Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Bernstein | 4459 | 89.70% | 3 | 11.11% |
Martin Leung | 122 | 2.45% | 2 | 7.41% |
Charlene Liu | 113 | 2.27% | 3 | 11.11% |
Wenjing Liu | 93 | 1.87% | 2 | 7.41% |
Harry Wentland | 37 | 0.74% | 2 | 7.41% |
Michael Strauss | 33 | 0.66% | 1 | 3.70% |
Ken Chalmers | 31 | 0.62% | 1 | 3.70% |
Derek Lai | 25 | 0.50% | 1 | 3.70% |
Bhawanpreet Lakha | 14 | 0.28% | 1 | 3.70% |
Anthony Koo | 8 | 0.16% | 1 | 3.70% |
Jerry (Fangzhi) Zuo | 7 | 0.14% | 1 | 3.70% |
Eric Yang | 6 | 0.12% | 1 | 3.70% |
Samson Tam | 6 | 0.12% | 1 | 3.70% |
Hersen Wu | 5 | 0.10% | 1 | 3.70% |
Yongqiang Sun | 4 | 0.08% | 2 | 7.41% |
Dale Zhao | 3 | 0.06% | 1 | 3.70% |
Dmytro Laktyushkin | 3 | 0.06% | 1 | 3.70% |
Daniel He | 1 | 0.02% | 1 | 3.70% |
Tony Cheng | 1 | 0.02% | 1 | 3.70% |
Total | 4971 | 27 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "reg_helper.h" #include "core_types.h" #include "link_encoder.h" #include "dcn10_link_encoder.h" #include "stream_encoder.h" #include "dc_bios_types.h" #include "gpio_service_interface.h" #define CTX \ enc10->base.ctx #define DC_LOGGER \ enc10->base.ctx->logger #define REG(reg)\ (enc10->link_regs->reg) #undef FN #define FN(reg_name, field_name) \ enc10->link_shift->field_name, enc10->link_mask->field_name /* * @brief * Trigger Source Select * ASIC-dependent, actual values for register programming */ #define DCN10_DIG_FE_SOURCE_SELECT_INVALID 0x0 #define DCN10_DIG_FE_SOURCE_SELECT_DIGA 0x1 #define DCN10_DIG_FE_SOURCE_SELECT_DIGB 0x2 #define DCN10_DIG_FE_SOURCE_SELECT_DIGC 0x4 #define DCN10_DIG_FE_SOURCE_SELECT_DIGD 0x08 #define DCN10_DIG_FE_SOURCE_SELECT_DIGE 0x10 #define DCN10_DIG_FE_SOURCE_SELECT_DIGF 0x20 #define DCN10_DIG_FE_SOURCE_SELECT_DIGG 0x40 enum { DP_MST_UPDATE_MAX_RETRY = 50 }; static const struct link_encoder_funcs dcn10_lnk_enc_funcs = { .validate_output_with_stream = dcn10_link_encoder_validate_output_with_stream, .hw_init = dcn10_link_encoder_hw_init, .setup = dcn10_link_encoder_setup, .enable_tmds_output = dcn10_link_encoder_enable_tmds_output, .enable_dp_output = dcn10_link_encoder_enable_dp_output, .enable_dp_mst_output = dcn10_link_encoder_enable_dp_mst_output, .disable_output = dcn10_link_encoder_disable_output, .dp_set_lane_settings = dcn10_link_encoder_dp_set_lane_settings, .dp_set_phy_pattern = dcn10_link_encoder_dp_set_phy_pattern, .update_mst_stream_allocation_table = dcn10_link_encoder_update_mst_stream_allocation_table, .psr_program_dp_dphy_fast_training = dcn10_psr_program_dp_dphy_fast_training, .psr_program_secondary_packet = dcn10_psr_program_secondary_packet, .connect_dig_be_to_fe = dcn10_link_encoder_connect_dig_be_to_fe, .enable_hpd = dcn10_link_encoder_enable_hpd, .disable_hpd = dcn10_link_encoder_disable_hpd, .is_dig_enabled = dcn10_is_dig_enabled, .get_dig_frontend = dcn10_get_dig_frontend, .get_dig_mode = dcn10_get_dig_mode, .destroy = dcn10_link_encoder_destroy, .get_max_link_cap = dcn10_link_encoder_get_max_link_cap, }; static enum bp_result link_transmitter_control( struct dcn10_link_encoder *enc10, struct bp_transmitter_control *cntl) { enum bp_result result; struct dc_bios *bp = enc10->base.ctx->dc_bios; result = bp->funcs->transmitter_control(bp, cntl); return result; } static void enable_phy_bypass_mode( struct dcn10_link_encoder *enc10, bool enable) { /* This register resides in DP back end block; * transmitter is used for the offset */ REG_UPDATE(DP_DPHY_CNTL, DPHY_BYPASS, enable); } static void disable_prbs_symbols( struct dcn10_link_encoder *enc10, bool disable) { /* This register resides in DP back end block; * transmitter is used for the offset */ REG_UPDATE_4(DP_DPHY_CNTL, DPHY_ATEST_SEL_LANE0, disable, DPHY_ATEST_SEL_LANE1, disable, DPHY_ATEST_SEL_LANE2, disable, DPHY_ATEST_SEL_LANE3, disable); } static void disable_prbs_mode( struct dcn10_link_encoder *enc10) { REG_UPDATE(DP_DPHY_PRBS_CNTL, DPHY_PRBS_EN, 0); } static void program_pattern_symbols( struct dcn10_link_encoder *enc10, uint16_t pattern_symbols[8]) { /* This register resides in DP back end block; * transmitter is used for the offset */ REG_SET_3(DP_DPHY_SYM0, 0, DPHY_SYM1, pattern_symbols[0], DPHY_SYM2, pattern_symbols[1], DPHY_SYM3, pattern_symbols[2]); /* This register resides in DP back end block; * transmitter is used for the offset */ REG_SET_3(DP_DPHY_SYM1, 0, DPHY_SYM4, pattern_symbols[3], DPHY_SYM5, pattern_symbols[4], DPHY_SYM6, pattern_symbols[5]); /* This register resides in DP back end block; * transmitter is used for the offset */ REG_SET_2(DP_DPHY_SYM2, 0, DPHY_SYM7, pattern_symbols[6], DPHY_SYM8, pattern_symbols[7]); } static void set_dp_phy_pattern_d102( struct dcn10_link_encoder *enc10) { /* Disable PHY Bypass mode to setup the test pattern */ enable_phy_bypass_mode(enc10, false); /* For 10-bit PRBS or debug symbols * please use the following sequence: * * Enable debug symbols on the lanes */ disable_prbs_symbols(enc10, true); /* Disable PRBS mode */ disable_prbs_mode(enc10); /* Program debug symbols to be output */ { uint16_t pattern_symbols[8] = { 0x2AA, 0x2AA, 0x2AA, 0x2AA, 0x2AA, 0x2AA, 0x2AA, 0x2AA }; program_pattern_symbols(enc10, pattern_symbols); } /* Enable phy bypass mode to enable the test pattern */ enable_phy_bypass_mode(enc10, true); } static void set_link_training_complete( struct dcn10_link_encoder *enc10, bool complete) { /* This register resides in DP back end block; * transmitter is used for the offset */ REG_UPDATE(DP_LINK_CNTL, DP_LINK_TRAINING_COMPLETE, complete); } void dcn10_link_encoder_set_dp_phy_pattern_training_pattern( struct link_encoder *enc, uint32_t index) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); /* Write Training Pattern */ REG_WRITE(DP_DPHY_TRAINING_PATTERN_SEL, index); /* Set HW Register Training Complete to false */ set_link_training_complete(enc10, false); /* Disable PHY Bypass mode to output Training Pattern */ enable_phy_bypass_mode(enc10, false); /* Disable PRBS mode */ disable_prbs_mode(enc10); } static void setup_panel_mode( struct dcn10_link_encoder *enc10, enum dp_panel_mode panel_mode) { uint32_t value; if (!REG(DP_DPHY_INTERNAL_CTRL)) return; value = REG_READ(DP_DPHY_INTERNAL_CTRL); switch (panel_mode) { case DP_PANEL_MODE_EDP: value = 0x1; break; case DP_PANEL_MODE_SPECIAL: value = 0x11; break; default: value = 0x0; break; } REG_WRITE(DP_DPHY_INTERNAL_CTRL, value); } static void set_dp_phy_pattern_symbol_error( struct dcn10_link_encoder *enc10) { /* Disable PHY Bypass mode to setup the test pattern */ enable_phy_bypass_mode(enc10, false); /* program correct panel mode*/ setup_panel_mode(enc10, DP_PANEL_MODE_DEFAULT); /* A PRBS23 pattern is used for most DP electrical measurements. */ /* Enable PRBS symbols on the lanes */ disable_prbs_symbols(enc10, false); /* For PRBS23 Set bit DPHY_PRBS_SEL=1 and Set bit DPHY_PRBS_EN=1 */ REG_UPDATE_2(DP_DPHY_PRBS_CNTL, DPHY_PRBS_SEL, 1, DPHY_PRBS_EN, 1); /* Enable phy bypass mode to enable the test pattern */ enable_phy_bypass_mode(enc10, true); } static void set_dp_phy_pattern_prbs7( struct dcn10_link_encoder *enc10) { /* Disable PHY Bypass mode to setup the test pattern */ enable_phy_bypass_mode(enc10, false); /* A PRBS7 pattern is used for most DP electrical measurements. */ /* Enable PRBS symbols on the lanes */ disable_prbs_symbols(enc10, false); /* For PRBS7 Set bit DPHY_PRBS_SEL=0 and Set bit DPHY_PRBS_EN=1 */ REG_UPDATE_2(DP_DPHY_PRBS_CNTL, DPHY_PRBS_SEL, 0, DPHY_PRBS_EN, 1); /* Enable phy bypass mode to enable the test pattern */ enable_phy_bypass_mode(enc10, true); } static void set_dp_phy_pattern_80bit_custom( struct dcn10_link_encoder *enc10, const uint8_t *pattern) { /* Disable PHY Bypass mode to setup the test pattern */ enable_phy_bypass_mode(enc10, false); /* Enable debug symbols on the lanes */ disable_prbs_symbols(enc10, true); /* Enable PHY bypass mode to enable the test pattern */ /* TODO is it really needed ? */ enable_phy_bypass_mode(enc10, true); /* Program 80 bit custom pattern */ { uint16_t pattern_symbols[8]; pattern_symbols[0] = ((pattern[1] & 0x03) << 8) | pattern[0]; pattern_symbols[1] = ((pattern[2] & 0x0f) << 6) | ((pattern[1] >> 2) & 0x3f); pattern_symbols[2] = ((pattern[3] & 0x3f) << 4) | ((pattern[2] >> 4) & 0x0f); pattern_symbols[3] = (pattern[4] << 2) | ((pattern[3] >> 6) & 0x03); pattern_symbols[4] = ((pattern[6] & 0x03) << 8) | pattern[5]; pattern_symbols[5] = ((pattern[7] & 0x0f) << 6) | ((pattern[6] >> 2) & 0x3f); pattern_symbols[6] = ((pattern[8] & 0x3f) << 4) | ((pattern[7] >> 4) & 0x0f); pattern_symbols[7] = (pattern[9] << 2) | ((pattern[8] >> 6) & 0x03); program_pattern_symbols(enc10, pattern_symbols); } /* Enable phy bypass mode to enable the test pattern */ enable_phy_bypass_mode(enc10, true); } static void set_dp_phy_pattern_hbr2_compliance_cp2520_2( struct dcn10_link_encoder *enc10, unsigned int cp2520_pattern) { /* previously there is a register DP_HBR2_EYE_PATTERN * that is enabled to get the pattern. * But it does not work with the latest spec change, * so we are programming the following registers manually. * * The following settings have been confirmed * by Nick Chorney and Sandra Liu */ /* Disable PHY Bypass mode to setup the test pattern */ enable_phy_bypass_mode(enc10, false); /* Setup DIG encoder in DP SST mode */ enc10->base.funcs->setup(&enc10->base, SIGNAL_TYPE_DISPLAY_PORT); /* ensure normal panel mode. */ setup_panel_mode(enc10, DP_PANEL_MODE_DEFAULT); /* no vbid after BS (SR) * DP_LINK_FRAMING_CNTL changed history Sandra Liu * 11000260 / 11000104 / 110000FC */ REG_UPDATE_3(DP_LINK_FRAMING_CNTL, DP_IDLE_BS_INTERVAL, 0xFC, DP_VBID_DISABLE, 1, DP_VID_ENHANCED_FRAME_MODE, 1); /* swap every BS with SR */ REG_UPDATE(DP_DPHY_SCRAM_CNTL, DPHY_SCRAMBLER_BS_COUNT, 0); /* select cp2520 patterns */ if (REG(DP_DPHY_HBR2_PATTERN_CONTROL)) REG_UPDATE(DP_DPHY_HBR2_PATTERN_CONTROL, DP_DPHY_HBR2_PATTERN_CONTROL, cp2520_pattern); else /* pre-DCE11 can only generate CP2520 pattern 2 */ ASSERT(cp2520_pattern == 2); /* set link training complete */ set_link_training_complete(enc10, true); /* disable video stream */ REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, 0); /* Disable PHY Bypass mode to setup the test pattern */ enable_phy_bypass_mode(enc10, false); } static void set_dp_phy_pattern_passthrough_mode( struct dcn10_link_encoder *enc10, enum dp_panel_mode panel_mode) { /* program correct panel mode */ setup_panel_mode(enc10, panel_mode); /* restore LINK_FRAMING_CNTL and DPHY_SCRAMBLER_BS_COUNT * in case we were doing HBR2 compliance pattern before */ REG_UPDATE_3(DP_LINK_FRAMING_CNTL, DP_IDLE_BS_INTERVAL, 0x2000, DP_VBID_DISABLE, 0, DP_VID_ENHANCED_FRAME_MODE, 1); REG_UPDATE(DP_DPHY_SCRAM_CNTL, DPHY_SCRAMBLER_BS_COUNT, 0x1FF); /* set link training complete */ set_link_training_complete(enc10, true); /* Disable PHY Bypass mode to setup the test pattern */ enable_phy_bypass_mode(enc10, false); /* Disable PRBS mode */ disable_prbs_mode(enc10); } /* return value is bit-vector */ static uint8_t get_frontend_source( enum engine_id engine) { switch (engine) { case ENGINE_ID_DIGA: return DCN10_DIG_FE_SOURCE_SELECT_DIGA; case ENGINE_ID_DIGB: return DCN10_DIG_FE_SOURCE_SELECT_DIGB; case ENGINE_ID_DIGC: return DCN10_DIG_FE_SOURCE_SELECT_DIGC; case ENGINE_ID_DIGD: return DCN10_DIG_FE_SOURCE_SELECT_DIGD; case ENGINE_ID_DIGE: return DCN10_DIG_FE_SOURCE_SELECT_DIGE; case ENGINE_ID_DIGF: return DCN10_DIG_FE_SOURCE_SELECT_DIGF; case ENGINE_ID_DIGG: return DCN10_DIG_FE_SOURCE_SELECT_DIGG; default: ASSERT_CRITICAL(false); return DCN10_DIG_FE_SOURCE_SELECT_INVALID; } } unsigned int dcn10_get_dig_frontend(struct link_encoder *enc) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); int32_t value; enum engine_id result; REG_GET(DIG_BE_CNTL, DIG_FE_SOURCE_SELECT, &value); switch (value) { case DCN10_DIG_FE_SOURCE_SELECT_DIGA: result = ENGINE_ID_DIGA; break; case DCN10_DIG_FE_SOURCE_SELECT_DIGB: result = ENGINE_ID_DIGB; break; case DCN10_DIG_FE_SOURCE_SELECT_DIGC: result = ENGINE_ID_DIGC; break; case DCN10_DIG_FE_SOURCE_SELECT_DIGD: result = ENGINE_ID_DIGD; break; case DCN10_DIG_FE_SOURCE_SELECT_DIGE: result = ENGINE_ID_DIGE; break; case DCN10_DIG_FE_SOURCE_SELECT_DIGF: result = ENGINE_ID_DIGF; break; case DCN10_DIG_FE_SOURCE_SELECT_DIGG: result = ENGINE_ID_DIGG; break; default: // invalid source select DIG result = ENGINE_ID_UNKNOWN; } return result; } void enc1_configure_encoder( struct dcn10_link_encoder *enc10, const struct dc_link_settings *link_settings) { /* set number of lanes */ REG_SET(DP_CONFIG, 0, DP_UDI_LANES, link_settings->lane_count - LANE_COUNT_ONE); /* setup scrambler */ REG_UPDATE(DP_DPHY_SCRAM_CNTL, DPHY_SCRAMBLER_ADVANCE, 1); } void dcn10_psr_program_dp_dphy_fast_training(struct link_encoder *enc, bool exit_link_training_required) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); if (exit_link_training_required) REG_UPDATE(DP_DPHY_FAST_TRAINING, DPHY_RX_FAST_TRAINING_CAPABLE, 1); else { REG_UPDATE(DP_DPHY_FAST_TRAINING, DPHY_RX_FAST_TRAINING_CAPABLE, 0); /*In DCE 11, we are able to pre-program a Force SR register * to be able to trigger SR symbol after 5 idle patterns * transmitted. Upon PSR Exit, DMCU can trigger * DPHY_LOAD_BS_COUNT_START = 1. Upon writing 1 to * DPHY_LOAD_BS_COUNT_START and the internal counter * reaches DPHY_LOAD_BS_COUNT, the next BS symbol will be * replaced by SR symbol once. */ REG_UPDATE(DP_DPHY_BS_SR_SWAP_CNTL, DPHY_LOAD_BS_COUNT, 0x5); } } void dcn10_psr_program_secondary_packet(struct link_encoder *enc, unsigned int sdp_transmit_line_num_deadline) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); REG_UPDATE_2(DP_SEC_CNTL1, DP_SEC_GSP0_LINE_NUM, sdp_transmit_line_num_deadline, DP_SEC_GSP0_PRIORITY, 1); } bool dcn10_is_dig_enabled(struct link_encoder *enc) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); uint32_t value; REG_GET(DIG_BE_EN_CNTL, DIG_ENABLE, &value); return value; } static void link_encoder_disable(struct dcn10_link_encoder *enc10) { /* reset training pattern */ REG_SET(DP_DPHY_TRAINING_PATTERN_SEL, 0, DPHY_TRAINING_PATTERN_SEL, 0); /* reset training complete */ REG_UPDATE(DP_LINK_CNTL, DP_LINK_TRAINING_COMPLETE, 0); /* reset panel mode */ setup_panel_mode(enc10, DP_PANEL_MODE_DEFAULT); } static void hpd_initialize( struct dcn10_link_encoder *enc10) { /* Associate