Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Evan Quan | 10776 | 79.52% | 36 | 33.03% |
Kenneth Feng | 1192 | 8.80% | 7 | 6.42% |
Rex Zhu | 698 | 5.15% | 36 | 33.03% |
Jammy Zhou | 651 | 4.80% | 1 | 0.92% |
Alex Deucher | 156 | 1.15% | 10 | 9.17% |
Kent Russell | 29 | 0.21% | 1 | 0.92% |
Eric Huang | 28 | 0.21% | 6 | 5.50% |
Darren Powell | 6 | 0.04% | 1 | 0.92% |
Vitaly Prosyak | 3 | 0.02% | 1 | 0.92% |
Nirmoy Das | 2 | 0.01% | 1 | 0.92% |
Masahiro Yamada | 2 | 0.01% | 1 | 0.92% |
yanyang1 | 2 | 0.01% | 1 | 0.92% |
zhengbin | 1 | 0.01% | 1 | 0.92% |
Shirish S | 1 | 0.01% | 1 | 0.92% |
Xiaoliang Pang | 1 | 0.01% | 1 | 0.92% |
Joseph Greathouse | 1 | 0.01% | 1 | 0.92% |
Lee Jones | 1 | 0.01% | 1 | 0.92% |
Harish Kasiviswanathan | 1 | 0.01% | 1 | 0.92% |
Andrey Grodzovsky | 1 | 0.01% | 1 | 0.92% |
Total | 13552 | 109 |
/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/delay.h> #include <linux/module.h> #include <linux/slab.h> #include "hwmgr.h" #include "amd_powerplay.h" #include "vega12_smumgr.h" #include "hardwaremanager.h" #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "cgs_common.h" #include "vega12_inc.h" #include "pppcielanes.h" #include "vega12_hwmgr.h" #include "vega12_processpptables.h" #include "vega12_pptable.h" #include "vega12_thermal.h" #include "vega12_ppsmc.h" #include "pp_debug.h" #include "amd_pcie_helpers.h" #include "ppinterrupt.h" #include "pp_overdriver.h" #include "pp_thermal.h" #include "vega12_baco.h" #define smnPCIE_LC_SPEED_CNTL 0x11140290 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 #define LINK_WIDTH_MAX 6 #define LINK_SPEED_MAX 3 static const int link_width[] = {0, 1, 2, 4, 8, 12, 16}; static const int link_speed[] = {25, 50, 80, 160}; static int vega12_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask); static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr, uint32_t *clock, PPCLK_e clock_select, bool max); static void vega12_set_default_registry_data(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); data->gfxclk_average_alpha = PPVEGA12_VEGA12GFXCLKAVERAGEALPHA_DFLT; data->socclk_average_alpha = PPVEGA12_VEGA12SOCCLKAVERAGEALPHA_DFLT; data->uclk_average_alpha = PPVEGA12_VEGA12UCLKCLKAVERAGEALPHA_DFLT; data->gfx_activity_average_alpha = PPVEGA12_VEGA12GFXACTIVITYAVERAGEALPHA_DFLT; data->lowest_uclk_reserved_for_ulv = PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT; data->display_voltage_mode = PPVEGA12_VEGA12DISPLAYVOLTAGEMODE_DFLT; data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_a = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_b = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_c = PPREGKEY_VEGA12QUADRATICEQUATION_DFLT; data->registry_data.disallowed_features = 0x0; data->registry_data.od_state_in_dc_support = 0; data->registry_data.thermal_support = 1; data->registry_data.skip_baco_hardware = 0; data->registry_data.log_avfs_param = 0; data->registry_data.sclk_throttle_low_notification = 1; data->registry_data.force_dpm_high = 0; data->registry_data.stable_pstate_sclk_dpm_percentage = 75; data->registry_data.didt_support = 0; if (data->registry_data.didt_support) { data->registry_data.didt_mode = 6; data->registry_data.sq_ramping_support = 1; data->registry_data.db_ramping_support = 0; data->registry_data.td_ramping_support = 0; data->registry_data.tcp_ramping_support = 0; data->registry_data.dbr_ramping_support = 0; data->registry_data.edc_didt_support = 1; data->registry_data.gc_didt_support = 0; data->registry_data.psm_didt_support = 0; } data->registry_data.pcie_lane_override = 0xff; data->registry_data.pcie_speed_override = 0xff; data->registry_data.pcie_clock_override = 0xffffffff; data->registry_data.regulator_hot_gpio_support = 1; data->registry_data.ac_dc_switch_gpio_support = 0; data->registry_data.quick_transition_support = 0; data->registry_data.zrpm_start_temp = 0xffff; data->registry_data.zrpm_stop_temp = 0xffff; data->registry_data.odn_feature_enable = 1; data->registry_data.disable_water_mark = 0; data->registry_data.disable_pp_tuning = 0; data->registry_data.disable_xlpp_tuning = 0; data->registry_data.disable_workload_policy = 0; data->registry_data.perf_ui_tuning_profile_turbo = 0x19190F0F; data->registry_data.perf_ui_tuning_profile_powerSave = 0x19191919; data->registry_data.perf_ui_tuning_profile_xl = 0x00000F0A; data->registry_data.force_workload_policy_mask = 0; data->registry_data.disable_3d_fs_detection = 0; data->registry_data.fps_support = 1; data->registry_data.disable_auto_wattman = 1; data->registry_data.auto_wattman_debug = 0; data->registry_data.auto_wattman_sample_period = 100; data->registry_data.auto_wattman_threshold = 50; data->registry_data.pcie_dpm_key_disabled = !