Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 2859 | 54.41% | 3 | 4.17% |
Yue Hin Lau | 286 | 5.44% | 3 | 4.17% |
Yongqiang Sun | 258 | 4.91% | 9 | 12.50% |
Anthony Koo | 221 | 4.21% | 5 | 6.94% |
David Francis | 210 | 4.00% | 1 | 1.39% |
Vitaly Prosyak | 180 | 3.43% | 1 | 1.39% |
Dmytro Laktyushkin | 168 | 3.20% | 8 | 11.11% |
Corbin McElhanney | 162 | 3.08% | 1 | 1.39% |
Mikita Lipski | 145 | 2.76% | 1 | 1.39% |
Eryk Brol | 94 | 1.79% | 1 | 1.39% |
Eric Bernstein | 88 | 1.67% | 2 | 2.78% |
Joshua Aberback | 86 | 1.64% | 1 | 1.39% |
Bhawanpreet Lakha | 63 | 1.20% | 1 | 1.39% |
Nicholas Kazlauskas | 57 | 1.08% | 3 | 4.17% |
rodrigosiqueira | 54 | 1.03% | 4 | 5.56% |
Josip Pavic | 48 | 0.91% | 2 | 2.78% |
Martin Leung | 44 | 0.84% | 3 | 4.17% |
Bayan Zabihiyan | 43 | 0.82% | 1 | 1.39% |
Logatharshan Thothiralingam | 26 | 0.49% | 1 | 1.39% |
Fudong Wang | 23 | 0.44% | 1 | 1.39% |
Tony Cheng | 20 | 0.38% | 2 | 2.78% |
Alvin lee | 16 | 0.30% | 1 | 1.39% |
Nikola Cornij | 15 | 0.29% | 1 | 1.39% |
Fatemeh Darbehani | 12 | 0.23% | 1 | 1.39% |
Qingqing Zhuo | 12 | 0.23% | 1 | 1.39% |
Yogesh Mohan Marimuthu | 11 | 0.21% | 1 | 1.39% |
Oliver Logush | 8 | 0.15% | 1 | 1.39% |
Charlene Liu | 8 | 0.15% | 2 | 2.78% |
SivapiriyanKumarasamy | 8 | 0.15% | 1 | 1.39% |
Jun Lei | 6 | 0.11% | 1 | 1.39% |
Ken Chalmers | 6 | 0.11% | 1 | 1.39% |
Jayendran Ramani | 5 | 0.10% | 1 | 1.39% |
Eric Yang | 5 | 0.10% | 1 | 1.39% |
Zeyu Fan | 3 | 0.06% | 1 | 1.39% |
Isabella Basso | 2 | 0.04% | 1 | 1.39% |
min tang | 1 | 0.02% | 1 | 1.39% |
Aric Cyr | 1 | 0.02% | 1 | 1.39% |
Dave Airlie | 1 | 0.02% | 1 | 1.39% |
Total | 5255 | 72 |
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "reg_helper.h" #include "dcn10_optc.h" #include "dc.h" #include "dc_trace.h" #define REG(reg)\ optc1->tg_regs->reg #define CTX \ optc1->base.ctx #undef FN #define FN(reg_name, field_name) \ optc1->tg_shift->field_name, optc1->tg_mask->field_name #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100 /** * apply_front_porch_workaround TODO FPGA still need? * * This is a workaround for a bug that has existed since R5xx and has not been * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive. */ static void apply_front_porch_workaround(struct dc_crtc_timing *timing) { if (timing->flags.INTERLACE == 1) { if (timing->v_front_porch < 2) timing->v_front_porch = 2; } else { if (timing->v_front_porch < 1) timing->v_front_porch = 1; } } void optc1_program_global_sync( struct timing_generator *optc, int vready_offset, int vstartup_start, int vupdate_offset, int vupdate_width) { struct optc *optc1 = DCN10TG_FROM_TG(optc); optc1->vready_offset = vready_offset; optc1->vstartup_start = vstartup_start; optc1->vupdate_offset = vupdate_offset; optc1->vupdate_width = vupdate_width; if (optc1->vstartup_start == 0) { BREAK_TO_DEBUGGER(); return; } REG_SET(OTG_VSTARTUP_PARAM, 0, VSTARTUP_START, optc1->vstartup_start); REG_SET_2(OTG_VUPDATE_PARAM, 0, VUPDATE_OFFSET, optc1->vupdate_offset, VUPDATE_WIDTH, optc1->vupdate_width); REG_SET(OTG_VREADY_PARAM, 0, VREADY_OFFSET, optc1->vready_offset); } static void optc1_disable_stereo(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_STEREO_CONTROL, 0, OTG_STEREO_EN, 0); REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0, OTG_3D_STRUCTURE_EN, 0, OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0); } void optc1_setup_vertical_interrupt0( struct timing_generator *optc, uint32_t start_line, uint32_t end_line) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0, OTG_VERTICAL_INTERRUPT0_LINE_START, start_line, OTG_VERTICAL_INTERRUPT0_LINE_END, end_line); } void optc1_setup_vertical_interrupt1( struct timing_generator *optc, uint32_t start_line) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0, OTG_VERTICAL_INTERRUPT1_LINE_START, start_line); } void optc1_setup_vertical_interrupt2( struct timing_generator *optc, uint32_t start_line) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0, OTG_VERTICAL_INTERRUPT2_LINE_START, start_line); } /** * program_timing_generator used by mode timing set * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition. * Including SYNC. Call BIOS command table to program Timings. */ void optc1_program_timing( struct timing_generator *optc, const struct dc_crtc_timing *dc_crtc_timing, int vready_offset, int vstartup_start, int vupdate_offset, int vupdate_width, const enum signal_type signal, bool use_vbios) { struct dc_crtc_timing patched_crtc_timing; uint32_t asic_blank_end; uint32_t asic_blank_start; uint32_t v_total; uint32_t v_sync_end; uint32_t h_sync_polarity, v_sync_polarity; uint32_t start_point = 0; uint32_t field_num = 0; enum h_timing_div_mode h_div = H_TIMING_NO_DIV; struct optc *optc1 = DCN10TG_FROM_TG(optc); optc1->signal = signal; optc1->vready_offset = vready_offset; optc1->vstartup_start = vstartup_start; optc1->vupdate_offset = vupdate_offset; optc1->vupdate_width = vupdate_width; patched_crtc_timing = *dc_crtc_timing; apply_front_porch_workaround(&patched_crtc_timing); optc1->orginal_patched_timing = patched_crtc_timing; /* Load horizontal timing */ /* CRTC_H_TOTAL = vesa.h_total - 1 */ REG_SET(OTG_H_TOTAL, 0, OTG_H_TOTAL, patched_crtc_timing.h_total - 1); /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */ REG_UPDATE_2(OTG_H_SYNC_A, OTG_H_SYNC_A_START, 0, OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width); /* blank_start = line end - front porch */ asic_blank_start = patched_crtc_timing.h_total - patched_crtc_timing.h_front_porch; /* blank_end = blank_start - active */ asic_blank_end = asic_blank_start - patched_crtc_timing.h_border_right - patched_crtc_timing.h_addressable - patched_crtc_timing.h_border_left; REG_UPDATE_2(OTG_H_BLANK_START_END, OTG_H_BLANK_START, asic_blank_start, OTG_H_BLANK_END, asic_blank_end); /* h_sync polarity */ h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ? 