvalid - should not be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateUltraLow - currently by HW design team not supposed to be used*/ { .display_clk_khz = 0, .pixel_clk_khz = 0 }, /*ClocksStateLow*/ { .display_clk_khz = 460000, .pixel_clk_khz = 400000 }, /*ClocksStateNominal*/ { .display_clk_khz = 670000, .pixel_clk_khz = 600000 }, /*ClocksStatePerformance*/ { .display_clk_khz = 1133000, .pixel_clk_khz = 600000 } }; int dentist_get_divider_from_did(int did) { if (did < DENTIST_BASE_DID_1) did = DENTIST_BASE_DID_1; if (did > DENTIST_MAX_DID) did = DENTIST_MAX_DID; if (did < DENTIST_BASE_DID_2) { return DENTIST_DIVIDER_RANGE_1_START + DENTIST_DIVIDER_RANGE_1_STEP * (did - DENTIST_BASE_DID_1); } else if (did < DENTIST_BASE_DID_3) { return DENTIST_DIVIDER_RANGE_2_START + DENTIST_DIVIDER_RANGE_2_STEP * (did - DENTIST_BASE_DID_2); } else if (did < DENTIST_BASE_DID_4) { return DENTIST_DIVIDER_RANGE_3_START + DENTIST_DIVIDER_RANGE_3_STEP * (did - DENTIST_BASE_DID_3); } else { return DENTIST_DIVIDER_RANGE_4_START + DENTIST_DIVIDER_RANGE_4_STEP * (did - DENTIST_BASE_DID_4); } } /* SW will adjust DP REF Clock average value for all purposes * (DP DTO / DP Audio DTO and DP GTC) if clock is spread for all cases: -if SS enabled on DP Ref clock and HW de-spreading enabled with SW calculations for DS_INCR/DS_MODULO (this is planned to be default case) -if SS enabled on DP Ref clock and HW de-spreading enabled with HW calculations (not planned to be used, but average clock should still be valid) -if SS enabled on DP Ref clock and HW de-spreading disabled (should not be case with CIK) then SW should program all rates generated according to average value (case as with previous ASICs) */ static int clk_mgr_adjust_dp_ref_freq_for_ss(struct dce_clk_mgr *clk_mgr_dce, int dp_ref_clk_khz) { if (clk_mgr_dce->ss_on_dprefclk && clk_mgr_dce->dprefclk_ss_divider != 0) { struct fixed31_32 ss_percentage = dc_fixpt_div_int( dc_fixpt_from_fraction(clk_mgr_dce->dprefclk_ss_percentage, clk_mgr_dce->dprefclk_ss_divider), 200); struct fixed31_32 adj_dp_ref_clk_khz; ss_percentage = dc_fixpt_sub(dc_fixpt_one, ss_percentage); adj_dp_ref_clk_khz = dc_fixpt_mul_int(ss_percentage, dp_ref_clk_khz); dp_ref_clk_khz = dc_fixpt_floor(adj_dp_ref_clk_khz); } return dp_ref_clk_khz; } static int dce_get_dp_ref_freq_khz(struct clk_mgr *clk_mgr) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); int dprefclk_wdivider; int dprefclk_src_sel; int dp_ref_clk_khz = 600000; int target_div; /* ASSERT DP Reference Clock source is from DFS*/ REG_GET(DPREFCLK_CNTL, DPREFCLK_SRC_SEL, &dprefclk_src_sel); ASSERT(dprefclk_src_sel == 0); /* Read the mmDENTIST_DISPCLK_CNTL to get the currently * programmed DID DENTIST_DPREFCLK_WDIVIDER*/ REG_GET(DENTIST_DISPCLK_CNTL, DENTIST_DPREFCLK_WDIVIDER, &dprefclk_wdivider); /* Convert DENTIST_DPREFCLK_WDIVIDERto actual divider*/ target_div = dentist_get_divider_from_did(dprefclk_wdivider); /* Calculate the current DFS clock, in kHz.