(hwmgr->feature_mask & PP_PCIE_DPM_MASK); } static int vega12_set_features_platform_caps(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; if (data->vddci_control == VEGA12_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TablelessHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); if (adev->pg_flags & AMD_PG_SUPPORT_UVD) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDynamicPowerGating); } if (adev->pg_flags & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); if (data->registry_data.odn_feature_enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODNinACSupport); else { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6inACSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport); } phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ActivityReporting); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); if (data->registry_data.od_state_in_dc_support) { if (data->registry_data.odn_feature_enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODNinDCSupport); else { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6inDCSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport); } } if (data->registry_data.thermal_support && data->registry_data.fuzzy_fan_control_support && hwmgr->thermal_controller.advanceFanControlParameters.usTMax) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODFuzzyFanControlSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMC); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalPolicyDelay); if (data->registry_data.force_dpm_high) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ExclusiveModeAlwaysHigh); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); if (data->registry_data.sclk_throttle_low_notification) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification); /* power tune caps */ /* assume disabled */ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); if (data->registry_data.didt_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); if (data->registry_data.sq_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); if (data->registry_data.db_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); if (data->registry_data.td_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); if (data->registry_data.tcp_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); if (data->registry_data.dbr_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); if (data->registry_data.edc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); if (data->registry_data.gc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); if (data->registry_data.psm_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); } phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); if (data->registry_data.ac_dc_switch_gpio_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); } if (data->registry_data.quick_transition_support) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Falcon_QuickTransition); } if (data->lowest_uclk_reserved_for_ulv != PPVEGA12_VEGA12LOWESTUCLKRESERVEDFORULV_DFLT) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_LowestUclkReservedForUlv); if (data->lowest_uclk_reserved_for_ulv == 1) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_LowestUclkReservedForUlv); } if (data->registry_data.custom_fan_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CustomFanControlSupport); return 0; } static void vega12_init_dpm_defaults(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct amdgpu_device *adev = hwmgr->adev; uint32_t top32, bottom32; int i; data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = FEATURE_DPM_PREFETCHER_BIT; data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = FEATURE_DPM_GFXCLK_BIT; data->smu_features[GNLD_DPM_UCLK].smu_feature_id = FEATURE_DPM_UCLK_BIT; data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = FEATURE_DPM_SOCCLK_BIT; data->smu_features[GNLD_DPM_UVD].smu_feature_id = FEATURE_DPM_UVD_BIT; data->smu_features[GNLD_DPM_VCE].smu_feature_id = FEATURE_DPM_VCE_BIT; data->smu_features[GNLD_ULV].smu_feature_id = FEATURE_ULV_BIT; data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = FEATURE_DPM_MP0CLK_BIT; data->smu_features[GNLD_DPM_LINK].smu_feature_id = FEATURE_DPM_LINK_BIT; data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = FEATURE_DPM_DCEFCLK_BIT; data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = FEATURE_DS_GFXCLK_BIT; data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = FEATURE_DS_SOCCLK_BIT; data->smu_features[GNLD_DS_LCLK].smu_feature_id = FEATURE_DS_LCLK_BIT; data->smu_features[GNLD_PPT].smu_feature_id = FEATURE_PPT_BIT; data->smu_features[GNLD_TDC].smu_feature_id = FEATURE_TDC_BIT; data->smu_features[GNLD_THERMAL].smu_feature_id = FEATURE_THERMAL_BIT; data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = FEATURE_GFX_PER_CU_CG_BIT; data->smu_features[GNLD_RM].smu_feature_id = FEATURE_RM_BIT; data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = FEATURE_DS_DCEFCLK_BIT; data->smu_features[GNLD_ACDC].smu_feature_id = FEATURE_ACDC_BIT; data->smu_features[GNLD_VR0HOT].smu_feature_id = FEATURE_VR0HOT_BIT; data->smu_features[GNLD_VR1HOT].smu_feature_id = FEATURE_VR1HOT_BIT; data->smu_features[GNLD_FW_CTF].smu_feature_id = FEATURE_FW_CTF_BIT; data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = FEATURE_LED_DISPLAY_BIT; data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = FEATURE_FAN_CONTROL_BIT; data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; data->smu_features[GNLD_GFXOFF].smu_feature_id = FEATURE_GFXOFF_BIT; data->smu_features[GNLD_CG].smu_feature_id = FEATURE_CG_BIT; data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; for (i = 0; i < GNLD_FEATURES_MAX; i++) { data->smu_features[i].smu_feature_bitmap = (uint64_t)(1ULL << data->smu_features[i].smu_feature_id); data->smu_features[i].allowed = ((data->registry_data.disallowed_features >> i) & 1) ? false : true; } /* Get the SN to turn into a Unique ID */ smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); adev->unique_id = ((uint64_t)bottom32 << 32) | top32; } static int vega12_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) { return 0; } static int vega12_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int vega12_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct vega12_hwmgr *data; struct amdgpu_device *adev = hwmgr->adev; data = kzalloc(sizeof(struct vega12_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; vega12_set_default_registry_data(hwmgr); data->disable_dpm_mask = 0xff; data->workload_mask = 0xff; /* need to set voltage control types before EVV patching */ data->vddc_control = VEGA12_VOLTAGE_CONTROL_NONE; data->mvdd_control = VEGA12_VOLTAGE_CONTROL_NONE; data->vddci_control = VEGA12_VOLTAGE_CONTROL_NONE; data->water_marks_bitmap = 0; data->avfs_exist = false; vega12_set_features_platform_caps(hwmgr); vega12_init_dpm_defaults(hwmgr); /* Parse pptable data read from VBIOS */ vega12_set_private_data_based_on_pptable(hwmgr); data->is_tlu_enabled = false; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = VEGA12_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; data->total_active_cus = adev->gfx.cu_info.number; /* Setup default Overdrive Fan control settings */ data->odn_fan_table.target_fan_speed = hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; data->odn_fan_table.target_temperature = hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature; data->odn_fan_table.min_performance_clock = hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit; data->odn_fan_table.min_fan_limit = hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit * hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; if (hwmgr->feature_mask & PP_GFXOFF_MASK) data->gfxoff_controlled_by_driver = true; else data->gfxoff_controlled_by_driver = false; return result; } static int vega12_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); data->low_sclk_interrupt_threshold = 0; return 0; } static int vega12_setup_asic_task(struct pp_hwmgr *hwmgr) { PP_ASSERT_WITH_CODE(!vega12_init_sclk_threshold(hwmgr), "Failed to init sclk threshold!", return -EINVAL); return 0; } /* * @fn vega12_init_dpm_state * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. * * @param dpm_state - the address of the DPM Table to initiailize. * @return None. */ static void vega12_init_dpm_state(struct vega12_dpm_state *dpm_state) { dpm_state->soft_min_level = 0x0; dpm_state->soft_max_level = 0xffff; dpm_state->hard_min_level = 0x0; dpm_state->hard_max_level = 0xffff; } static int vega12_override_pcie_parameters(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t pcie_gen = 0, pcie_width = 0, smu_pcie_arg, pcie_gen_arg, pcie_width_arg; PPTable_t *pp_table = &(data->smc_state_table.pp_table); int i; int ret; if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 */ for (i = 0; i < NUM_LINK_LEVELS; i++) { pcie_gen_arg = (pp_table->PcieGenSpeed[i] > pcie_gen) ? pcie_gen : pp_table->PcieGenSpeed[i]; pcie_width_arg = (pp_table->PcieLaneCount[i] > pcie_width) ? pcie_width : pp_table->PcieLaneCount[i]; if (pcie_gen_arg != pp_table->PcieGenSpeed[i] || pcie_width_arg != pp_table->PcieLaneCount[i]) { smu_pcie_arg = (i << 16) | (pcie_gen_arg << 8) | pcie_width_arg; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverridePcieParameters, smu_pcie_arg, NULL); PP_ASSERT_WITH_CODE(!ret, "[OverridePcieParameters] Attempt to override pcie params failed!", return ret); } /* update the pptable */ pp_table->PcieGenSpeed[i] = pcie_gen_arg; pp_table->PcieLaneCount[i] = pcie_width_arg; } /* override to the highest if it's disabled from ppfeaturmask */ if (data->registry_data.pcie_dpm_key_disabled) { for (i = 0; i < NUM_LINK_LEVELS; i++) { smu_pcie_arg = (i << 16) | (pcie_gen << 8) | pcie_width; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverridePcieParameters, smu_pcie_arg, NULL); PP_ASSERT_WITH_CODE(!ret, "[OverridePcieParameters] Attempt to override pcie params failed!", return ret); pp_table->PcieGenSpeed[i] = pcie_gen; pp_table->PcieLaneCount[i] = pcie_width; } ret = vega12_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap); PP_ASSERT_WITH_CODE(!ret, "Attempt to Disable DPM LINK Failed!", return ret); data->smu_features[GNLD_DPM_LINK].enabled = false; data->smu_features[GNLD_DPM_LINK].supported = false; } return 0; } static int vega12_get_number_of_dpm_level(struct pp_hwmgr *hwmgr, PPCLK_e clk_id, uint32_t *num_of_levels) { int ret = 0; ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmFreqByIndex, (clk_id << 16 | 0xFF), num_of_levels); PP_ASSERT_WITH_CODE(!ret, "[GetNumOfDpmLevel] failed to get dpm levels!", return ret); return ret; } static int vega12_get_dpm_frequency_by_index(struct pp_hwmgr *hwmgr, PPCLK_e clkID, uint32_t index, uint32_t *clock) { /* *SMU expects the Clock ID to be in the top 16 bits. *Lower 16 bits specify the level */ PP_ASSERT_WITH_CODE(smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmFreqByIndex, (clkID << 16 | index), clock) == 0, "[GetDpmFrequencyByIndex] Failed to get dpm frequency from SMU!", return -EINVAL); return 0; } static int vega12_setup_single_dpm_table(struct pp_hwmgr *hwmgr, struct vega12_single_dpm_table *dpm_table, PPCLK_e clk_id) { int ret = 0; uint32_t i, num_of_levels, clk; ret = vega12_get_number_of_dpm_level(hwmgr, clk_id, &num_of_levels); PP_ASSERT_WITH_CODE(!ret, "[SetupSingleDpmTable] failed to get clk levels!", return ret); dpm_table->count = num_of_levels; for (i = 0; i < num_of_levels; i++) { ret = vega12_get_dpm_frequency_by_index(hwmgr, clk_id, i, &clk); PP_ASSERT_WITH_CODE(!ret, "[SetupSingleDpmTable] failed to get clk of specific level!", return ret); dpm_table->dpm_levels[i].value = clk; dpm_table->dpm_levels[i].enabled = true; } return ret; } /* * This function is to initialize all DPM state tables * for SMU based on the dependency table. * Dynamic state patching function will then trim these * state tables to the allowed range based * on the power policy or external client requests, * such as UVD request, etc. */ static int vega12_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *dpm_table; int ret = 0; memset(&data->dpm_table, 0, sizeof(data->dpm_table)); /* socclk */ dpm_table = &(data->dpm_table.soc_table); if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_SOCCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get socclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.soc_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* gfxclk */ dpm_table = &(data->dpm_table.gfx_table); if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_GFXCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get gfxclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.gfx_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* memclk */ dpm_table = &(data->dpm_table.mem_table); if (data->smu_features[GNLD_DPM_UCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_UCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get memclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.mem_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* eclk */ dpm_table = &(data->dpm_table.eclk_table); if (data->smu_features[GNLD_DPM_VCE].