HPD with DIG_BE */ enum hpd_source_id hpd_source = enc10->base.hpd_source; REG_UPDATE(DIG_BE_CNTL, DIG_HPD_SELECT, hpd_source); } bool dcn10_link_encoder_validate_dvi_output( const struct dcn10_link_encoder *enc10, enum signal_type connector_signal, enum signal_type signal, const struct dc_crtc_timing *crtc_timing) { uint32_t max_pixel_clock = TMDS_MAX_PIXEL_CLOCK; if (signal == SIGNAL_TYPE_DVI_DUAL_LINK) max_pixel_clock *= 2; /* This handles the case of HDMI downgrade to DVI we don't want to * we don't want to cap the pixel clock if the DDI is not DVI. */ if (connector_signal != SIGNAL_TYPE_DVI_DUAL_LINK && connector_signal != SIGNAL_TYPE_DVI_SINGLE_LINK) max_pixel_clock = enc10->base.features.max_hdmi_pixel_clock; /* DVI only support RGB pixel encoding */ if (crtc_timing->pixel_encoding != PIXEL_ENCODING_RGB) return false; /*connect DVI via adpater's HDMI connector*/ if ((connector_signal == SIGNAL_TYPE_DVI_SINGLE_LINK || connector_signal == SIGNAL_TYPE_HDMI_TYPE_A) && signal != SIGNAL_TYPE_HDMI_TYPE_A && crtc_timing->pix_clk_100hz > (TMDS_MAX_PIXEL_CLOCK * 10)) return false; if (crtc_timing->pix_clk_100hz < (TMDS_MIN_PIXEL_CLOCK * 10)) return false; if (crtc_timing->pix_clk_100hz > (max_pixel_clock * 10)) return false; /* DVI supports 6/8bpp single-link and 10/16bpp dual-link */ switch (crtc_timing->display_color_depth) { case COLOR_DEPTH_666: case COLOR_DEPTH_888: break; case COLOR_DEPTH_101010: case COLOR_DEPTH_161616: if (signal != SIGNAL_TYPE_DVI_DUAL_LINK) return false; break; default: return false; } return true; } static bool dcn10_link_encoder_validate_hdmi_output( const struct dcn10_link_encoder *enc10, const struct dc_crtc_timing *crtc_timing, const struct dc_edid_caps *edid_caps, int adjusted_pix_clk_100hz) { enum dc_color_depth max_deep_color = enc10->base.features.max_hdmi_deep_color; // check pixel clock against edid specified max TMDS clk if (edid_caps->max_tmds_clk_mhz != 0 && adjusted_pix_clk_100hz > edid_caps->max_tmds_clk_mhz * 10000) return false; if (max_deep_color < crtc_timing->display_color_depth) return false; if (crtc_timing->display_color_depth < COLOR_DEPTH_888) return false; if (adjusted_pix_clk_100hz < (TMDS_MIN_PIXEL_CLOCK * 10)) return false; if ((adjusted_pix_clk_100hz == 0) || (adjusted_pix_clk_100hz > (enc10->base.features.max_hdmi_pixel_clock * 10))) return false; /* DCE11 HW does not support 420 */ if (!enc10->base.features.hdmi_ycbcr420_supported && crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) return false; if ((!enc10->base.features.flags.bits.HDMI_6GB_EN || enc10->base.ctx->dc->debug.hdmi20_disable) && adjusted_pix_clk_100hz >= 3000000) return false; if (enc10->base.ctx->dc->debug.hdmi20_disable && crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) return false; return true; } bool dcn10_link_encoder_validate_dp_output( const struct dcn10_link_encoder *enc10, const struct dc_crtc_timing *crtc_timing) { if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) { if (!enc10->base.features.dp_ycbcr420_supported) return false; } return true; } void dcn10_link_encoder_construct( struct dcn10_link_encoder *enc10, const struct encoder_init_data *init_data, const struct encoder_feature_support *enc_features, const struct dcn10_link_enc_registers *link_regs, const struct dcn10_link_enc_aux_registers *aux_regs, const struct dcn10_link_enc_hpd_registers *hpd_regs, const struct dcn10_link_enc_shift *link_shift, const struct dcn10_link_enc_mask *link_mask) { struct bp_encoder_cap_info bp_cap_info = {0}; const struct dc_vbios_funcs *bp_funcs = init_data->ctx->dc_bios->funcs; enum bp_result result = BP_RESULT_OK; enc10->base.funcs = &dcn10_lnk_enc_funcs; enc10->base.ctx = init_data->ctx; enc10->base.id = init_data->encoder; enc10->base.hpd_source = init_data->hpd_source; enc10->base.connector = init_data->connector; enc10->base.preferred_engine = ENGINE_ID_UNKNOWN; enc10->base.features = *enc_features; enc10->base.transmitter = init_data->transmitter; /* set the flag to indicate whether driver poll the I2C data pin * while doing the DP sink detect */ /* if (dal_adapter_service_is_feature_supported(as, FEATURE_DP_SINK_DETECT_POLL_DATA_PIN)) enc10->base.features.flags.bits. DP_SINK_DETECT_POLL_DATA_PIN = true;*/ enc10->base.output_signals = SIGNAL_TYPE_DVI_SINGLE_LINK | SIGNAL_TYPE_DVI_DUAL_LINK | SIGNAL_TYPE_LVDS | SIGNAL_TYPE_DISPLAY_PORT | SIGNAL_TYPE_DISPLAY_PORT_MST | SIGNAL_TYPE_EDP | SIGNAL_TYPE_HDMI_TYPE_A; /* For DCE 8.0 and 8.1, by design, UNIPHY is hardwired to DIG_BE. * SW always assign DIG_FE 1:1 mapped to DIG_FE for non-MST UNIPHY. * SW assign DIG_FE to non-MST UNIPHY first and MST last. So prefer * DIG is per UNIPHY and used by SST DP, eDP, HDMI, DVI and LVDS. * Prefer DIG assignment is decided by board