*/ dp_ref_clk_khz = (DENTIST_DIVIDER_RANGE_SCALE_FACTOR * clk_mgr_dce->dentist_vco_freq_khz) / target_div; return clk_mgr_adjust_dp_ref_freq_for_ss(clk_mgr_dce, dp_ref_clk_khz); } int dce12_get_dp_ref_freq_khz(struct clk_mgr *clk_mgr) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); return clk_mgr_adjust_dp_ref_freq_for_ss(clk_mgr_dce, clk_mgr_dce->dprefclk_khz); } /* unit: in_khz before mode set, get pixel clock from context. ASIC register * may not be programmed yet */ static uint32_t get_max_pixel_clock_for_all_paths(struct dc_state *context) { uint32_t max_pix_clk = 0; int i; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream == NULL) continue; /* do not check under lay */ if (pipe_ctx->top_pipe) continue; if (pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz / 10 > max_pix_clk) max_pix_clk = pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz / 10; /* raise clock state for HBR3/2 if required. Confirmed with HW DCE/DPCS * logic for HBR3 still needs Nominal (0.8V) on VDDC rail */ if (dc_is_dp_signal(pipe_ctx->stream->signal) && pipe_ctx->stream_res.pix_clk_params.requested_sym_clk > max_pix_clk) max_pix_clk = pipe_ctx->stream_res.pix_clk_params.requested_sym_clk; } return max_pix_clk; } static enum dm_pp_clocks_state dce_get_required_clocks_state( struct clk_mgr *clk_mgr, struct dc_state *context) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); int i; enum dm_pp_clocks_state low_req_clk; int max_pix_clk = get_max_pixel_clock_for_all_paths(context); /* Iterate from highest supported to lowest valid state, and update * lowest RequiredState with the lowest state that satisfies * all required clocks */ for (i = clk_mgr_dce->max_clks_state; i >= DM_PP_CLOCKS_STATE_ULTRA_LOW; i--) if (context->bw_ctx.bw.dce.dispclk_khz > clk_mgr_dce->max_clks_by_state[i].display_clk_khz || max_pix_clk > clk_mgr_dce->max_clks_by_state[i].pixel_clk_khz) break; low_req_clk = i + 1; if (low_req_clk > clk_mgr_dce->max_clks_state) { /* set max clock state for high phyclock, invalid on exceeding display clock */ if (clk_mgr_dce->max_clks_by_state[clk_mgr_dce->max_clks_state].display_clk_khz < context->bw_ctx.bw.dce.dispclk_khz) low_req_clk = DM_PP_CLOCKS_STATE_INVALID; else low_req_clk = clk_mgr_dce->max_clks_state; } return low_req_clk; } static int dce_set_clock( struct clk_mgr *clk_mgr, int requested_clk_khz) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); struct bp_pixel_clock_parameters pxl_clk_params = { 0 }; struct dc_bios *bp = clk_mgr->ctx->dc_bios; int actual_clock = requested_clk_khz; struct dmcu *dmcu = clk_mgr_dce->base.ctx->dc->res_pool->dmcu; /* Make sure requested clock isn't lower than minimum threshold*/ if (requested_clk_khz > 0) requested_clk_khz = max(requested_clk_khz, clk_mgr_dce->dentist_vco_freq_khz / 64); /* Prepare to program display clock*/ pxl_clk_params.target_pixel_clock_100hz = requested_clk_khz * 10; pxl_clk_params.pll_id = CLOCK_SOURCE_ID_DFS; if (clk_mgr_dce->dfs_bypass_active) pxl_clk_params.flags.SET_DISPCLK_DFS_BYPASS = true; bp->funcs->program_display_engine_pll(bp, &pxl_clk_params); if (clk_mgr_dce->dfs_bypass_active) { /* Cache the fixed display clock*/ clk_mgr_dce->dfs_bypass_disp_clk = pxl_clk_params.dfs_bypass_display_clock; actual_clock = pxl_clk_params.dfs_bypass_display_clock; } /* from power down, we need mark the clock state as ClocksStateNominal * from HWReset, so when resume we will call pplib voltage regulator.