0 : 1; REG_UPDATE(OTG_H_SYNC_A_CNTL, OTG_H_SYNC_A_POL, h_sync_polarity); v_total = patched_crtc_timing.v_total - 1; REG_SET(OTG_V_TOTAL, 0, OTG_V_TOTAL, v_total); /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and * OTG_V_TOTAL_MIN are equal to V_TOTAL. */ optc->funcs->set_vtotal_min_max(optc, v_total, v_total); /* v_sync_start = 0, v_sync_end = v_sync_width */ v_sync_end = patched_crtc_timing.v_sync_width; REG_UPDATE_2(OTG_V_SYNC_A, OTG_V_SYNC_A_START, 0, OTG_V_SYNC_A_END, v_sync_end); /* blank_start = frame end - front porch */ asic_blank_start = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch; /* blank_end = blank_start - active */ asic_blank_end = asic_blank_start - patched_crtc_timing.v_border_bottom - patched_crtc_timing.v_addressable - patched_crtc_timing.v_border_top; REG_UPDATE_2(OTG_V_BLANK_START_END, OTG_V_BLANK_START, asic_blank_start, OTG_V_BLANK_END, asic_blank_end); /* v_sync polarity */ v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ? 0 : 1; REG_UPDATE(OTG_V_SYNC_A_CNTL, OTG_V_SYNC_A_POL, v_sync_polarity); if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT || optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST || optc1->signal == SIGNAL_TYPE_EDP) { start_point = 1; if (patched_crtc_timing.flags.INTERLACE == 1) field_num = 1; } /* Interlace */ if (REG(OTG_INTERLACE_CONTROL)) { if (patched_crtc_timing.flags.INTERLACE == 1) REG_UPDATE(OTG_INTERLACE_CONTROL, OTG_INTERLACE_ENABLE, 1); else REG_UPDATE(OTG_INTERLACE_CONTROL, OTG_INTERLACE_ENABLE, 0); } /* VTG enable set to 0 first VInit */ REG_UPDATE(CONTROL, VTG0_ENABLE, 0); /* original code is using VTG offset to address OTG reg, seems wrong */ REG_UPDATE_2(OTG_CONTROL, OTG_START_POINT_CNTL, start_point, OTG_FIELD_NUMBER_CNTL, field_num); optc->funcs->program_global_sync(optc, vready_offset, vstartup_start, vupdate_offset, vupdate_width); optc->funcs->set_vtg_params(optc, dc_crtc_timing, true); /* TODO * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1 * program_horz_count_by_2 * for DVI 30bpp mode, 0 otherwise * program_horz_count_by_2(optc, &patched_crtc_timing); */ /* Enable stereo - only when we need to pack 3D frame. Other types * of stereo handled in explicit call */ if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2) h_div = H_TIMING_DIV_BY2; if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) { uint32_t data_fmt = 0; if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) data_fmt = 1; else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) data_fmt = 2; REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt); } if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) { if (optc1->opp_count == 4) h_div = H_TIMING_DIV_BY4; REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_MODE, h_div); } else { REG_UPDATE(OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_BY2, h_div); } } /** * optc1_set_vtg_params - Set Vertical Timing Generator (VTG) parameters * * @optc: timing_generator struct used to extract the optc parameters * @dc_crtc_timing: Timing parameters configured * @program_fp2: Boolean value indicating if FP2 will be programmed or not * * OTG is responsible for generating the global sync signals, including * vertical timing information for each HUBP in the dcfclk domain. Each VTG is * associated with one OTG that provides HUBP with vertical timing information * (i.e., there is 1:1 correspondence between OTG and VTG). This function is * responsible for setting the OTG parameters to the VTG during the pipe * programming. */ void optc1_set_vtg_params(struct timing_generator *optc, const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2) { struct dc_crtc_timing patched_crtc_timing; uint32_t asic_blank_end; uint32_t v_init; uint32_t v_fp2 = 0; int32_t vertical_line_start; struct optc *optc1 = DCN10TG_FROM_TG(optc); patched_crtc_timing = *dc_crtc_timing; apply_front_porch_workaround(&patched_crtc_timing); /* VCOUNT_INIT is the start of blank */ v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch; /* end of blank = v_init - active */ asic_blank_end = v_init - patched_crtc_timing.v_border_bottom - patched_crtc_timing.v_addressable - patched_crtc_timing.v_border_top; /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */ vertical_line_start = asic_blank_end - optc1->vstartup_start + 1; if (vertical_line_start < 0) v_fp2 = -vertical_line_start; /* Interlace */ if (REG(OTG_INTERLACE_CONTROL)) { if (patched_crtc_timing.flags.INTERLACE == 1) { v_init = v_init / 2; if ((optc1->vstartup_start/2)*2 > asic_blank_end) v_fp2 = v_fp2 / 2; } } if (program_fp2) REG_UPDATE_2(CONTROL, VTG0_FP2, v_fp2, VTG0_VCOUNT_INIT, v_init); else REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init); } void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable); } /** * optc1_set_timing_double_buffer() - DRR double buffering control * * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN, * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers. * * Options: any time, start of frame, dp start of frame (range timing) */ void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t mode = enable ? 