design. * For DCE 8.0, there are only max 6 UNIPHYs, we assume board design * and VBIOS will filter out 7 UNIPHY for DCE 8.0. * By this, adding DIGG should not hurt DCE 8.0. * This will let DCE 8.1 share DCE 8.0 as much as possible */ enc10->link_regs = link_regs; enc10->aux_regs = aux_regs; enc10->hpd_regs = hpd_regs; enc10->link_shift = link_shift; enc10->link_mask = link_mask; switch (enc10->base.transmitter) { case TRANSMITTER_UNIPHY_A: enc10->base.preferred_engine = ENGINE_ID_DIGA; break; case TRANSMITTER_UNIPHY_B: enc10->base.preferred_engine = ENGINE_ID_DIGB; break; case TRANSMITTER_UNIPHY_C: enc10->base.preferred_engine = ENGINE_ID_DIGC; break; case TRANSMITTER_UNIPHY_D: enc10->base.preferred_engine = ENGINE_ID_DIGD; break; case TRANSMITTER_UNIPHY_E: enc10->base.preferred_engine = ENGINE_ID_DIGE; break; case TRANSMITTER_UNIPHY_F: enc10->base.preferred_engine = ENGINE_ID_DIGF; break; case TRANSMITTER_UNIPHY_G: enc10->base.preferred_engine = ENGINE_ID_DIGG; break; default: ASSERT_CRITICAL(false); enc10->base.preferred_engine = ENGINE_ID_UNKNOWN; } /* default to one to mirror Windows behavior */ enc10->base.features.flags.bits.HDMI_6GB_EN = 1; result = bp_funcs->get_encoder_cap_info(enc10->base.ctx->dc_bios, enc10->base.id, &bp_cap_info); /* Override features with DCE-specific values */ if (result == BP_RESULT_OK) { enc10->base.features.flags.bits.IS_HBR2_CAPABLE = bp_cap_info.DP_HBR2_EN; enc10->base.features.flags.bits.IS_HBR3_CAPABLE = bp_cap_info.DP_HBR3_EN; enc10->base.features.flags.bits.HDMI_6GB_EN = bp_cap_info.HDMI_6GB_EN; enc10->base.features.flags.bits.DP_IS_USB_C = bp_cap_info.DP_IS_USB_C; } else { DC_LOG_WARNING("%s: Failed to get encoder_cap_info from VBIOS with error code %d!\n", __func__, result); } if (enc10->base.ctx->dc->debug.hdmi20_disable) { enc10->base.features.flags.bits.HDMI_6GB_EN = 0; } } bool dcn10_link_encoder_validate_output_with_stream( struct link_encoder *enc, const struct dc_stream_state *stream) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); bool is_valid; //if SCDC (340-600MHz) is disabled, set to HDMI 1.4 timing limit if (stream->sink->edid_caps.panel_patch.skip_scdc_overwrite && enc10->base.features.max_hdmi_pixel_clock > 300000) enc10->base.features.max_hdmi_pixel_clock = 300000; switch (stream->signal) { case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: is_valid = dcn10_link_encoder_validate_dvi_output( enc10, stream->link->connector_signal, stream->signal, &stream->timing); break; case SIGNAL_TYPE_HDMI_TYPE_A: is_valid = dcn10_link_encoder_validate_hdmi_output( enc10, &stream->timing, &stream->sink->edid_caps, stream->phy_pix_clk * 10); break; case SIGNAL_TYPE_DISPLAY_PORT: case SIGNAL_TYPE_DISPLAY_PORT_MST: is_valid = dcn10_link_encoder_validate_dp_output( enc10, &stream->timing); break; case SIGNAL_TYPE_EDP: is_valid = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ? true : false; break; case SIGNAL_TYPE_VIRTUAL: is_valid = true; break; default: is_valid = false; break; } return is_valid; } void dcn10_link_encoder_hw_init( struct link_encoder *enc) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); struct bp_transmitter_control cntl = { 0 }; enum bp_result result; cntl.action = TRANSMITTER_CONTROL_INIT; cntl.engine_id = ENGINE_ID_UNKNOWN; cntl.transmitter = enc10->base.transmitter; cntl.connector_obj_id = enc10->base.connector; cntl.lanes_number = LANE_COUNT_FOUR; cntl.coherent = false; cntl.hpd_sel = enc10->base.hpd_source; if (enc10->base.connector.id == CONNECTOR_ID_EDP) cntl.signal = SIGNAL_TYPE_EDP; result = link_transmitter_control(enc10, &cntl); if (result != BP_RESULT_OK) { DC_LOG_ERROR("%s: Failed to execute VBIOS command table!\n", __func__); BREAK_TO_DEBUGGER(); return; } if (enc10->base.connector.id == CONNECTOR_ID_LVDS) { cntl.action = TRANSMITTER_CONTROL_BACKLIGHT_BRIGHTNESS; result = link_transmitter_control(enc10, &cntl); ASSERT(result == BP_RESULT_OK); } dcn10_aux_initialize(enc10); /* reinitialize HPD. * hpd_initialize() will pass DIG_FE id to HW context. * All other routine within HW context will use fe_engine_offset * as DIG_FE id even caller pass DIG_FE id. * So this routine must be called first. */ hpd_initialize(enc10); } void dcn10_link_encoder_destroy(struct link_encoder **enc) { kfree(TO_DCN10_LINK_ENC(*enc)); *enc = NULL; } void dcn10_link_encoder_setup( struct link_encoder *enc, enum signal_type signal) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); switch (signal) { case SIGNAL_TYPE_EDP: case SIGNAL_TYPE_DISPLAY_PORT: /* DP SST */ REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 0); break; case SIGNAL_TYPE_LVDS: /* LVDS */ REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 1); break; case SIGNAL_TYPE_DVI_SINGLE_LINK: case SIGNAL_TYPE_DVI_DUAL_LINK: /* TMDS-DVI */ REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 2); break; case SIGNAL_TYPE_HDMI_TYPE_A: /* TMDS-HDMI */ REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 3); break; case SIGNAL_TYPE_DISPLAY_PORT_MST: /* DP MST */ REG_UPDATE(DIG_BE_CNTL, DIG_MODE, 5); break; default: ASSERT_CRITICAL(false); /* invalid mode ! */ break; } } /* TODO: still need depth or just pass in adjusted pixel clock? */ void dcn10_link_encoder_enable_tmds_output( struct link_encoder *enc, enum clock_source_id clock_source, enum dc_color_depth color_depth, enum signal_type signal, uint32_t pixel_clock) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); struct bp_transmitter_control cntl = { 0 }; enum bp_result result; /* Enable the PHY */ cntl.action = TRANSMITTER_CONTROL_ENABLE; cntl.engine_id = enc->preferred_engine; cntl.transmitter = enc10->base.transmitter; cntl.pll_id = clock_source; cntl.signal = signal; if (cntl.signal == SIGNAL_TYPE_DVI_DUAL_LINK) cntl.lanes_number = 8; else cntl.lanes_number = 4; cntl.hpd_sel = enc10->base.hpd_source; cntl.pixel_clock = pixel_clock; cntl.color_depth = color_depth; result = link_transmitter_control(enc10, &cntl); if (result != BP_RESULT_OK) { DC_LOG_ERROR("%s: Failed to execute VBIOS command table!\n", __func__); BREAK_TO_DEBUGGER(); } } void dcn10_link_encoder_enable_tmds_output_with_clk_pattern_wa( struct link_encoder *enc, enum clock_source_id clock_source, enum dc_color_depth color_depth, enum signal_type signal, uint32_t pixel_clock) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); dcn10_link_encoder_enable_tmds_output( enc, clock_source, color_depth, signal, pixel_clock); REG_UPDATE(DIG_CLOCK_PATTERN, DIG_CLOCK_PATTERN, 0x1F); } /* enables DP PHY output */ void dcn10_link_encoder_enable_dp_output( struct link_encoder *enc, const struct dc_link_settings *link_settings, enum clock_source_id clock_source) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); struct bp_transmitter_control cntl = { 0 }; enum bp_result result; /* Enable the PHY */ /* number_of_lanes is used for pixel clock adjust, * but it's not passed to asic_control. * We need to set number of lanes manually. */ enc1_configure_encoder(enc10, link_settings); cntl.action = TRANSMITTER_CONTROL_ENABLE; cntl.engine_id = enc->preferred_engine; cntl.transmitter = enc10->base.transmitter; cntl.pll_id = clock_source; cntl.signal = SIGNAL_TYPE_DISPLAY_PORT; cntl.lanes_number = link_settings->lane_count; cntl.hpd_sel = enc10->base.hpd_source; cntl.pixel_clock = link_settings->link_rate * LINK_RATE_REF_FREQ_IN_KHZ; /* TODO: check if undefined works */ cntl.color_depth = COLOR_DEPTH_UNDEFINED; result = link_transmitter_control(enc10, &cntl); if (result != BP_RESULT_OK) { DC_LOG_ERROR("%s: Failed to execute VBIOS command table!\n", __func__); BREAK_TO_DEBUGGER(); } } /* enables DP PHY output in MST mode */ void dcn10_link_encoder_enable_dp_mst_output( struct link_encoder *enc, const struct dc_link_settings *link_settings, enum clock_source_id clock_source) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); struct bp_transmitter_control cntl = { 0 }; enum bp_result result; /* Enable the PHY */ /* number_of_lanes is used for pixel clock adjust, * but it's not passed to asic_control. * We need to set number of lanes manually. */ enc1_configure_encoder(enc10, link_settings); cntl.action = TRANSMITTER_CONTROL_ENABLE; cntl.engine_id = ENGINE_ID_UNKNOWN; cntl.transmitter = enc10->base.transmitter; cntl.pll_id = clock_source; cntl.signal = SIGNAL_TYPE_DISPLAY_PORT_MST; cntl.lanes_number = link_settings->lane_count; cntl.hpd_sel = enc10->base.hpd_source; cntl.pixel_clock = link_settings->link_rate * LINK_RATE_REF_FREQ_IN_KHZ; /* TODO: check if undefined works */ cntl.color_depth = COLOR_DEPTH_UNDEFINED; result = link_transmitter_control(enc10, &cntl); if (result != BP_RESULT_OK) { DC_LOG_ERROR("%s: Failed to execute VBIOS command table!\n", __func__); BREAK_TO_DEBUGGER(); } } /* * @brief * Disable transmitter and its encoder */ void dcn10_link_encoder_disable_output( struct link_encoder *enc, enum signal_type signal) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); struct bp_transmitter_control cntl = { 0 }; enum bp_result result; if (!dcn10_is_dig_enabled(enc)) { /* OF_SKIP_POWER_DOWN_INACTIVE_ENCODER */ /*in DP_Alt_No_Connect case, we turn off the dig already, after excuation the PHY w/a sequence, not allow touch PHY any more*/ return; } /* Power-down RX and disable GPU PHY should be paired. * Disabling PHY without powering down RX may cause * symbol lock loss, on which we will get DP Sink interrupt. */ /* There is a case for the DP active dongles * where we want to disable the PHY but keep RX powered, * for those we need to ignore DP Sink interrupt * by checking lane count that has been set * on the last do_enable_output(). */ /* disable transmitter */ cntl.action = TRANSMITTER_CONTROL_DISABLE; cntl.transmitter = enc10->base.transmitter; cntl.hpd_sel = enc10->base.hpd_source; cntl.signal = signal; cntl.connector_obj_id = enc10->base.connector; result = link_transmitter_control(enc10, &cntl); if (result != BP_RESULT_OK) { DC_LOG_ERROR("%s: Failed to execute VBIOS command table!