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_ECLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get eclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.eclock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* vclk */ dpm_table = &(data->dpm_table.vclk_table); if (data->smu_features[GNLD_DPM_UVD].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_VCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get vclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.vclock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* dclk */ dpm_table = &(data->dpm_table.dclk_table); if (data->smu_features[GNLD_DPM_UVD].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.dclock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* dcefclk */ dpm_table = &(data->dpm_table.dcef_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DCEFCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dcefclk dpm levels!", return ret); } else { dpm_table->count = 1; dpm_table->dpm_levels[0].value = data->vbios_boot_state.dcef_clock / 100; } vega12_init_dpm_state(&(dpm_table->dpm_state)); /* pixclk */ dpm_table = &(data->dpm_table.pixel_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PIXCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get pixclk dpm levels!", return ret); } else dpm_table->count = 0; vega12_init_dpm_state(&(dpm_table->dpm_state)); /* dispclk */ dpm_table = &(data->dpm_table.display_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_DISPCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get dispclk dpm levels!", return ret); } else dpm_table->count = 0; vega12_init_dpm_state(&(dpm_table->dpm_state)); /* phyclk */ dpm_table = &(data->dpm_table.phy_table); if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { ret = vega12_setup_single_dpm_table(hwmgr, dpm_table, PPCLK_PHYCLK); PP_ASSERT_WITH_CODE(!ret, "[SetupDefaultDpmTable] failed to get phyclk dpm levels!", return ret); } else dpm_table->count = 0; vega12_init_dpm_state(&(dpm_table->dpm_state)); /* save a copy of the default DPM table */ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct vega12_dpm_table)); return 0; } #if 0 static int vega12_save_default_power_profile(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); uint32_t min_level; hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE; hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE; /* Optimize compute power profile: Use only highest * 2 power levels (if more than 2 are available) */ if (dpm_table->count > 2) min_level = dpm_table->count - 2; else if (dpm_table->count == 2) min_level = 1; else min_level = 0; hwmgr->default_compute_power_profile.min_sclk = dpm_table->dpm_levels[min_level].value; hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile; hwmgr->compute_power_profile = hwmgr->default_compute_power_profile; return 0; } #endif /** * vega12_init_smc_table - Initializes the SMC table and uploads it * * @hwmgr: the address of the powerplay hardware manager. * return: always 0 */ static int vega12_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_bios_boot_up_values boot_up_values; struct phm_ppt_v3_information *pptable_information = (struct phm_ppt_v3_information *)hwmgr->pptable; result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); if (!result) { data->vbios_boot_state.vddc = boot_up_values.usVddc; data->vbios_boot_state.vddci = boot_up_values.usVddci; data->vbios_boot_state.mvddc = boot_up_values.usMvddc; data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; data->vbios_boot_state.uc_cooling_id = boot_up_values.ucCoolingID; data->vbios_boot_state.eclock = boot_up_values.ulEClk; data->vbios_boot_state.dclock = boot_up_values.ulDClk; data->vbios_boot_state.vclock = boot_up_values.ulVClk; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, (uint32_t)(data->vbios_boot_state.dcef_clock / 100), NULL); } memcpy(pp_table, pptable_information->smc_pptable, sizeof(PPTable_t)); result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, TABLE_PPTABLE, false); PP_ASSERT_WITH_CODE(!result, "Failed