*/ if (requested_clk_khz == 0) clk_mgr_dce->cur_min_clks_state = DM_PP_CLOCKS_STATE_NOMINAL; if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) dmcu->funcs->set_psr_wait_loop(dmcu, actual_clock / 1000 / 7); return actual_clock; } int dce112_set_clock(struct clk_mgr *clk_mgr, int requested_clk_khz) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); struct bp_set_dce_clock_parameters dce_clk_params; struct dc_bios *bp = clk_mgr->ctx->dc_bios; struct dc *core_dc = clk_mgr->ctx->dc; struct dmcu *dmcu = core_dc->res_pool->dmcu; int actual_clock = requested_clk_khz; /* Prepare to program display clock*/ memset(&dce_clk_params, 0, sizeof(dce_clk_params)); /* Make sure requested clock isn't lower than minimum threshold*/ if (requested_clk_khz > 0) requested_clk_khz = max(requested_clk_khz, clk_mgr_dce->dentist_vco_freq_khz / 62); dce_clk_params.target_clock_frequency = requested_clk_khz; dce_clk_params.pll_id = CLOCK_SOURCE_ID_DFS; dce_clk_params.clock_type = DCECLOCK_TYPE_DISPLAY_CLOCK; bp->funcs->set_dce_clock(bp, &dce_clk_params); actual_clock = dce_clk_params.target_clock_frequency; /* from power down, we need mark the clock state as ClocksStateNominal * from HWReset, so when resume we will call pplib voltage regulator.*/ if (requested_clk_khz == 0) clk_mgr_dce->cur_min_clks_state = DM_PP_CLOCKS_STATE_NOMINAL; /*Program DP ref Clock*/ /*VBIOS will determine DPREFCLK frequency, so we don't set it*/ dce_clk_params.target_clock_frequency = 0; dce_clk_params.clock_type = DCECLOCK_TYPE_DPREFCLK; if (!((clk_mgr->ctx->asic_id.chip_family == FAMILY_AI) && ASICREV_IS_VEGA20_P(clk_mgr->ctx->asic_id.hw_internal_rev))) dce_clk_params.flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK = (dce_clk_params.pll_id == CLOCK_SOURCE_COMBO_DISPLAY_PLL0); else dce_clk_params.flags.USE_GENLOCK_AS_SOURCE_FOR_DPREFCLK = false; bp->funcs->set_dce_clock(bp, &dce_clk_params); if (!IS_FPGA_MAXIMUS_DC(core_dc->ctx->dce_environment)) { if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) { if (clk_mgr_dce->dfs_bypass_disp_clk != actual_clock) dmcu->funcs->set_psr_wait_loop(dmcu, actual_clock / 1000 / 7); } } clk_mgr_dce->dfs_bypass_disp_clk = actual_clock; return actual_clock; } static void dce_clock_read_integrated_info(struct dce_clk_mgr *clk_mgr_dce) { struct dc_debug_options *debug = &clk_mgr_dce->base.ctx->dc->debug; struct dc_bios *bp = clk_mgr_dce->base.ctx->dc_bios; struct integrated_info info = { { { 0 } } }; struct dc_firmware_info fw_info = { { 0 } }; int i; if (bp->integrated_info) info = *bp->integrated_info; clk_mgr_dce->dentist_vco_freq_khz = info.dentist_vco_freq; if (clk_mgr_dce->dentist_vco_freq_khz == 0) { bp->funcs->get_firmware_info(bp, &fw_info); clk_mgr_dce->dentist_vco_freq_khz = fw_info.smu_gpu_pll_output_freq; if (clk_mgr_dce->dentist_vco_freq_khz == 0) clk_mgr_dce->dentist_vco_freq_khz = 3600000; } /*update the maximum display clock for each power state*/ for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { enum dm_pp_clocks_state clk_state = DM_PP_CLOCKS_STATE_INVALID; switch (i) { case 0: clk_state = DM_PP_CLOCKS_STATE_ULTRA_LOW; break; case 1: clk_state = DM_PP_CLOCKS_STATE_LOW; break; case 2: clk_state = DM_PP_CLOCKS_STATE_NOMINAL; break; case 3: clk_state = DM_PP_CLOCKS_STATE_PERFORMANCE; break; default: clk_state = DM_PP_CLOCKS_STATE_INVALID; break; } /*Do not allow bad VBIOS/SBIOS to override with invalid values, * check for > 100MHz*/ if (info.disp_clk_voltage[i].max_supported_clk >= 100000) clk_mgr_dce->max_clks_by_state[clk_state].display_clk_khz = info.disp_clk_voltage[i].max_supported_clk; } if (!debug->disable_dfs_bypass && bp->integrated_info) if (bp->integrated_info->gpu_cap_info & DFS_BYPASS_ENABLE) clk_mgr_dce->dfs_bypass_enabled = true; } void dce_clock_read_ss_info(struct dce_clk_mgr *clk_mgr_dce) { struct dc_bios *bp = clk_mgr_dce->base.ctx->dc_bios; int ss_info_num = bp->funcs->get_ss_entry_number( bp, AS_SIGNAL_TYPE_GPU_PLL); if (ss_info_num) { struct spread_spectrum_info info = { { 0 } }; enum bp_result result = bp->funcs->get_spread_spectrum_info( bp, AS_SIGNAL_TYPE_GPU_PLL, 0, &info); /* Based on VBIOS, VBIOS will keep entry for GPU PLL SS * even if SS not enabled and in that case * SSInfo.spreadSpectrumPercentage !=0 would be sign * that SS is enabled */ if (result == BP_RESULT_OK && info.spread_spectrum_percentage != 0) { clk_mgr_dce->ss_on_dprefclk = true; clk_mgr_dce->dprefclk_ss_divider = info.spread_percentage_divider; if (info.type.CENTER_MODE == 0) { /* TODO: Currently for DP Reference clock we * need only SS percentage for * downspread */ clk_mgr_dce->dprefclk_ss_percentage = info.spread_spectrum_percentage; } return; } result = bp->funcs->get_spread_spectrum_info( bp, AS_SIGNAL_TYPE_DISPLAY_PORT, 0, &info); /* Based on VBIOS, VBIOS will keep entry for DPREFCLK SS * even if SS not enabled and in that case * SSInfo.spreadSpectrumPercentage !=0 would be sign * that SS is enabled */ if (result == BP_RESULT_OK && info.spread_spectrum_percentage != 0) { clk_mgr_dce->ss_on_dprefclk = true; clk_mgr_dce->dprefclk_ss_divider = info.spread_percentage_divider; if (info.type.CENTER_MODE == 0) { /* Currently for DP Reference clock we * need only SS percentage for * downspread */ clk_mgr_dce->dprefclk_ss_percentage = info.spread_spectrum_percentage; } if (clk_mgr_dce->base.ctx->dc->debug.ignore_dpref_ss) clk_mgr_dce->dprefclk_ss_percentage = 0; } } } /** * dce121_clock_patch_xgmi_ss_info() - Save XGMI spread spectrum info * @clk_mgr: clock manager base structure * * Reads from VBIOS the XGMI spread spectrum info and saves it within * the dce clock manager. This operation will overwrite the existing dprefclk * SS values if the vBIOS query succeeds. Otherwise, it does nothing. It also * sets the ->xgmi_enabled flag. */ void dce121_clock_patch_xgmi_ss_info(struct clk_mgr *clk_mgr) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); enum bp_result result; struct spread_spectrum_info info = { { 0 } }; struct dc_bios *bp = clk_mgr_dce->base.ctx->dc_bios; clk_mgr_dce->xgmi_enabled = false; result = bp->funcs->get_spread_spectrum_info(bp, AS_SIGNAL_TYPE_XGMI, 0, &info); if (result == BP_RESULT_OK && info.spread_spectrum_percentage != 0) { clk_mgr_dce->xgmi_enabled = true; clk_mgr_dce->ss_on_dprefclk = true; clk_mgr_dce->dprefclk_ss_divider = info.spread_percentage_divider; if (info.type.CENTER_MODE == 0) { /* Currently for DP Reference clock we * need only SS percentage for * downspread */ clk_mgr_dce->dprefclk_ss_percentage = info.spread_spectrum_percentage; } } } void dce110_fill_display_configs( const struct dc_state *context, struct dm_pp_display_configuration *pp_display_cfg) { int j; int num_cfgs = 0; for (j = 0; j < context->stream_count; j++) { int k; const struct dc_stream_state *stream = context->streams[j]; struct dm_pp_single_disp_config *cfg = &pp_display_cfg->disp_configs[num_cfgs]; const struct pipe_ctx *pipe_ctx = NULL; for (k = 0; k < MAX_PIPES; k++) if (stream == context->res_ctx.pipe_ctx[k].stream) { pipe_ctx = &context->res_ctx.pipe_ctx[k]; break; } ASSERT(pipe_ctx != NULL); /* only notify active stream */ if (stream->dpms_off) continue; num_cfgs++; cfg->signal = pipe_ctx->stream->signal; cfg->pipe_idx = pipe_ctx->stream_res.tg->inst; cfg->src_height = stream->src.height; cfg->src_width = stream->src.width; cfg->ddi_channel_mapping = stream->link->ddi_channel_mapping.raw; cfg->transmitter = stream->link->link_enc->transmitter; cfg->link_settings.lane_count = stream->link->cur_link_settings.lane_count; cfg->link_settings.link_rate = stream->link->cur_link_settings.link_rate; cfg->link_settings.link_spread = stream->link->cur_link_settings.link_spread; cfg->sym_clock = stream->phy_pix_clk; /* Round v_refresh*/ cfg->v_refresh = stream->timing.pix_clk_100hz * 100; cfg->v_refresh /= stream->timing.h_total; cfg->v_refresh = (cfg->v_refresh + stream->timing.v_total / 2) / stream->timing.v_total; } pp_display_cfg->display_count = num_cfgs; } static uint32_t dce110_get_min_vblank_time_us(const struct dc_state *context) { uint8_t j; uint32_t min_vertical_blank_time = -1; for (j = 0; j < context->stream_count; j++) { struct dc_stream_state *stream = context->streams[j]; uint32_t vertical_blank_in_pixels = 0; uint32_t vertical_blank_time = 0; vertical_blank_in_pixels = stream->timing.h_total * (stream->timing.v_total - stream->timing.v_addressable); vertical_blank_time = vertical_blank_in_pixels * 10000 / stream->timing.pix_clk_100hz; if (min_vertical_blank_time > vertical_blank_time) min_vertical_blank_time = vertical_blank_time; } return min_vertical_blank_time; } static int determine_sclk_from_bounding_box( const struct dc *dc, int required_sclk) { int i; /* * Some asics do not give us sclk levels, so we just report the actual * required sclk */ if (dc->sclk_lvls.num_levels == 0) return required_sclk; for (i = 0; i < dc->sclk_lvls.num_levels; i++) { if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk) return dc->sclk_lvls.clocks_in_khz[i]; } /* * even maximum level could not satisfy requirement, this * is unexpected at this stage, should have been caught at * validation time */ ASSERT(0); return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1]; } static void dce_pplib_apply_display_requirements( struct dc *dc, struct dc_state *context) { struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg; pp_display_cfg->avail_mclk_switch_time_us = dce110_get_min_vblank_time_us(context); dce110_fill_display_configs(context, pp_display_cfg); if (memcmp(&dc->current_state->pp_display_cfg, pp_display_cfg, sizeof(*pp_display_cfg)) != 0) dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg); } static void dce11_pplib_apply_display_requirements( struct dc *dc, struct dc_state *context) { struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg; pp_display_cfg->all_displays_in_sync = context->bw_ctx.bw.dce.all_displays_in_sync; pp_display_cfg->nb_pstate_switch_disable = context->bw_ctx.bw.dce.nbp_state_change_enable == false; pp_display_cfg->cpu_cc6_disable = context->bw_ctx.bw.dce.cpuc_state_change_enable == false; pp_display_cfg->cpu_pstate_disable = context->bw_ctx.bw.dce.cpup_state_change_enable == false; pp_display_cfg->cpu_pstate_separation_time = context->bw_ctx.bw.dce.blackout_recovery_time_us; pp_display_cfg->min_memory_clock_khz = context->bw_ctx.bw.dce.yclk_khz / MEMORY_TYPE_MULTIPLIER_CZ; pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box( dc, context->bw_ctx.bw.dce.sclk_khz); /* * As workaround for >4x4K lightup set dcfclock to min_engine_clock value. * This is not required for less than 5 displays, * thus don't request decfclk in dc to avoid impact * on power saving. * */ pp_display_cfg->min_dcfclock_khz = (context->stream_count > 4)? pp_display_cfg->min_engine_clock_khz : 0; pp_display_cfg->min_engine_clock_deep_sleep_khz = context->bw_ctx.bw.dce.sclk_deep_sleep_khz; pp_display_cfg->avail_mclk_switch_time_us = dce110_get_min_vblank_time_us(context); /* TODO: dce11.2*/ pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0; pp_display_cfg->disp_clk_khz = dc->res_pool->clk_mgr->clks.dispclk_khz; dce110_fill_display_configs(context, pp_display_cfg); /* TODO: is this still applicable?*/ if (pp_display_cfg->display_count == 1) { const struct dc_crtc_timing *timing = &context->streams[0]->timing; pp_display_cfg->crtc_index = pp_display_cfg->disp_configs[0].pipe_idx; pp_display_cfg->line_time_in_us = timing->h_total * 10000 / timing->pix_clk_100hz; } if (memcmp(&dc->current_state->pp_display_cfg, pp_display_cfg, sizeof(*pp_display_cfg)) != 0) dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg); } static void dce_update_clocks(struct clk_mgr *clk_mgr, struct dc_state *context, bool safe_to_lower) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); struct dm_pp_power_level_change_request level_change_req; int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz; /*TODO: W/A for dal3 linux, investigate why this works */ if (!clk_mgr_dce->dfs_bypass_active) patched_disp_clk = patched_disp_clk * 115 / 100; level_change_req.power_level = dce_get_required_clocks_state(clk_mgr, context); /* get max clock state from PPLIB */ if ((level_change_req.power_level < clk_mgr_dce->cur_min_clks_state && safe_to_lower) || level_change_req.power_level > clk_mgr_dce->cur_min_clks_state) { if (dm_pp_apply_power_level_change_request(clk_mgr->ctx, &level_change_req)) clk_mgr_dce->cur_min_clks_state = level_change_req.power_level; } if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) { patched_disp_clk = dce_set_clock(clk_mgr, patched_disp_clk); clk_mgr->clks.dispclk_khz = patched_disp_clk; } dce_pplib_apply_display_requirements(clk_mgr->ctx->dc, context); } static void dce11_update_clocks(struct clk_mgr *clk_mgr, struct dc_state *context, bool safe_to_lower) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); struct dm_pp_power_level_change_request level_change_req; int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz; /*TODO: W/A for dal3 linux, investigate why this works */ if (!clk_mgr_dce->dfs_bypass_active) patched_disp_clk = patched_disp_clk * 115 / 100; level_change_req.power_level = dce_get_required_clocks_state(clk_mgr, context); /* get max clock state from PPLIB */ if ((level_change_req.power_level < clk_mgr_dce->cur_min_clks_state && safe_to_lower) || level_change_req.power_level > clk_mgr_dce->cur_min_clks_state) { if (dm_pp_apply_power_level_change_request(clk_mgr->ctx, &level_change_req)) clk_mgr_dce->cur_min_clks_state = level_change_req.power_level; } if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) { context->bw_ctx.bw.dce.dispclk_khz = dce_set_clock(clk_mgr, patched_disp_clk); clk_mgr->clks.dispclk_khz = patched_disp_clk; } dce11_pplib_apply_display_requirements(clk_mgr->ctx->dc, context); } static