\n", __func__); BREAK_TO_DEBUGGER(); return; } /* disable encoder */ if (dc_is_dp_signal(signal)) link_encoder_disable(enc10); } void dcn10_link_encoder_dp_set_lane_settings( struct link_encoder *enc, const struct dc_link_settings *link_settings, const struct dc_lane_settings lane_settings[LANE_COUNT_DP_MAX]) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); union dpcd_training_lane_set training_lane_set = { { 0 } }; int32_t lane = 0; struct bp_transmitter_control cntl = { 0 }; if (!link_settings) { BREAK_TO_DEBUGGER(); return; } cntl.action = TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS; cntl.transmitter = enc10->base.transmitter; cntl.connector_obj_id = enc10->base.connector; cntl.lanes_number = link_settings->lane_count; cntl.hpd_sel = enc10->base.hpd_source; cntl.pixel_clock = link_settings->link_rate * LINK_RATE_REF_FREQ_IN_KHZ; for (lane = 0; lane < link_settings->lane_count; lane++) { /* translate lane settings */ training_lane_set.bits.VOLTAGE_SWING_SET = lane_settings[lane].VOLTAGE_SWING; training_lane_set.bits.PRE_EMPHASIS_SET = lane_settings[lane].PRE_EMPHASIS; /* post cursor 2 setting only applies to HBR2 link rate */ if (link_settings->link_rate == LINK_RATE_HIGH2) { /* this is passed to VBIOS * to program post cursor 2 level */ training_lane_set.bits.POST_CURSOR2_SET = lane_settings[lane].POST_CURSOR2; } cntl.lane_select = lane; cntl.lane_settings = training_lane_set.raw; /* call VBIOS table to set voltage swing and pre-emphasis */ link_transmitter_control(enc10, &cntl); } } /* set DP PHY test and training patterns */ void dcn10_link_encoder_dp_set_phy_pattern( struct link_encoder *enc, const struct encoder_set_dp_phy_pattern_param *param) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); switch (param->dp_phy_pattern) { case DP_TEST_PATTERN_TRAINING_PATTERN1: dcn10_link_encoder_set_dp_phy_pattern_training_pattern(enc, 0); break; case DP_TEST_PATTERN_TRAINING_PATTERN2: dcn10_link_encoder_set_dp_phy_pattern_training_pattern(enc, 1); break; case DP_TEST_PATTERN_TRAINING_PATTERN3: dcn10_link_encoder_set_dp_phy_pattern_training_pattern(enc, 2); break; case DP_TEST_PATTERN_TRAINING_PATTERN4: dcn10_link_encoder_set_dp_phy_pattern_training_pattern(enc, 3); break; case DP_TEST_PATTERN_D102: set_dp_phy_pattern_d102(enc10); break; case DP_TEST_PATTERN_SYMBOL_ERROR: set_dp_phy_pattern_symbol_error(enc10); break; case DP_TEST_PATTERN_PRBS7: set_dp_phy_pattern_prbs7(enc10); break; case DP_TEST_PATTERN_80BIT_CUSTOM: set_dp_phy_pattern_80bit_custom( enc10, param->custom_pattern); break; case DP_TEST_PATTERN_CP2520_1: set_dp_phy_pattern_hbr2_compliance_cp2520_2(enc10, 1); break; case DP_TEST_PATTERN_CP2520_2: set_dp_phy_pattern_hbr2_compliance_cp2520_2(enc10, 2); break; case DP_TEST_PATTERN_CP2520_3: set_dp_phy_pattern_hbr2_compliance_cp2520_2(enc10, 3); break; case DP_TEST_PATTERN_VIDEO_MODE: { set_dp_phy_pattern_passthrough_mode( enc10, param->dp_panel_mode); break; } default: /* invalid phy pattern */ ASSERT_CRITICAL(false); break; } } static void fill_stream_allocation_row_info( const struct link_mst_stream_allocation *stream_allocation, uint32_t *src, uint32_t *slots) { const struct stream_encoder *stream_enc = stream_allocation->stream_enc; if (stream_enc) { *src = stream_enc->id; *slots = stream_allocation->slot_count; } else { *src = 0; *slots = 0; } } /* programs DP MST VC payload allocation */ void dcn10_link_encoder_update_mst_stream_allocation_table( struct link_encoder *enc, const struct link_mst_stream_allocation_table *table) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); uint32_t value0 = 0; uint32_t value1 = 0; uint32_t value2 = 0; uint32_t slots = 0; uint32_t src = 0; uint32_t retries = 0; /* For CZ, there are only 3 pipes. So Virtual channel is up 3.