Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Francis | 2130 | 83.11% | 5 | 23.81% |
Harry Wentland | 103 | 4.02% | 3 | 14.29% |
Charlene Liu | 97 | 3.78% | 4 | 19.05% |
Derek Lai | 93 | 3.63% | 2 | 9.52% |
Zi Yu Liao | 85 | 3.32% | 1 | 4.76% |
Lewis Huang | 32 | 1.25% | 1 | 4.76% |
Tony Cheng | 8 | 0.31% | 1 | 4.76% |
Dan Carpenter | 7 | 0.27% | 1 | 4.76% |
Sam Ravnborg | 3 | 0.12% | 1 | 4.76% |
Dmytro Laktyushkin | 3 | 0.12% | 1 | 4.76% |
Lee Jones | 2 | 0.08% | 1 | 4.76% |
Total | 2563 | 21 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include <linux/delay.h> #include "resource.h" #include "dce_i2c.h" #include "dce_i2c_hw.h" #include "reg_helper.h" #include "include/gpio_service_interface.h" #define CTX \ dce_i2c_hw->ctx #define REG(reg)\ dce_i2c_hw->regs->reg #undef FN #define FN(reg_name, field_name) \ dce_i2c_hw->shifts->field_name, dce_i2c_hw->masks->field_name static void execute_transaction( struct dce_i2c_hw *dce_i2c_hw) { REG_UPDATE_N(SETUP, 5, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_EN), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_CLK_DRIVE_EN), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_DATA_DRIVE_SEL), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_TRANSACTION_DELAY), 0, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_INTRA_BYTE_DELAY), 0); REG_UPDATE_5(DC_I2C_CONTROL, DC_I2C_SOFT_RESET, 0, DC_I2C_SW_STATUS_RESET, 0, DC_I2C_SEND_RESET, 0, DC_I2C_GO, 0, DC_I2C_TRANSACTION_COUNT, dce_i2c_hw->transaction_count - 1); /* start I2C transfer */ REG_UPDATE(DC_I2C_CONTROL, DC_I2C_GO, 1); /* all transactions were executed and HW buffer became empty * (even though it actually happens when status becomes DONE) */ dce_i2c_hw->transaction_count = 0; dce_i2c_hw->buffer_used_bytes = 0; } static enum i2c_channel_operation_result get_channel_status( struct dce_i2c_hw *dce_i2c_hw, uint8_t *returned_bytes) { uint32_t i2c_sw_status = 0; uint32_t value = REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW) return I2C_CHANNEL_OPERATION_ENGINE_BUSY; else if (value & dce_i2c_hw->masks->DC_I2C_SW_STOPPED_ON_NACK) return I2C_CHANNEL_OPERATION_NO_RESPONSE; else if (value & dce_i2c_hw->masks->DC_I2C_SW_TIMEOUT) return I2C_CHANNEL_OPERATION_TIMEOUT; else if (value & dce_i2c_hw->masks->DC_I2C_SW_ABORTED) return I2C_CHANNEL_OPERATION_FAILED; else if (value & dce_i2c_hw->masks->DC_I2C_SW_DONE) return I2C_CHANNEL_OPERATION_SUCCEEDED; /* * this is the case when HW used for communication, I2C_SW_STATUS * could be zero */ return I2C_CHANNEL_OPERATION_SUCCEEDED; } static uint32_t get_hw_buffer_available_size( const struct dce_i2c_hw *dce_i2c_hw) { return dce_i2c_hw->buffer_size - dce_i2c_hw->buffer_used_bytes; } static void process_channel_reply( struct dce_i2c_hw *dce_i2c_hw, struct i2c_payload *reply) { uint32_t length = reply->length; uint8_t *buffer = reply->data; REG_SET_3(DC_I2C_DATA, 0, DC_I2C_INDEX, dce_i2c_hw->buffer_used_write, DC_I2C_DATA_RW, 1, DC_I2C_INDEX_WRITE, 1); while (length) { /* after reading the status, * if the I2C operation executed successfully * (i.e. DC_I2C_STATUS_DONE = 1) then the I2C controller * should read data bytes from I2C circular data buffer */ uint32_t i2c_data; REG_GET(DC_I2C_DATA, DC_I2C_DATA, &i2c_data); *buffer++ = i2c_data; --length; } } static bool is_engine_available(struct dce_i2c_hw *dce_i2c_hw) { unsigned int arbitrate; unsigned int i2c_hw_status; REG_GET(HW_STATUS, DC_I2C_DDC1_HW_STATUS, &i2c_hw_status); if (i2c_hw_status == DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_HW) return false; REG_GET(DC_I2C_ARBITRATION, DC_I2C_REG_RW_CNTL_STATUS, &arbitrate); if (arbitrate == DC_I2C_REG_RW_CNTL_STATUS_DMCU_ONLY) return false; return true; } static bool is_hw_busy(struct dce_i2c_hw *dce_i2c_hw) { uint32_t i2c_sw_status = 0; REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_IDLE) return false; if (is_engine_available(dce_i2c_hw)) return false; return true; } static bool process_transaction( struct dce_i2c_hw *dce_i2c_hw, struct i2c_request_transaction_data *request) { uint32_t length = request->length; uint8_t *buffer = request->data; bool last_transaction = false; uint32_t value = 0; if (is_hw_busy(dce_i2c_hw)) { request->status = I2C_CHANNEL_OPERATION_ENGINE_BUSY; return false; } last_transaction = ((dce_i2c_hw->transaction_count == 3) || (request->action == DCE_I2C_TRANSACTION_ACTION_I2C_WRITE) || (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ)); switch (dce_i2c_hw->transaction_count) { case 0: REG_UPDATE_5(DC_I2C_TRANSACTION0, DC_I2C_STOP_ON_NACK0, 1, DC_I2C_START0, 1, DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), DC_I2C_COUNT0, length, DC_I2C_STOP0, last_transaction ? 1 : 0); break; case 1: REG_UPDATE_5(DC_I2C_TRANSACTION1, DC_I2C_STOP_ON_NACK0, 1, DC_I2C_START0, 1, DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), DC_I2C_COUNT0, length, DC_I2C_STOP0, last_transaction ? 1 : 0); break; case 2: REG_UPDATE_5(DC_I2C_TRANSACTION2, DC_I2C_STOP_ON_NACK0, 1, DC_I2C_START0, 1, DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), DC_I2C_COUNT0, length, DC_I2C_STOP0, last_transaction ? 1 : 0); break; case 3: REG_UPDATE_5(DC_I2C_TRANSACTION3, DC_I2C_STOP_ON_NACK0, 1, DC_I2C_START0, 1, DC_I2C_RW0, 0 != (request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ), DC_I2C_COUNT0, length, DC_I2C_STOP0, last_transaction ? 1 : 0); break; default: /* TODO Warning ? */ break; } /* Write the I2C address and I2C data * into the hardware circular buffer, one byte per entry. * As an example, the 7-bit I2C slave address for CRT monitor * for reading DDC/EDID information is 0b1010001. * For an I2C send operation, the LSB must be programmed to 0; * for I2C receive operation, the LSB must be programmed to 1. */ if (dce_i2c_hw->transaction_count == 0) { value = REG_SET_4(DC_I2C_DATA, 0, DC_I2C_DATA_RW, false, DC_I2C_DATA, request->address, DC_I2C_INDEX, 0, DC_I2C_INDEX_WRITE, 1); dce_i2c_hw->buffer_used_write = 0; } else value = REG_SET_2(DC_I2C_DATA, 0, DC_I2C_DATA_RW, false, DC_I2C_DATA, request->address); dce_i2c_hw->buffer_used_write++; if (!(request->action & DCE_I2C_TRANSACTION_ACTION_I2C_READ)) { while (length) { REG_SET_2(DC_I2C_DATA, value, DC_I2C_INDEX_WRITE, 0, DC_I2C_DATA, *buffer++); dce_i2c_hw->buffer_used_write++; --length; } } ++dce_i2c_hw->transaction_count; dce_i2c_hw->buffer_used_bytes += length + 1; return last_transaction; } static inline void reset_hw_engine(struct dce_i2c_hw *dce_i2c_hw) { REG_UPDATE_2(DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET, 1, DC_I2C_SW_STATUS_RESET, 1); } static void set_speed( struct dce_i2c_hw *dce_i2c_hw, uint32_t speed) { uint32_t xtal_ref_div = 0, ref_base_div = 0; uint32_t prescale = 0; uint32_t i2c_ref_clock = 0; if (speed == 0) return; REG_GET_2(MICROSECOND_TIME_BASE_DIV, MICROSECOND_TIME_BASE_DIV, &ref_base_div, XTAL_REF_DIV, &xtal_ref_div); if (xtal_ref_div == 0) xtal_ref_div = 2; if (ref_base_div == 0) i2c_ref_clock = (dce_i2c_hw->reference_frequency * 2); else i2c_ref_clock = ref_base_div * 1000; prescale = (i2c_ref_clock / xtal_ref_div) / speed; if (dce_i2c_hw->masks->DC_I2C_DDC1_START_STOP_TIMING_CNTL) REG_UPDATE_N(SPEED, 3, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE), prescale, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_THRESHOLD), 2, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_START_STOP_TIMING_CNTL), speed > 50 ? 