void dce112_update_clocks(struct clk_mgr *clk_mgr, struct dc_state *context, bool safe_to_lower) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); struct dm_pp_power_level_change_request level_change_req; int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz; /*TODO: W/A for dal3 linux, investigate why this works */ if (!clk_mgr_dce->dfs_bypass_active) patched_disp_clk = patched_disp_clk * 115 / 100; level_change_req.power_level = dce_get_required_clocks_state(clk_mgr, context); /* get max clock state from PPLIB */ if ((level_change_req.power_level < clk_mgr_dce->cur_min_clks_state && safe_to_lower) || level_change_req.power_level > clk_mgr_dce->cur_min_clks_state) { if (dm_pp_apply_power_level_change_request(clk_mgr->ctx, &level_change_req)) clk_mgr_dce->cur_min_clks_state = level_change_req.power_level; } if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) { patched_disp_clk = dce112_set_clock(clk_mgr, patched_disp_clk); clk_mgr->clks.dispclk_khz = patched_disp_clk; } dce11_pplib_apply_display_requirements(clk_mgr->ctx->dc, context); } static void dce12_update_clocks(struct clk_mgr *clk_mgr, struct dc_state *context, bool safe_to_lower) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(clk_mgr); struct dm_pp_clock_for_voltage_req clock_voltage_req = {0}; int max_pix_clk = get_max_pixel_clock_for_all_paths(context); int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz; /*TODO: W/A for dal3 linux, investigate why this works */ if (!clk_mgr_dce->dfs_bypass_active) patched_disp_clk = patched_disp_clk * 115 / 100; if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr->clks.dispclk_khz)) { clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DISPLAY_CLK; /* * When xGMI is enabled, the display clk needs to be adjusted * with the WAFL link's SS percentage. */ if (clk_mgr_dce->xgmi_enabled) patched_disp_clk = clk_mgr_adjust_dp_ref_freq_for_ss( clk_mgr_dce, patched_disp_clk); clock_voltage_req.clocks_in_khz = patched_disp_clk; clk_mgr->clks.dispclk_khz = dce112_set_clock(clk_mgr, patched_disp_clk); dm_pp_apply_clock_for_voltage_request(clk_mgr->ctx, &clock_voltage_req); } if (should_set_clock(safe_to_lower, max_pix_clk, clk_mgr->clks.phyclk_khz)) { clock_voltage_req.clk_type = DM_PP_CLOCK_TYPE_DISPLAYPHYCLK; clock_voltage_req.clocks_in_khz = max_pix_clk; clk_mgr->clks.phyclk_khz = max_pix_clk; dm_pp_apply_clock_for_voltage_request(clk_mgr->ctx, &clock_voltage_req); } dce11_pplib_apply_display_requirements(clk_mgr->ctx->dc, context); } static const struct clk_mgr_funcs dce120_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .update_clocks = dce12_update_clocks }; static const struct clk_mgr_funcs dce112_funcs = { .get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz, .update_clocks = dce112_update_clocks }; static const struct clk_mgr_funcs dce110_funcs = { .get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz, .update_clocks = dce11_update_clocks, }; static const struct clk_mgr_funcs dce_funcs = { .get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz, .update_clocks = dce_update_clocks }; static void dce_clk_mgr_construct( struct dce_clk_mgr *clk_mgr_dce, struct dc_context *ctx, const struct clk_mgr_registers *regs, const struct clk_mgr_shift *clk_shift, const struct clk_mgr_mask *clk_mask) { struct clk_mgr *base = &clk_mgr_dce->base; struct