*/ /* --- Set MSE Stream Attribute - * Setup VC Payload Table on Tx Side, * Issue allocation change trigger * to commit payload on both tx and rx side */ /* we should clean-up table each time */ if (table->stream_count >= 1) { fill_stream_allocation_row_info( &table->stream_allocations[0], &src, &slots); } else { src = 0; slots = 0; } REG_UPDATE_2(DP_MSE_SAT0, DP_MSE_SAT_SRC0, src, DP_MSE_SAT_SLOT_COUNT0, slots); if (table->stream_count >= 2) { fill_stream_allocation_row_info( &table->stream_allocations[1], &src, &slots); } else { src = 0; slots = 0; } REG_UPDATE_2(DP_MSE_SAT0, DP_MSE_SAT_SRC1, src, DP_MSE_SAT_SLOT_COUNT1, slots); if (table->stream_count >= 3) { fill_stream_allocation_row_info( &table->stream_allocations[2], &src, &slots); } else { src = 0; slots = 0; } REG_UPDATE_2(DP_MSE_SAT1, DP_MSE_SAT_SRC2, src, DP_MSE_SAT_SLOT_COUNT2, slots); if (table->stream_count >= 4) { fill_stream_allocation_row_info( &table->stream_allocations[3], &src, &slots); } else { src = 0; slots = 0; } REG_UPDATE_2(DP_MSE_SAT1, DP_MSE_SAT_SRC3, src, DP_MSE_SAT_SLOT_COUNT3, slots); /* --- wait for transaction finish */ /* send allocation change trigger (ACT) ? * this step first sends the ACT, * then double buffers the SAT into the hardware * making the new allocation active on the DP MST mode link */ /* DP_MSE_SAT_UPDATE: * 0 - No Action * 1 - Update SAT with trigger * 2 - Update SAT without trigger */ REG_UPDATE(DP_MSE_SAT_UPDATE, DP_MSE_SAT_UPDATE, 1); /* wait for update to complete * (i.e. DP_MSE_SAT_UPDATE field is reset to 0) * then wait for the transmission * of at least 16 MTP headers on immediate local link. * i.e. DP_MSE_16_MTP_KEEPOUT field (read only) is reset to 0 * a value of 1 indicates that DP MST mode * is in the 16 MTP keepout region after a VC has been added. * MST stream bandwidth (VC rate) can be configured * after this bit is cleared */ do { udelay(10); value0 = REG_READ(DP_MSE_SAT_UPDATE); REG_GET(DP_MSE_SAT_UPDATE, DP_MSE_SAT_UPDATE, &value1); REG_GET(DP_MSE_SAT_UPDATE, DP_MSE_16_MTP_KEEPOUT, &value2); /* bit field DP_MSE_SAT_UPDATE is set to 1 already */ if (!value1 && !value2) break; ++retries; } while (retries < DP_MST_UPDATE_MAX_RETRY); } void dcn10_link_encoder_connect_dig_be_to_fe( struct link_encoder *enc, enum engine_id engine, bool connect) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); uint32_t field; if (engine != ENGINE_ID_UNKNOWN) { REG_GET(DIG_BE_CNTL, DIG_FE_SOURCE_SELECT, &field); if (connect) field |= get_frontend_source(engine); else field &= ~get_frontend_source(engine); REG_UPDATE(DIG_BE_CNTL, DIG_FE_SOURCE_SELECT, field); } } #define HPD_REG(reg)\ (enc10->hpd_regs->reg) #define HPD_REG_READ(reg_name) \ dm_read_reg(CTX, HPD_REG(reg_name)) #define HPD_REG_UPDATE_N(reg_name, n, ...) \ generic_reg_update_ex(CTX, \ HPD_REG(reg_name), \ n, __VA_ARGS__) #define HPD_REG_UPDATE(reg_name, field, val) \ HPD_REG_UPDATE_N(reg_name, 1, \ FN(reg_name, field), val) void dcn10_link_encoder_enable_hpd(struct link_encoder *enc) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); HPD_REG_UPDATE(DC_HPD_CONTROL, DC_HPD_EN, 1); } void dcn10_link_encoder_disable_hpd(struct link_encoder *enc) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); HPD_REG_UPDATE(DC_HPD_CONTROL, DC_HPD_EN, 0); } #define AUX_REG(reg)\ (enc10->aux_regs->reg) #define AUX_REG_READ(reg_name) \ dm_read_reg(CTX, AUX_REG(reg_name)) #define AUX_REG_UPDATE_N(reg_name, n, ...) \ generic_reg_update_ex(CTX, \ AUX_REG(reg_name), \ n, __VA_ARGS__) #define AUX_REG_UPDATE(reg_name, field, val) \ AUX_REG_UPDATE_N(reg_name, 1, \ FN(reg_name, field), val) #define AUX_REG_UPDATE_2(reg, f1, v1, f2, v2) \ AUX_REG_UPDATE_N(reg, 2,\ FN(reg, f1), v1,\ FN(reg, f2), v2) void dcn10_aux_initialize(struct dcn10_link_encoder *enc10) { enum hpd_source_id hpd_source = enc10->base.hpd_source; AUX_REG_UPDATE_2(AUX_CONTROL, AUX_HPD_SEL, hpd_source, AUX_LS_READ_EN, 0); /* 1/4 window (the maximum allowed) */ AUX_REG_UPDATE(AUX_DPHY_RX_CONTROL0, AUX_RX_RECEIVE_WINDOW, 0); } enum signal_type dcn10_get_dig_mode( struct link_encoder *enc) { struct dcn10_link_encoder *enc10 = TO_DCN10_LINK_ENC(enc); uint32_t value; REG_GET(DIG_BE_CNTL, DIG_MODE, &value); switch (value) { case 1: return SIGNAL_TYPE_DISPLAY_PORT; case 2: return SIGNAL_TYPE_DVI_SINGLE_LINK; case 3: return SIGNAL_TYPE_HDMI_TYPE_A; case 5: return SIGNAL_TYPE_DISPLAY_PORT_MST; default: return SIGNAL_TYPE_NONE; } return SIGNAL_TYPE_NONE; } void dcn10_link_encoder_get_max_link_cap(struct link_encoder *enc, struct dc_link_settings *link_settings) { /* Set Default link settings */ struct dc_link_settings max_link_cap = {LANE_COUNT_FOUR, LINK_RATE_HIGH, LINK_SPREAD_05_DOWNSPREAD_30KHZ, false, 0}; /* Higher link settings based on feature supported */ if (enc->features.flags.bits.IS_HBR2_CAPABLE) max_link_cap.link_rate = LINK_RATE_HIGH2; if (enc->features.flags.bits.IS_HBR3_CAPABLE) max_link_cap.link_rate = LINK_RATE_HIGH3; if (enc->features.flags.bits.IS_UHBR10_CAPABLE) max_link_cap.link_rate = LINK_RATE_UHBR10; if (enc->features.flags.bits.IS_UHBR13_5_CAPABLE) max_link_cap.link_rate = LINK_RATE_UHBR13_5; if (enc->features.flags.bits.IS_UHBR20_CAPABLE) max_link_cap.link_rate = LINK_RATE_UHBR20; *link_settings = max_link_cap; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1