2:1); else REG_UPDATE_N(SPEED, 2, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_PRESCALE), prescale, FN(DC_I2C_DDC1_SPEED, DC_I2C_DDC1_THRESHOLD), 2); } static bool setup_engine( struct dce_i2c_hw *dce_i2c_hw) { uint32_t i2c_setup_limit = I2C_SETUP_TIME_LIMIT_DCE; uint32_t reset_length = 0; if (dce_i2c_hw->ctx->dc->debug.enable_mem_low_power.bits.i2c) { if (dce_i2c_hw->regs->DIO_MEM_PWR_CTRL) { REG_UPDATE(DIO_MEM_PWR_CTRL, I2C_LIGHT_SLEEP_FORCE, 0); REG_WAIT(DIO_MEM_PWR_STATUS, I2C_MEM_PWR_STATE, 0, 0, 5); } } /* we have checked I2c not used by DMCU, set SW use I2C REQ to 1 to indicate SW using it*/ REG_UPDATE(DC_I2C_ARBITRATION, DC_I2C_SW_USE_I2C_REG_REQ, 1); /* we have checked I2c not used by DMCU, set SW use I2C REQ to 1 to indicate SW using it*/ REG_UPDATE(DC_I2C_ARBITRATION, DC_I2C_SW_USE_I2C_REG_REQ, 1); /*set SW requested I2c speed to default, if API calls in it will be override later*/ set_speed(dce_i2c_hw, dce_i2c_hw->ctx->dc->caps.i2c_speed_in_khz); if (dce_i2c_hw->setup_limit != 0) i2c_setup_limit = dce_i2c_hw->setup_limit; /* Program pin select */ REG_UPDATE_6(DC_I2C_CONTROL, DC_I2C_GO, 0, DC_I2C_SOFT_RESET, 0, DC_I2C_SEND_RESET, 0, DC_I2C_SW_STATUS_RESET, 1, DC_I2C_TRANSACTION_COUNT, 0, DC_I2C_DDC_SELECT, dce_i2c_hw->engine_id); /* Program time limit */ if (dce_i2c_hw->send_reset_length == 0) { /*pre-dcn*/ REG_UPDATE_N(SETUP, 2, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_TIME_LIMIT), i2c_setup_limit, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE), 1); } else { reset_length = dce_i2c_hw->send_reset_length; REG_UPDATE_N(SETUP, 3, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_TIME_LIMIT), i2c_setup_limit, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_SEND_RESET_LENGTH), reset_length, FN(DC_I2C_DDC1_SETUP, DC_I2C_DDC1_ENABLE), 1); } /* Program HW priority * set to High - interrupt software I2C at any time * Enable restart of SW I2C that was interrupted by HW * disable queuing of software while I2C is in use by HW */ REG_UPDATE(DC_I2C_ARBITRATION, DC_I2C_NO_QUEUED_SW_GO, 0); return true; } static void release_engine( struct dce_i2c_hw *dce_i2c_hw) { bool safe_to_reset; /* Reset HW engine */ { uint32_t i2c_sw_status = 0; REG_GET(DC_I2C_SW_STATUS, DC_I2C_SW_STATUS, &i2c_sw_status); /* if used by SW, safe to reset */ safe_to_reset = (i2c_sw_status == 1); } if (safe_to_reset) REG_UPDATE_2(DC_I2C_CONTROL, DC_I2C_SOFT_RESET, 1, DC_I2C_SW_STATUS_RESET, 1); else REG_UPDATE(DC_I2C_CONTROL, DC_I2C_SW_STATUS_RESET, 1); /* HW I2c engine - clock gating feature */ if (!dce_i2c_hw->engine_keep_power_up_count) REG_UPDATE_N(SETUP, 1, FN(SETUP, DC_I2C_DDC1_ENABLE), 0); /*for HW HDCP Ri polling failure w/a test*/ set_speed(dce_i2c_hw, dce_i2c_hw->ctx->dc->caps.i2c_speed_in_khz_hdcp); /* Release I2C after reset, so HW or DMCU could use it */ REG_UPDATE_2(DC_I2C_ARBITRATION, DC_I2C_SW_DONE_USING_I2C_REG, 1, DC_I2C_SW_USE_I2C_REG_REQ, 0); if (dce_i2c_hw->ctx->dc->debug.enable_mem_low_power.bits.i2c) { if (dce_i2c_hw->regs->DIO_MEM_PWR_CTRL) REG_UPDATE(DIO_MEM_PWR_CTRL, I2C_LIGHT_SLEEP_FORCE, 1); } } struct dce_i2c_hw *acquire_i2c_hw_engine( struct resource_pool *pool, struct ddc *ddc) { uint32_t counter = 0; enum gpio_result result; struct dce_i2c_hw *dce_i2c_hw = NULL; if (!ddc) return NULL; if (ddc->hw_info.hw_supported) { enum gpio_ddc_line line = dal_ddc_get_line(ddc); if (line < pool->res_cap->num_ddc) dce_i2c_hw = pool->hw_i2cs[line]; } if (!dce_i2c_hw) return NULL; if (pool->i2c_hw_buffer_in_use || !is_engine_available(dce_i2c_hw)) return NULL; do { result = dal_ddc_open(ddc, GPIO_MODE_HARDWARE, GPIO_DDC_CONFIG_TYPE_MODE_I2C); if (result == GPIO_RESULT_OK) break; /* i2c_engine is busy by VBios, lets wait and retry */ udelay(10); ++counter; } while (counter < 2); if (result != GPIO_RESULT_OK) return NULL; dce_i2c_hw->ddc = ddc; if (!setup_engine(dce_i2c_hw)) { release_engine(dce_i2c_hw); return NULL; } pool->i2c_hw_buffer_in_use = true; return dce_i2c_hw; } static enum i2c_channel_operation_result dce_i2c_hw_engine_wait_on_operation_result( struct dce_i2c_hw *dce_i2c_hw, uint32_t timeout, enum i2c_channel_operation_result expected_result) { enum i2c_channel_operation_result result; uint32_t i = 0; if (!timeout) return I2C_CHANNEL_OPERATION_SUCCEEDED; do { result = get_channel_status( dce_i2c_hw, NULL); if (result != expected_result) break; udelay(1); ++i; } while (i < timeout); return result; } static void submit_channel_request_hw( struct dce_i2c_hw *dce_i2c_hw, struct i2c_request_transaction_data *request) { request->status = I2C_CHANNEL_OPERATION_SUCCEEDED; if (!process_transaction(dce_i2c_hw, request)) return; if (is_hw_busy(dce_i2c_hw)) { request->status = I2C_CHANNEL_OPERATION_ENGINE_BUSY; return; } reset_hw_engine(dce_i2c_hw); execute_transaction(dce_i2c_hw); } static uint32_t get_transaction_timeout_hw( const struct dce_i2c_hw *dce_i2c_hw, uint32_t length, uint32_t speed) { uint32_t period_timeout; uint32_t num_of_clock_stretches; if (!speed) return 0; period_timeout = (1000 * TRANSACTION_TIMEOUT_IN_I2C_CLOCKS) / speed; num_of_clock_stretches = 1 + (length << 3) + 1; num_of_clock_stretches += (dce_i2c_hw->buffer_used_bytes << 3) + (dce_i2c_hw->transaction_count << 1); return period_timeout * num_of_clock_stretches; } static bool dce_i2c_hw_engine_submit_payload( struct dce_i2c_hw *dce_i2c_hw, struct i2c_payload *payload, bool middle_of_transaction, uint32_t speed) { struct i2c_request_transaction_data request; uint32_t transaction_timeout; enum i2c_channel_operation_result operation_result; bool result = false; /* We need following: * transaction length will not exceed * the number of free bytes in HW buffer (minus one for address) */ if (payload->length >= get_hw_buffer_available_size(dce_i2c_hw)) { return false; } if (!payload->write) request.action = middle_of_transaction ? DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT : DCE_I2C_TRANSACTION_ACTION_I2C_READ; else request.action = middle_of_transaction ? DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT : DCE_I2C_TRANSACTION_ACTION_I2C_WRITE; request.address = (uint8_t) ((payload->address << 1) | !payload->write); request.length = payload->length; request.data = payload->data; /* obtain timeout value before submitting request */ transaction_timeout = get_transaction_timeout_hw( dce_i2c_hw, payload->length + 1, speed); submit_channel_request_hw( dce_i2c_hw, &request); if ((request.status == I2C_CHANNEL_OPERATION_FAILED) || (request.status == I2C_CHANNEL_OPERATION_ENGINE_BUSY)) return false; /* wait until transaction proceed */ operation_result = dce_i2c_hw_engine_wait_on_operation_result( dce_i2c_hw, transaction_timeout, I2C_CHANNEL_OPERATION_ENGINE_BUSY); /* update transaction status */ if (operation_result == I2C_CHANNEL_OPERATION_SUCCEEDED) result = true; if (result && (!payload->write)) process_channel_reply(dce_i2c_hw, payload); return result; } bool dce_i2c_submit_command_hw( struct resource_pool *pool, struct ddc *ddc, struct i2c_command *cmd, struct dce_i2c_hw *dce_i2c_hw) { uint8_t index_of_payload = 0; bool result; set_speed(dce_i2c_hw, cmd->speed); result = true; while (index_of_payload < cmd->number_of_payloads) { bool mot = (index_of_payload != cmd->number_of_payloads - 1); struct i2c_payload *payload = cmd->payloads + index_of_payload; if (!dce_i2c_hw_engine_submit_payload( dce_i2c_hw, payload, mot, cmd->speed)) { result = false; break; } ++index_of_payload; } pool->i2c_hw_buffer_in_use = false; release_engine(dce_i2c_hw); dal_ddc_close(dce_i2c_hw->ddc); dce_i2c_hw->ddc = NULL; return result; } void dce_i2c_hw_construct( struct dce_i2c_hw *dce_i2c_hw, struct dc_context *ctx, uint32_t engine_id, const struct dce_i2c_registers *regs, const struct dce_i2c_shift *shifts, const struct dce_i2c_mask *masks) { dce_i2c_hw->ctx = ctx; dce_i2c_hw->engine_id = engine_id; dce_i2c_hw->reference_frequency = (ctx->dc_bios->fw_info.pll_info.crystal_frequency) >> 1; dce_i2c_hw->regs = regs; dce_i2c_hw->shifts = shifts; dce_i2c_hw->masks = masks; dce_i2c_hw->buffer_used_bytes = 0; dce_i2c_hw->transaction_count = 0; dce_i2c_hw->engine_keep_power_up_count = 1; dce_i2c_hw->default_speed = DEFAULT_I2C_HW_SPEED; dce_i2c_hw->send_reset_length = 0; dce_i2c_hw->setup_limit = I2C_SETUP_TIME_LIMIT_DCE; dce_i2c_hw->buffer_size = I2C_HW_BUFFER_SIZE_DCE; } void dce100_i2c_hw_construct( struct dce_i2c_hw *dce_i2c_hw, struct dc_context *ctx, uint32_t engine_id, const struct dce_i2c_registers *regs, const struct dce_i2c_shift *shifts, const struct dce_i2c_mask *masks) { dce_i2c_hw_construct(dce_i2c_hw, ctx, engine_id, regs, shifts, masks); dce_i2c_hw->buffer_size = I2C_HW_BUFFER_SIZE_DCE100; } void dce112_i2c_hw_construct( struct dce_i2c_hw *dce_i2c_hw, struct dc_context *ctx, uint32_t engine_id, const struct dce_i2c_registers *regs, const struct dce_i2c_shift *shifts, const struct dce_i2c_mask *masks) { dce100_i2c_hw_construct(dce_i2c_hw, ctx, engine_id, regs, shifts, masks); dce_i2c_hw->default_speed = DEFAULT_I2C_HW_SPEED_100KHZ; } void dcn1_i2c_hw_construct( struct dce_i2c_hw *dce_i2c_hw, struct dc_context *ctx, uint32_t engine_id, const struct dce_i2c_registers *regs, const struct dce_i2c_shift *shifts, const struct dce_i2c_mask *masks) { dce112_i2c_hw_construct(dce_i2c_hw, ctx, engine_id, regs, shifts, masks); dce_i2c_hw->setup_limit = I2C_SETUP_TIME_LIMIT_DCN; } void dcn2_i2c_hw_construct( struct dce_i2c_hw *dce_i2c_hw, struct dc_context *ctx, uint32_t engine_id, const struct dce_i2c_registers *regs, const struct dce_i2c_shift *shifts, const struct dce_i2c_mask *masks) { dcn1_i2c_hw_construct(dce_i2c_hw, ctx, engine_id, regs, shifts, masks); dce_i2c_hw->send_reset_length = I2C_SEND_RESET_LENGTH_9; if (ctx->dc->debug.scl_reset_length10) dce_i2c_hw->send_reset_length = I2C_SEND_RESET_LENGTH_10; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1