Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Wesley Chalmers | 862 | 83.37% | 3 | 23.08% |
Harry Wentland | 139 | 13.44% | 2 | 15.38% |
David Galiffi | 14 | 1.35% | 1 | 7.69% |
Alex Deucher | 9 | 0.87% | 2 | 15.38% |
Anson Jacob | 3 | 0.29% | 1 | 7.69% |
Bhawanpreet Lakha | 3 | 0.29% | 1 | 7.69% |
Wenjing Liu | 2 | 0.19% | 1 | 7.69% |
abdoulaye berthe | 1 | 0.10% | 1 | 7.69% |
Thomas Zimmermann | 1 | 0.10% | 1 | 7.69% |
Total | 1034 | 13 |
/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ /* FILE POLICY AND INTENDED USAGE: * * This file implements basic dpcd read/write functionality. It also does basic * dpcd range check to ensure that every dpcd request is compliant with specs * range requirements. */ #include "link_dpcd.h" #include <drm/display/drm_dp_helper.h> #include "dm_helpers.h" #define END_ADDRESS(start, size) (start + size - 1) #define ADDRESS_RANGE_SIZE(start, end) (end - start + 1) struct dpcd_address_range { uint32_t start; uint32_t end; }; static enum dc_status internal_link_read_dpcd( struct dc_link *link, uint32_t address, uint8_t *data, uint32_t size) { if (!link->aux_access_disabled && !dm_helpers_dp_read_dpcd(link->ctx, link, address, data, size)) { return DC_ERROR_UNEXPECTED; } return DC_OK; } static enum dc_status internal_link_write_dpcd( struct dc_link *link, uint32_t address, const uint8_t *data, uint32_t size) { if (!link->aux_access_disabled && !dm_helpers_dp_write_dpcd(link->ctx, link, address, data, size)) { return DC_ERROR_UNEXPECTED; } return DC_OK; } /* * Partition the entire DPCD address space * XXX: This partitioning must cover the entire DPCD address space, * and must contain no gaps or overlapping address ranges. */ static const struct dpcd_address_range mandatory_dpcd_partitions[] = { { 0, DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR1) - 1}, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR1), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR2) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR2), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR3) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR3), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR4) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR4), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR5) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR5), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR6) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR6), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR7) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR7), DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR8) - 1 }, { DP_TRAINING_PATTERN_SET_PHY_REPEATER(DP_PHY_LTTPR8), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1) - 1 }, /* * The FEC registers are contiguous */ { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR1) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR2), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR2) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR3), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR3) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR4), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR4) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR5), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR5) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR6), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR6) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR7), DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR7) - 1 }, { DP_FEC_STATUS_PHY_REPEATER(DP_PHY_LTTPR8), DP_LTTPR_MAX_ADD }, /* all remaining DPCD addresses */ { DP_LTTPR_MAX_ADD + 1, DP_DPCD_MAX_ADD } }; static inline bool do_addresses_intersect_with_range( const struct dpcd_address_range *range, const uint32_t start_address, const uint32_t end_address) { return start_address <= range->end && end_address >= range->start; } static uint32_t dpcd_get_next_partition_size(const uint32_t address, const uint32_t size) { const uint32_t end_address = END_ADDRESS(address, size); uint32_t partition_iterator = 0; /* * find current partition * this loop spins forever if partition map above is not surjective */ while (!do_addresses_intersect_with_range(&mandatory_dpcd_partitions[partition_iterator], address, end_address)) partition_iterator++; if (end_address < mandatory_dpcd_partitions[partition_iterator].end) return size; return ADDRESS_RANGE_SIZE(address, mandatory_dpcd_partitions[partition_iterator].end); } /* * Ranges of DPCD addresses that must be read in a single transaction * XXX: Do not allow any two address ranges in this array to overlap */ static const struct dpcd_address_range mandatory_dpcd_blocks[] = { { DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT }}; /* * extend addresses to read all mandatory blocks together */ static void dpcd_extend_address_range( const uint32_t in_address, uint8_t * const in_data, const uint32_t in_size, uint32_t *out_address, uint8_t **out_data, uint32_t *out_size) { const uint32_t end_address = END_ADDRESS(in_address, in_size); const struct dpcd_address_range *addr_range; struct dpcd_address_range new_addr_range; uint32_t i; new_addr_range.start = in_address; new_addr_range.end = end_address; for (i = 0; i < ARRAY_SIZE(mandatory_dpcd_blocks); i++) { addr_range = &mandatory_dpcd_blocks[i]; if (addr_range->start <= in_address && addr_range->end >= in_address) new_addr_range.start = addr_range->start; if (addr_range->start <= end_address && addr_range->end >= end_address) new_addr_range.end = addr_range->end; } *out_address = in_address; *out_size = in_size; *out_data = in_data; if (new_addr_range.start != in_address || new_addr_range.end != end_address) { *out_address = new_addr_range.start; *out_size = ADDRESS_RANGE_SIZE(new_addr_range.start, new_addr_range.end); *out_data = kzalloc(*out_size * sizeof(**out_data), GFP_KERNEL); } } /* * Reduce the AUX reply down to the values the caller requested */ static void dpcd_reduce_address_range( const uint32_t extended_address, uint8_t * const extended_data, const uint32_t extended_size, const uint32_t reduced_address, uint8_t * const reduced_data, const uint32_t reduced_size) { const uint32_t offset = reduced_address - extended_address; /* * If the address is same, address was not extended. * So we do not need to free any memory. * The data is in original buffer(reduced_data). */ if (extended_data == reduced_data) return; memcpy(&extended_data[offset], reduced_data, reduced_size); kfree(extended_data); } enum dc_status core_link_read_dpcd( struct dc_link *link, uint32_t address, uint8_t *data, uint32_t size) { uint32_t extended_address; uint32_t partitioned_address; uint8_t *extended_data; uint32_t extended_size; /* size of the remaining partitioned address space */ uint32_t size_left_to_read; enum dc_status status; /* size of the next partition to be read from */ uint32_t partition_size; uint32_t data_index = 0; dpcd_extend_address_range(address, data, size, &extended_address, &extended_data, &extended_size); partitioned_address = extended_address; size_left_to_read = extended_size; while (size_left_to_read) { partition_size = dpcd_get_next_partition_size(partitioned_address, size_left_to_read); status = internal_link_read_dpcd(link, partitioned_address, &extended_data[data_index], partition_size); if (status != DC_OK) break; partitioned_address += partition_size; data_index += partition_size; size_left_to_read -= partition_size; } dpcd_reduce_address_range(extended_address, extended_data, extended_size, address, data, size); return status; } enum dc_status core_link_write_dpcd( struct dc_link *link, uint32_t address, const uint8_t *data, uint32_t size) { uint32_t partition_size; uint32_t data_index = 0; enum dc_status status; while (size) { partition_size = dpcd_get_next_partition_size(address, size); status = internal_link_write_dpcd(link, address, &data[data_index], partition_size); if (status != DC_OK) break; address += partition_size; data_index += partition_size; size -= partition_size; } return status; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1