2 : 0; REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode); } /** * unblank_crtc * Call ASIC Control Object to UnBlank CRTC. */ static void optc1_unblank_crtc(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE_2(OTG_BLANK_CONTROL, OTG_BLANK_DATA_EN, 0, OTG_BLANK_DE_MODE, 0); /* W/A for automated testing * Automated testing will fail underflow test as there * sporadic underflows which occur during the optc blank * sequence. As a w/a, clear underflow on unblank. * This prevents the failure, but will not mask actual * underflow that affect real use cases. */ optc1_clear_optc_underflow(optc); } /** * blank_crtc * Call ASIC Control Object to Blank CRTC. */ static void optc1_blank_crtc(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE_2(OTG_BLANK_CONTROL, OTG_BLANK_DATA_EN, 1, OTG_BLANK_DE_MODE, 0); optc1_set_blank_data_double_buffer(optc, false); } void optc1_set_blank(struct timing_generator *optc, bool enable_blanking) { if (enable_blanking) optc1_blank_crtc(optc); else optc1_unblank_crtc(optc); } bool optc1_is_blanked(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t blank_en; uint32_t blank_state; REG_GET_2(OTG_BLANK_CONTROL, OTG_BLANK_DATA_EN, &blank_en, OTG_CURRENT_BLANK_STATE, &blank_state); return blank_en && blank_state; } void optc1_enable_optc_clock(struct timing_generator *optc, bool enable) { struct optc *optc1 = DCN10TG_FROM_TG(optc); if (enable) { REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, OPTC_INPUT_CLK_EN, 1, OPTC_INPUT_CLK_GATE_DIS, 1); REG_WAIT(OPTC_INPUT_CLOCK_CONTROL, OPTC_INPUT_CLK_ON, 1, 1, 1000); /* Enable clock */ REG_UPDATE_2(OTG_CLOCK_CONTROL, OTG_CLOCK_EN, 1, OTG_CLOCK_GATE_DIS, 1); REG_WAIT(OTG_CLOCK_CONTROL, OTG_CLOCK_ON, 1, 1, 1000); } else { //last chance to clear underflow, otherwise, it will always there due to clock is off. if (optc->funcs->is_optc_underflow_occurred(optc) == true) optc->funcs->clear_optc_underflow(optc); REG_UPDATE_2(OTG_CLOCK_CONTROL, OTG_CLOCK_GATE_DIS, 0, OTG_CLOCK_EN, 0); REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL, OPTC_INPUT_CLK_GATE_DIS, 0, OPTC_INPUT_CLK_EN, 0); } } /** * Enable CRTC * Enable CRTC - call ASIC Control Object to enable Timing generator. */ static bool optc1_enable_crtc(struct timing_generator *optc) { /* TODO FPGA wait for answer * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK */ struct optc *optc1 = DCN10TG_FROM_TG(optc); /* opp instance for OTG. For DCN1.0, ODM is remoed. * OPP and OPTC should 1:1 mapping */ REG_UPDATE(OPTC_DATA_SOURCE_SELECT, OPTC_SRC_SEL, optc->inst); /* VTG enable first is for HW workaround */ REG_UPDATE(CONTROL, VTG0_ENABLE, 1); REG_SEQ_START(); /* Enable CRTC */ REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 3, OTG_MASTER_EN, 1); REG_SEQ_SUBMIT(); REG_SEQ_WAIT_DONE(); return true; } /* disable_crtc - call ASIC Control Object to disable Timing generator. */ bool optc1_disable_crtc(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); /* disable otg request until end of the first line * in the vertical blank region */ REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 3, OTG_MASTER_EN, 0); REG_UPDATE(CONTROL, VTG0_ENABLE, 0); /* CRTC disabled, so disable clock. */ REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 100000); return true; } void optc1_program_blank_color( struct timing_generator *optc, const struct tg_color *black_color) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET_3(OTG_BLACK_COLOR, 0, OTG_BLACK_COLOR_B_CB, black_color->color_b_cb, OTG_BLACK_COLOR_G_Y, black_color->color_g_y, OTG_BLACK_COLOR_R_CR, black_color->color_r_cr); } bool optc1_validate_timing( struct timing_generator *optc, const struct dc_crtc_timing *timing) { uint32_t v_blank; uint32_t h_blank; uint32_t min_v_blank; struct optc *optc1 = DCN10TG_FROM_TG(optc); ASSERT(timing != NULL); v_blank = (timing->v_total - timing->v_addressable - timing->v_border_top - timing->v_border_bottom); h_blank = (timing->h_total - timing->h_addressable - timing->h_border_right - timing->h_border_left); if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE && timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING && timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM && timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE && timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE && timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA) return false; /* Temporarily blocking interlacing mode until it's supported */ if (timing->flags.INTERLACE == 1) return false; /* Check maximum number of pixels supported by Timing Generator * (Currently will never fail, in order to fail needs display which * needs more than 8192 horizontal and * more than 8192 vertical total pixels) */ if (timing->h_total > optc1->max_h_total || timing->v_total > optc1->max_v_total) return false; if (h_blank < optc1->min_h_blank) return false; if (timing->h_sync_width < optc1->min_h_sync_width || timing->v_sync_width < optc1->min_v_sync_width) return false; min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank; if (v_blank < min_v_blank) return false; return true; } /* * get_vblank_counter * * @brief * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which * holds the counter of frames. * * @param * struct timing_generator *optc - [in] timing generator which controls the * desired CRTC * * @return * Counter of frames, which should equal to number of vblanks. */ uint32_t optc1_get_vblank_counter(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t frame_count; REG_GET(OTG_STATUS_FRAME_COUNT, OTG_FRAME_COUNT, &frame_count); return frame_count; } void optc1_lock(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_GLOBAL_CONTROL0, 0, OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, 1); /* Should be fast, status does not update on maximus */ if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) REG_WAIT(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, 1, 1, 10); TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, true); } void optc1_unlock(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_MASTER_UPDATE_LOCK, 0, OTG_MASTER_UPDATE_LOCK, 0); TRACE_OPTC_LOCK_UNLOCK_STATE(optc1, optc->inst, false); } void optc1_get_position(struct timing_generator *optc, struct crtc_position *position) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_GET_2(OTG_STATUS_POSITION, OTG_HORZ_COUNT, &position->horizontal_count, OTG_VERT_COUNT, &position->vertical_count); REG_GET(OTG_NOM_VERT_POSITION, OTG_VERT_COUNT_NOM, &position->nominal_vcount); } bool optc1_is_counter_moving(struct timing_generator *optc) { struct crtc_position position1, position2; optc->funcs->get_position(optc, &position1); optc->funcs->get_position(optc, &position2); if (position1.horizontal_count == position2.horizontal_count && position1.vertical_count == position2.vertical_count) return false; else return true; } bool optc1_did_triggered_reset_occur( struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t occurred_force, occurred_vsync; REG_GET(OTG_FORCE_COUNT_NOW_CNTL, OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force); REG_GET(OTG_VERT_SYNC_CONTROL, OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync); return occurred_vsync != 0 || occurred_force != 0; } void optc1_disable_reset_trigger(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_WRITE(OTG_TRIGA_CNTL, 0); REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, OTG_FORCE_COUNT_NOW_CLEAR, 1); REG_SET(OTG_VERT_SYNC_CONTROL, 0, OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1); } void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t falling_edge; REG_GET(OTG_V_SYNC_A_CNTL, OTG_V_SYNC_A_POL, &falling_edge); if (falling_edge) REG_SET_3(OTG_TRIGA_CNTL, 0, /* vsync signal from selected OTG pipe based * on OTG_TRIG_SOURCE_PIPE_SELECT setting */ OTG_TRIGA_SOURCE_SELECT, 20, OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, /* always detect falling edge */ OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1); else REG_SET_3(OTG_TRIGA_CNTL, 0, /* vsync signal from selected OTG pipe based * on OTG_TRIG_SOURCE_PIPE_SELECT setting */ OTG_TRIGA_SOURCE_SELECT, 20, OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, /* always detect rising edge */ OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1); REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, /* force H count to H_TOTAL and V count to V_TOTAL in * progressive mode and V_TOTAL-1 in interlaced mode */ OTG_FORCE_COUNT_NOW_MODE, 2); } void optc1_enable_crtc_reset( struct timing_generator *optc, int source_tg_inst, struct crtc_trigger_info *crtc_tp) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t falling_edge = 0; uint32_t rising_edge = 0; switch (crtc_tp->event) { case CRTC_EVENT_VSYNC_RISING: rising_edge = 1; break; case CRTC_EVENT_VSYNC_FALLING: falling_edge = 1; break; } REG_SET_4(OTG_TRIGA_CNTL, 0, /* vsync signal from selected OTG pipe based * on OTG_TRIG_SOURCE_PIPE_SELECT setting */ OTG_TRIGA_SOURCE_SELECT, 20, OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst, /* always detect falling edge */ OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge, OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge); switch (crtc_tp->delay) { case TRIGGER_DELAY_NEXT_LINE: REG_SET(OTG_VERT_SYNC_CONTROL, 0, OTG_AUTO_FORCE_VSYNC_MODE, 1); break; case TRIGGER_DELAY_NEXT_PIXEL: REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0, /* force H count to H_TOTAL and V count to V_TOTAL in * progressive mode and V_TOTAL-1 in interlaced mode */ OTG_FORCE_COUNT_NOW_MODE, 2); break; } } void optc1_wait_for_state(struct timing_generator *optc, enum crtc_state