dm_pp_static_clock_info static_clk_info = {0}; base->ctx = ctx; base->funcs = &dce_funcs; clk_mgr_dce->regs = regs; clk_mgr_dce->clk_mgr_shift = clk_shift; clk_mgr_dce->clk_mgr_mask = clk_mask; clk_mgr_dce->dfs_bypass_disp_clk = 0; clk_mgr_dce->dprefclk_ss_percentage = 0; clk_mgr_dce->dprefclk_ss_divider = 1000; clk_mgr_dce->ss_on_dprefclk = false; if (dm_pp_get_static_clocks(ctx, &static_clk_info)) clk_mgr_dce->max_clks_state = static_clk_info.max_clocks_state; else clk_mgr_dce->max_clks_state = DM_PP_CLOCKS_STATE_NOMINAL; clk_mgr_dce->cur_min_clks_state = DM_PP_CLOCKS_STATE_INVALID; dce_clock_read_integrated_info(clk_mgr_dce); dce_clock_read_ss_info(clk_mgr_dce); } struct clk_mgr *dce_clk_mgr_create( struct dc_context *ctx, const struct clk_mgr_registers *regs, const struct clk_mgr_shift *clk_shift, const struct clk_mgr_mask *clk_mask) { struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL); if (clk_mgr_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_mgr_dce->max_clks_by_state, dce80_max_clks_by_state, sizeof(dce80_max_clks_by_state)); dce_clk_mgr_construct( clk_mgr_dce, ctx, regs, clk_shift, clk_mask); return &clk_mgr_dce->base; } struct clk_mgr *dce110_clk_mgr_create( struct dc_context *ctx, const struct clk_mgr_registers *regs, const struct clk_mgr_shift *clk_shift, const struct clk_mgr_mask *clk_mask) { struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL); if (clk_mgr_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_mgr_dce->max_clks_by_state, dce110_max_clks_by_state, sizeof(dce110_max_clks_by_state)); dce_clk_mgr_construct( clk_mgr_dce, ctx, regs, clk_shift, clk_mask); clk_mgr_dce->base.funcs = &dce110_funcs; return &clk_mgr_dce->base; } struct clk_mgr *dce112_clk_mgr_create( struct dc_context *ctx, const struct clk_mgr_registers *regs, const struct clk_mgr_shift *clk_shift, const struct clk_mgr_mask *clk_mask) { struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL); if (clk_mgr_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_mgr_dce->max_clks_by_state, dce112_max_clks_by_state, sizeof(dce112_max_clks_by_state)); dce_clk_mgr_construct( clk_mgr_dce, ctx, regs, clk_shift, clk_mask); clk_mgr_dce->base.funcs = &dce112_funcs; return &clk_mgr_dce->base; } struct clk_mgr *dce120_clk_mgr_create(struct dc_context *ctx) { struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL); if (clk_mgr_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_mgr_dce->max_clks_by_state, dce120_max_clks_by_state, sizeof(dce120_max_clks_by_state)); dce_clk_mgr_construct( clk_mgr_dce, ctx, NULL, NULL, NULL); clk_mgr_dce->dprefclk_khz = 600000; clk_mgr_dce->base.funcs = &dce120_funcs; return &clk_mgr_dce->base; } struct clk_mgr *dce121_clk_mgr_create(struct dc_context *ctx) { struct dce_clk_mgr *clk_mgr_dce = kzalloc(sizeof(*clk_mgr_dce), GFP_KERNEL); if (clk_mgr_dce == NULL) { BREAK_TO_DEBUGGER(); return NULL; } memcpy(clk_mgr_dce->max_clks_by_state, dce120_max_clks_by_state, sizeof(dce120_max_clks_by_state)); dce_clk_mgr_construct(clk_mgr_dce, ctx, NULL, NULL, NULL); clk_mgr_dce->dprefclk_khz = 625000; clk_mgr_dce->base.funcs = &dce120_funcs; return &clk_mgr_dce->base; } void dce_clk_mgr_destroy(struct clk_mgr **clk_mgr) { struct dce_clk_mgr *clk_mgr_dce = TO_DCE_CLK_MGR(*clk_mgr); kfree(clk_mgr_dce); *clk_mgr = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1