state) { struct optc *optc1 = DCN10TG_FROM_TG(optc); switch (state) { case CRTC_STATE_VBLANK: REG_WAIT(OTG_STATUS, OTG_V_BLANK, 1, 1, 100000); /* 1 vupdate at 10hz */ break; case CRTC_STATE_VACTIVE: REG_WAIT(OTG_STATUS, OTG_V_ACTIVE_DISP, 1, 1, 100000); /* 1 vupdate at 10hz */ break; default: break; } } void optc1_set_early_control( struct timing_generator *optc, uint32_t early_cntl) { /* asic design change, do not need this control * empty for share caller logic */ } void optc1_set_static_screen_control( struct timing_generator *optc, uint32_t event_triggers, uint32_t num_frames) { struct optc *optc1 = DCN10TG_FROM_TG(optc); // By register spec, it only takes 8 bit value if (num_frames > 0xFF) num_frames = 0xFF; /* Bit 8 is no longer applicable in RV for PSR case, * set bit 8 to 0 if given */ if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN) != 0) event_triggers = event_triggers & ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN; REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0, OTG_STATIC_SCREEN_EVENT_MASK, event_triggers, OTG_STATIC_SCREEN_FRAME_COUNT, num_frames); } static void optc1_setup_manual_trigger(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_GLOBAL_CONTROL2, 0, MANUAL_FLOW_CONTROL_SEL, optc->inst); REG_SET_8(OTG_TRIGA_CNTL, 0, OTG_TRIGA_SOURCE_SELECT, 22, OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, OTG_TRIGA_POLARITY_SELECT, 0, OTG_TRIGA_FREQUENCY_SELECT, 0, OTG_TRIGA_DELAY, 0, OTG_TRIGA_CLEAR, 1); } static void optc1_program_manual_trigger(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, MANUAL_FLOW_CONTROL, 1); REG_SET(OTG_MANUAL_FLOW_CONTROL, 0, MANUAL_FLOW_CONTROL, 0); } /** ***************************************************************************** * Function: set_drr * * @brief * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*. * ***************************************************************************** */ void optc1_set_drr( struct timing_generator *optc, const struct drr_params *params) { struct optc *optc1 = DCN10TG_FROM_TG(optc); if (params != NULL && params->vertical_total_max > 0 && params->vertical_total_min > 0) { if (params->vertical_total_mid != 0) { REG_SET(OTG_V_TOTAL_MID, 0, OTG_V_TOTAL_MID, params->vertical_total_mid - 1); REG_UPDATE_2(OTG_V_TOTAL_CONTROL, OTG_VTOTAL_MID_REPLACING_MAX_EN, 1, OTG_VTOTAL_MID_FRAME_NUM, (uint8_t)params->vertical_total_mid_frame_num); } optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1); REG_UPDATE_5(OTG_V_TOTAL_CONTROL, OTG_V_TOTAL_MIN_SEL, 1, OTG_V_TOTAL_MAX_SEL, 1, OTG_FORCE_LOCK_ON_EVENT, 0, OTG_SET_V_TOTAL_MIN_MASK_EN, 0, OTG_SET_V_TOTAL_MIN_MASK, 0); // Setup manual flow control for EOF via TRIG_A optc->funcs->setup_manual_trigger(optc); } else { REG_UPDATE_4(OTG_V_TOTAL_CONTROL, OTG_SET_V_TOTAL_MIN_MASK, 0, OTG_V_TOTAL_MIN_SEL, 0, OTG_V_TOTAL_MAX_SEL, 0, OTG_FORCE_LOCK_ON_EVENT, 0); optc->funcs->set_vtotal_min_max(optc, 0, 0); } } void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_SET(OTG_V_TOTAL_MAX, 0, OTG_V_TOTAL_MAX, vtotal_max); REG_SET(OTG_V_TOTAL_MIN, 0, OTG_V_TOTAL_MIN, vtotal_min); } static void optc1_set_test_pattern( struct timing_generator *optc, /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode' * because this is not DP-specific (which is probably somewhere in DP * encoder) */ enum controller_dp_test_pattern test_pattern, enum dc_color_depth color_depth) { struct optc *optc1 = DCN10TG_FROM_TG(optc); enum test_pattern_color_format bit_depth; enum test_pattern_dyn_range dyn_range; enum test_pattern_mode mode; uint32_t pattern_mask; uint32_t pattern_data; /* color ramp generator mixes 16-bits color */ uint32_t src_bpc = 16; /* requested bpc */ uint32_t dst_bpc; uint32_t index; /* RGB values of the color bars. * Produce two RGB colors: RGB0 - white (all Fs) * and RGB1 - black (all 0s) * (three RGB components for two colors) */ uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000}; /* dest color (converted to the specified color format) */ uint16_t dst_color[6]; uint32_t inc_base; /* translate to bit depth */ switch (color_depth) { case COLOR_DEPTH_666: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6; break; case COLOR_DEPTH_888: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; break; case COLOR_DEPTH_101010: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10; break; case COLOR_DEPTH_121212: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12; break; default: bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; break; } switch (test_pattern) { case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES: case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA: { dyn_range = (test_pattern == CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ? TEST_PATTERN_DYN_RANGE_CEA : TEST_PATTERN_DYN_RANGE_VESA); mode = TEST_PATTERN_MODE_COLORSQUARES_RGB; REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_VRES, 6, OTG_TEST_PATTERN_HRES, 6); REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, OTG_TEST_PATTERN_EN, 1, OTG_TEST_PATTERN_MODE, mode, OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range, OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); } break; case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS: case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS: { mode = (test_pattern == CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ? TEST_PATTERN_MODE_VERTICALBARS : TEST_PATTERN_MODE_HORIZONTALBARS); switch (bit_depth) { case TEST_PATTERN_COLOR_FORMAT_BPC_6: dst_bpc = 6; break; case TEST_PATTERN_COLOR_FORMAT_BPC_8: dst_bpc = 8; break; case TEST_PATTERN_COLOR_FORMAT_BPC_10: dst_bpc = 10; break; default: dst_bpc = 8; break; } /* adjust color to the required colorFormat */ for (index = 0; index < 6; index++) { /* dst = 2^dstBpc * src / 2^srcBpc = src >> * (srcBpc - dstBpc); */ dst_color[index] = src_color[index] >> (src_bpc - dst_bpc); /* CRTC_TEST_PATTERN_DATA has 16 bits, * lowest 6 are hardwired to ZERO * color bits should be left aligned to MSB * XXXXXXXXXX000000 for 10 bit, * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6 */ dst_color[index] <<= (16 - dst_bpc); } REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); /* We have to write the mask before data, similar to pipeline. * For example, for 8 bpc, if we want RGB0 to be magenta, * and RGB1 to be cyan, * we need to make 7 writes: * MASK DATA * 000001 00000000 00000000 set mask to R0 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1 * 100000 11111111 00000000 B1 255, 0xFF00 * * we will make a loop of 6 in which we prepare the mask, * then write, then prepare the color for next write. * first iteration will write mask only, * but each next iteration color prepared in * previous iteration will be written within new mask, * the last component will written separately, * mask is not changing between 6th and 7th write * and color will be prepared by last iteration */ /* write color, color values mask in CRTC_TEST_PATTERN_MASK * is B1, G1, R1, B0, G0, R0 */ pattern_data = 0; for (index = 0; index < 6; index++) { /* prepare color mask, first write PATTERN_DATA * will have all zeros */ pattern_mask = (1 << index); /* write color component */ REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, OTG_TEST_PATTERN_MASK, pattern_mask, OTG_TEST_PATTERN_DATA, pattern_data); /* prepare next color component, * will be written in the next iteration */ pattern_data = dst_color[index]; } /* write last color component, * it's been already prepared in the loop */ REG_SET_2(OTG_TEST_PATTERN_COLOR, 0, OTG_TEST_PATTERN_MASK, pattern_mask, OTG_TEST_PATTERN_DATA, pattern_data); /* enable test pattern */ REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL, OTG_TEST_PATTERN_EN, 1, OTG_TEST_PATTERN_MODE, mode, OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); } break; case CONTROLLER_DP_TEST_PATTERN_COLORRAMP: { mode = (bit_depth == TEST_PATTERN_COLOR_FORMAT_BPC_10 ? TEST_PATTERN_MODE_DUALRAMP_RGB : TEST_PATTERN_MODE_SINGLERAMP_RGB); switch (bit_depth) { case TEST_PATTERN_COLOR_FORMAT_BPC_6: dst_bpc = 6; break; case TEST_PATTERN_COLOR_FORMAT_BPC_8: dst_bpc = 8; break; case TEST_PATTERN_COLOR_FORMAT_BPC_10: dst_bpc = 10; break; default: dst_bpc = 8; break; } /* increment for the first ramp for one color gradation * 1 gradation for 6-bit color is 2^10 * gradations in 16-bit color */ inc_base = (src_bpc - dst_bpc); switch (bit_depth) { case TEST_PATTERN_COLOR_FORMAT_BPC_6: { REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_INC0, inc_base, OTG_TEST_PATTERN_INC1, 0, OTG_TEST_PATTERN_HRES, 6, OTG_TEST_PATTERN_VRES, 6, OTG_TEST_PATTERN_RAMP0_OFFSET, 0); } break; case TEST_PATTERN_COLOR_FORMAT_BPC_8: { REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_INC0, inc_base, OTG_TEST_PATTERN_INC1, 0, OTG_TEST_PATTERN_HRES, 8, OTG_TEST_PATTERN_VRES, 6, OTG_TEST_PATTERN_RAMP0_OFFSET, 0); } break; case TEST_PATTERN_COLOR_FORMAT_BPC_10: { REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_INC0, inc_base, OTG_TEST_PATTERN_INC1, inc_base + 2, OTG_TEST_PATTERN_HRES, 8, OTG_TEST_PATTERN_VRES, 5, OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6); } break; default: break; } REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); /* enable test pattern */ REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0, OTG_TEST_PATTERN_EN, 1, OTG_TEST_PATTERN_MODE, mode, OTG_TEST_PATTERN_DYNAMIC_RANGE, 0, OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth); } break; case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE: { REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0); REG_WRITE(OTG_TEST_PATTERN_COLOR, 0); REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0); } break; default: break; } } void optc1_get_crtc_scanoutpos( struct timing_generator *optc, uint32_t *v_blank_start, uint32_t *v_blank_end, uint32_t *h_position, uint32_t *v_position) { struct optc *optc1 = DCN10TG_FROM_TG(optc); struct crtc_position position; REG_GET_2(OTG_V_BLANK_START_END, OTG_V_BLANK_START, v_blank_start, OTG_V_BLANK_END, v_blank_end); optc1_get_position(optc, &position); *h_position = position.horizontal_count; *v_position = position.vertical_count; } static void optc1_enable_stereo(struct timing_generator *optc, const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) { struct optc *optc1 = DCN10TG_FROM_TG(optc); if (flags) { uint32_t stereo_en; stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0; if (flags->PROGRAM_STEREO) REG_UPDATE_3(OTG_STEREO_CONTROL, OTG_STEREO_EN, stereo_en, OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0, OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); if (flags->PROGRAM_POLARITY) REG_UPDATE(OTG_STEREO_CONTROL, OTG_STEREO_EYE_FLAG_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1); if (flags->DISABLE_STEREO_DP_SYNC) REG_UPDATE(OTG_STEREO_CONTROL, OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1); if (flags->PROGRAM_STEREO) REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL, OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED, OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED); } } void optc1_program_stereo(struct timing_generator *optc, const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags) { if (flags->PROGRAM_STEREO) optc1_enable_stereo(optc, timing, flags); else optc1_disable_stereo(optc); } bool optc1_is_stereo_left_eye(struct timing_generator *optc) { bool ret = false; uint32_t left_eye = 0; struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_GET(OTG_STEREO_STATUS, OTG_STEREO_CURRENT_EYE, &left_eye); if (left_eye == 1) ret = true; else ret = false; return ret; } bool optc1_get_hw_timing(struct timing_generator *tg, struct dc_crtc_timing *hw_crtc_timing) { struct dcn_otg_state s = {0}; if (tg == NULL || hw_crtc_timing == NULL) return false; optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s); hw_crtc_timing->h_total = s.h_total + 1; hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end); hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start; hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start; hw_crtc_timing->v_total = s.v_total + 1; hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end); hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start; hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start; return true; } void optc1_read_otg_state(struct optc *optc1, struct dcn_otg_state *s) { REG_GET(OTG_CONTROL, OTG_MASTER_EN, &s->otg_enabled); REG_GET_2(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &s->v_blank_start, OTG_V_BLANK_END, &s->v_blank_end); REG_GET(OTG_V_SYNC_A_CNTL, OTG_V_SYNC_A_POL, &s->v_sync_a_pol); REG_GET(OTG_V_TOTAL, OTG_V_TOTAL, &s->v_total); REG_GET(OTG_V_TOTAL_MAX, OTG_V_TOTAL_MAX, &s->v_total_max); REG_GET(OTG_V_TOTAL_MIN, OTG_V_TOTAL_MIN, &s->v_total_min); REG_GET(OTG_V_TOTAL_CONTROL, OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel); REG_GET(OTG_V_TOTAL_CONTROL, OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel); REG_GET_2(OTG_V_SYNC_A, OTG_V_SYNC_A_START, &s->v_sync_a_start, OTG_V_SYNC_A_END, &s->v_sync_a_end); REG_GET_2(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &s->h_blank_start, OTG_H_BLANK_END, &s->h_blank_end); REG_GET_2(OTG_H_SYNC_A, OTG_H_SYNC_A_START, &s->h_sync_a_start, OTG_H_SYNC_A_END, &s->h_sync_a_end); REG_GET(OTG_H_SYNC_A_CNTL, OTG_H_SYNC_A_POL, &s->h_sync_a_pol); REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &s->h_total); REG_GET(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status); REG_GET(OTG_VERTICAL_INTERRUPT1_CONTROL, OTG_VERTICAL_INTERRUPT1_INT_ENABLE, &s->vertical_interrupt1_en); REG_GET(OTG_VERTICAL_INTERRUPT1_POSITION, OTG_VERTICAL_INTERRUPT1_LINE_START, &s->vertical_interrupt1_line); REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL, OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en); REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION, OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line); } bool optc1_get_otg_active_size(struct timing_generator *optc, uint32_t *otg_active_width, uint32_t *otg_active_height) { uint32_t otg_enabled; uint32_t v_blank_start; uint32_t v_blank_end; uint32_t h_blank_start; uint32_t h_blank_end; struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled); if (otg_enabled == 0) return false; REG_GET_2(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start, OTG_V_BLANK_END, &v_blank_end); REG_GET_2(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start, OTG_H_BLANK_END, &h_blank_end); *otg_active_width = v_blank_start - v_blank_end; *otg_active_height = h_blank_start - h_blank_end; return true; } void optc1_clear_optc_underflow(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1); } void optc1_tg_init(struct timing_generator *optc) { optc1_set_blank_data_double_buffer(optc, true); optc1_set_timing_double_buffer(optc, true); optc1_clear_optc_underflow(optc); } bool optc1_is_tg_enabled(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t otg_enabled = 0; REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled); return (otg_enabled != 0); } bool optc1_is_optc_underflow_occurred(struct timing_generator *optc) { struct optc *optc1 = DCN10TG_FROM_TG(optc); uint32_t underflow_occurred = 0; REG_GET(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_OCCURRED_STATUS, &underflow_occurred); return (underflow_occurred == 1); } bool optc1_configure_crc(struct timing_generator *optc, const struct crc_params *params) { struct optc *optc1 = DCN10TG_FROM_TG(optc); /* Cannot configure crc on a CRTC that is disabled */ if (!optc1_is_tg_enabled(optc)) return false; REG_WRITE(OTG_CRC_CNTL, 0); if (!params->enable) return true; /* Program frame boundaries */ /* Window A x axis start and end. */ REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL, OTG_CRC0_WINDOWA_X_START, params->windowa_x_start, OTG_CRC0_WINDOWA_X_END, params->windowa_x_end); /* Window A y axis start and end. */ REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL, OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start, OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end); /* Window B x axis start and end. */ REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL, OTG_CRC0_WINDOWB_X_START, params->windowb_x_start, OTG_CRC0_WINDOWB_X_END, params->windowb_x_end); /* Window B y axis start and end. */ REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL, OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start, OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end); /* Set crc mode and selection, and enable. Only using CRC0*/ REG_UPDATE_3(OTG_CRC_CNTL, OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0, OTG_CRC0_SELECT, params->selection, OTG_CRC_EN, 1); return true; } /** * optc1_get_crc - Capture CRC result per component * * @optc: timing_generator instance. * @r_cr: 16-bit primary CRC signature for red data. * @g_y: 16-bit primary CRC signature for green data. * @b_cb: 16-bit primary CRC signature for blue data. * * This function reads the CRC signature from the OPTC registers. Notice that * we have three registers to keep the CRC result per color component (RGB). * * Returns: * If CRC is disabled, return false; otherwise, return true, and the CRC * results in the parameters. */ bool optc1_get_crc(struct timing_generator *optc, uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) { uint32_t field = 0; struct optc *optc1 = DCN10TG_FROM_TG(optc); REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field); /* Early return if CRC is not enabled for this CRTC */ if (!field) return false; /* OTG_CRC0_DATA_RG has the CRC16 results for the red and green component */ REG_GET_2(OTG_CRC0_DATA_RG, CRC0_R_CR, r_cr, CRC0_G_Y, g_y); /* OTG_CRC0_DATA_B has the CRC16 results for the blue component */ REG_GET(OTG_CRC0_DATA_B, CRC0_B_CB, b_cb); return true; } static const struct timing_generator_funcs dcn10_tg_funcs = { .validate_timing = optc1_validate_timing, .program_timing = optc1_program_timing, .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, .program_global_sync = optc1_program_global_sync, .enable_crtc = optc1_enable_crtc, .disable_crtc = optc1_disable_crtc, /* used by enable_timing_synchronization. Not need for FPGA */ .is_counter_moving = optc1_is_counter_moving, .get_position = optc1_get_position, .get_frame_count = optc1_get_vblank_counter, .get_scanoutpos = optc1_get_crtc_scanoutpos, .get_otg_active_size = optc1_get_otg_active_size, .set_early_control = optc1_set_early_control, /* used by enable_timing_synchronization. Not need for FPGA */ .wait_for_state = optc1_wait_for_state, .set_blank = optc1_set_blank, .is_blanked = optc1_is_blanked, .set_blank_color = optc1_program_blank_color, .did_triggered_reset_occur = optc1_did_triggered_reset_occur, .enable_reset_trigger = optc1_enable_reset_trigger, .enable_crtc_reset = optc1_enable_crtc_reset, .disable_reset_trigger = optc1_disable_reset_trigger, .lock = optc1_lock, .unlock = optc1_unlock, .enable_optc_clock = optc1_enable_optc_clock, .set_drr = optc1_set_drr, .get_last_used_drr_vtotal = NULL, .set_vtotal_min_max = optc1_set_vtotal_min_max, .set_static_screen_control = optc1_set_static_screen_control, .set_test_pattern = optc1_set_test_pattern, .program_stereo = optc1_program_stereo, .is_stereo_left_eye = optc1_is_stereo_left_eye, .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, .tg_init = optc1_tg_init, .is_tg_enabled = optc1_is_tg_enabled, .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, .clear_optc_underflow = optc1_clear_optc_underflow, .get_crc = optc1_get_crc, .configure_crc = optc1_configure_crc, .set_vtg_params = optc1_set_vtg_params, .program_manual_trigger = optc1_program_manual_trigger, .setup_manual_trigger = optc1_setup_manual_trigger, .get_hw_timing = optc1_get_hw_timing, }; void dcn10_timing_generator_init(struct optc *optc1) { optc1->base.funcs = &dcn10_tg_funcs; optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; optc1->min_h_blank = 32; optc1->min_v_blank = 3; optc1->min_v_blank_interlace = 5; optc1->min_h_sync_width = 4; optc1->min_v_sync_width = 1; } /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this: * * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as * containter rate. * * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be * halved to maintain the correct pixel rate. * * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well. * */ bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) { bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420; two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422 && !timing->dsc_cfg.ycbcr422_simple); return two_pix; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1