to upload PPtable!", return result); return 0; } static int vega12_run_acg_btc(struct pp_hwmgr *hwmgr) { uint32_t result; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &result) == 0, "[Run_ACG_BTC] Attempt to run ACG BTC failed!", return -EINVAL); PP_ASSERT_WITH_CODE(result == 1, "Failed to run ACG BTC!", return -EINVAL); return 0; } static int vega12_set_allowed_featuresmask(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int i; uint32_t allowed_features_low = 0, allowed_features_high = 0; for (i = 0; i < GNLD_FEATURES_MAX; i++) if (data->smu_features[i].allowed) data->smu_features[i].smu_feature_id > 31 ? (allowed_features_high |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_HIGH_SHIFT) & 0xFFFFFFFF)) : (allowed_features_low |= ((data->smu_features[i].smu_feature_bitmap >> SMU_FEATURES_LOW_SHIFT) & 0xFFFFFFFF)); PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskHigh, allowed_features_high, NULL) == 0, "[SetAllowedFeaturesMask] Attempt to set allowed features mask (high) failed!", return -1); PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetAllowedFeaturesMaskLow, allowed_features_low, NULL) == 0, "[SetAllowedFeaturesMask] Attempt to set allowed features mask (low) failed!", return -1); return 0; } static void vega12_init_powergate_state(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); data->uvd_power_gated = true; data->vce_power_gated = true; if (data->smu_features[GNLD_DPM_UVD].enabled) data->uvd_power_gated = false; if (data->smu_features[GNLD_DPM_VCE].enabled) data->vce_power_gated = false; } static int vega12_enable_all_smu_features(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint64_t features_enabled; int i; bool enabled; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAllSmuFeatures, NULL) == 0, "[EnableAllSMUFeatures] Failed to enable all smu features!", return -1); if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) { for (i = 0; i < GNLD_FEATURES_MAX; i++) { enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false; data->smu_features[i].enabled = enabled; data->smu_features[i].supported = enabled; } } vega12_init_powergate_state(hwmgr); return 0; } static int vega12_disable_all_smu_features(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint64_t features_enabled; int i; bool enabled; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableAllSmuFeatures, NULL) == 0, "[DisableAllSMUFeatures] Failed to disable all smu features!", return -1); if (vega12_get_enabled_smc_features(hwmgr, &features_enabled) == 0) { for (i = 0; i < GNLD_FEATURES_MAX; i++) { enabled = (features_enabled & data->smu_features[i].smu_feature_bitmap) ? true : false; data->smu_features[i].enabled = enabled; data->smu_features[i].supported = enabled; } } return 0; } static int vega12_odn_initialize_default_settings( struct pp_hwmgr *hwmgr) { return 0; } static int vega12_set_overdrive_target_percentage(struct pp_hwmgr *hwmgr, uint32_t adjust_percent) { return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_OverDriveSetPercentage, adjust_percent, NULL); } static int vega12_power_control_set_level(struct pp_hwmgr *hwmgr) { int adjust_percent, result = 0; if (PP_CAP(PHM_PlatformCaps_PowerContainment)) { adjust_percent = hwmgr->platform_descriptor.TDPAdjustmentPolarity ? hwmgr->platform_descriptor.TDPAdjustment : (-1 * hwmgr->platform_descriptor.TDPAdjustment); result = vega12_set_overdrive_target_percentage(hwmgr, (uint32_t)adjust_percent); } return result; } static int vega12_get_all_clock_ranges_helper(struct pp_hwmgr *hwmgr, PPCLK_e clkid, struct vega12_clock_range *clock) { /* AC Max */ PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMaxDpmFreq, (clkid << 16), &(clock->ACMax)) == 0, "[GetClockRanges] Failed to get max ac clock from SMC!", return -EINVAL); /* AC Min */ PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetMinDpmFreq, (clkid << 16), &(clock->ACMin)) == 0, "[GetClockRanges] Failed to get min ac clock from SMC!", return -EINVAL); /* DC Max */ PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDcModeMaxDpmFreq, (clkid << 16), &(clock->DCMax)) == 0, "[GetClockRanges] Failed to get max dc clock from SMC!", return -EINVAL); return 0; } static int vega12_get_all_clock_ranges(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t i; for (i = 0; i < PPCLK_COUNT; i++) PP_ASSERT_WITH_CODE(!vega12_get_all_clock_ranges_helper(hwmgr, i, &(data->clk_range[i])), "Failed to get clk range from SMC!", return -EINVAL); return 0; } static void vega12_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table); struct vega12_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table); if (gfx_dpm_table->count > VEGA12_UMD_PSTATE_GFXCLK_LEVEL && mem_dpm_table->count > VEGA12_UMD_PSTATE_MCLK_LEVEL) { hwmgr->pstate_sclk = gfx_dpm_table->dpm_levels[VEGA12_UMD_PSTATE_GFXCLK_LEVEL].value; hwmgr->pstate_mclk = mem_dpm_table->dpm_levels[VEGA12_UMD_PSTATE_MCLK_LEVEL].value; } else { hwmgr->pstate_sclk = gfx_dpm_table->dpm_levels[0].value; hwmgr->pstate_mclk = mem_dpm_table->dpm_levels[0].value; } hwmgr->pstate_sclk_peak = gfx_dpm_table->dpm_levels[gfx_dpm_table->count].value; hwmgr->pstate_mclk_peak = mem_dpm_table->dpm_levels[mem_dpm_table->count].value; } static int vega12_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0, NULL); result = vega12_set_allowed_featuresmask(hwmgr); PP_ASSERT_WITH_CODE(result == 0, "[EnableDPMTasks] Failed to set allowed featuresmask!\n", return result); tmp_result = vega12_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to initialize SMC table!", result = tmp_result); tmp_result = vega12_run_acg_btc(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to run ACG BTC!", result = tmp_result); result = vega12_enable_all_smu_features(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to enable all smu features!", return result); result = vega12_override_pcie_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "[EnableDPMTasks] Failed to override pcie parameters!", return result); tmp_result = vega12_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to power control set level!", result = tmp_result); result = vega12_get_all_clock_ranges(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to get all clock ranges!", return result); result = vega12_odn_initialize_default_settings(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to power control set level!", return result); result = vega12_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to setup default DPM tables!", return result); vega12_populate_umdpstate_clocks(hwmgr); return result; } static int vega12_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { return 0; } static uint32_t vega12_find_lowest_dpm_level( struct vega12_single_dpm_table *table) { uint32_t i; for (i = 0; i < table->count; i++) { if (table->dpm_levels[i].enabled) break; } if (i >= table->count) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static uint32_t vega12_find_highest_dpm_level( struct vega12_single_dpm_table *table) { int32_t i = 0; PP_ASSERT_WITH_CODE(table->count <= MAX_REGULAR_DPM_NUMBER, "[FindHighestDPMLevel] DPM Table has too many entries!", return MAX_REGULAR_DPM_NUMBER - 1); for (i = table->count - 1; i >= 0; i--) { if (table->dpm_levels[i].enabled) break; } if (i < 0) { i = 0; table->dpm_levels[i].enabled = true; } return (uint32_t)i; } static int vega12_upload_dpm_min_level(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = hwmgr->backend; uint32_t min_freq; int ret = 0; if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { min_freq = data->dpm_table.gfx_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_GFXCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min gfxclk !", return ret); } if (data->smu_features[GNLD_DPM_UCLK].enabled) { min_freq = data->dpm_table.mem_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_UCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min memclk !", return ret); min_freq = data->dpm_table.mem_table.dpm_state.hard_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set hard min memclk !", return ret); } if (data->smu_features[GNLD_DPM_UVD].enabled) { min_freq = data->dpm_table.vclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_VCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min vclk!", return ret); min_freq = data->dpm_table.dclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_DCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min dclk!", return ret); } if (data->smu_features[GNLD_DPM_VCE].enabled) { min_freq = data->dpm_table.eclk_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_ECLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min eclk!", return ret); } if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { min_freq = data->dpm_table.soc_table.dpm_state.soft_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinByFreq, (PPCLK_SOCCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set soft min socclk!", return ret); } if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { min_freq = data->dpm_table.dcef_table.dpm_state.hard_min_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_DCEFCLK << 16) | (min_freq & 0xffff), NULL)), "Failed to set hard min dcefclk!", return ret); } return ret; } static int vega12_upload_dpm_max_level(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = hwmgr->backend; uint32_t max_freq; int ret = 0; if (data->smu_features[GNLD_DPM_GFXCLK].enabled) { max_freq = data->dpm_table.gfx_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_GFXCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max gfxclk!", return ret); } if (data->smu_features[GNLD_DPM_UCLK].enabled) { max_freq = data->dpm_table.mem_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_UCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max memclk!", return ret); } if (data->smu_features[GNLD_DPM_UVD].enabled) { max_freq = data->dpm_table.vclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_VCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max vclk!", return ret); max_freq = data->dpm_table.dclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_DCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max dclk!", return ret); } if (data->smu_features[GNLD_DPM_VCE].enabled) { max_freq = data->dpm_table.eclk_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_ECLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max eclk!", return ret); } if (data->smu_features[GNLD_DPM_SOCCLK].enabled) { max_freq = data->dpm_table.soc_table.dpm_state.soft_max_level; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxByFreq, (PPCLK_SOCCLK << 16) | (max_freq & 0xffff), NULL)), "Failed to set soft max socclk!", return ret); } return ret; } int vega12_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_VCE].supported) { PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), "Attempt to Enable/Disable DPM VCE Failed!", return -1); data->smu_features[GNLD_DPM_VCE].enabled = enable; } return 0; } static uint32_t vega12_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t gfx_clk; if (!data->smu_features[GNLD_DPM_GFXCLK].enabled) return -1; if (low) PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, false) == 0, "[GetSclks]: fail to get min PPCLK_GFXCLK\n", return -1); else PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &gfx_clk, PPCLK_GFXCLK, true) == 0, "[GetSclks]: fail to get max PPCLK_GFXCLK\n", return -1); return (gfx_clk * 100); } static uint32_t vega12_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t mem_clk; if (!data->smu_features[GNLD_DPM_UCLK].enabled) return -1; if (low) PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, false) == 0, "[GetMclks]: fail to get min PPCLK_UCLK\n", return -1); else PP_ASSERT_WITH_CODE( vega12_get_clock_ranges(hwmgr, &mem_clk, PPCLK_UCLK, true) == 0, "[GetMclks]: fail to get max PPCLK_UCLK\n", return -1); return (mem_clk * 100); } static int vega12_get_metrics_table(struct pp_hwmgr *hwmgr, SmuMetrics_t *metrics_table, bool bypass_cache) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (bypass_cache || !data->metrics_time || time_after(jiffies, data->metrics_time + msecs_to_jiffies(1))) { ret = smum_smc_table_manager(hwmgr, (uint8_t *)(&data->metrics_table), TABLE_SMU_METRICS, true); if (ret) { pr_info("Failed to export SMU metrics table!\n"); return ret; } data->metrics_time = jiffies; } if (metrics_table) memcpy(metrics_table, &data->metrics_table, sizeof(SmuMetrics_t)); return ret; } static int vega12_get_gpu_power(struct pp_hwmgr *hwmgr, uint32_t *query) { SmuMetrics_t metrics_table; int ret = 0; ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; *query = metrics_table.CurrSocketPower << 8; return ret; } static int vega12_get_current_gfx_clk_freq(struct pp_hwmgr *hwmgr, uint32_t *gfx_freq) { uint32_t gfx_clk = 0; *gfx_freq = 0; PP_ASSERT_WITH_CODE(smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_GFXCLK << 16), &gfx_clk) == 0, "[GetCurrentGfxClkFreq] Attempt to get Current GFXCLK Frequency Failed!", return -EINVAL); *gfx_freq = gfx_clk * 100; return 0; } static int vega12_get_current_mclk_freq(struct pp_hwmgr *hwmgr, uint32_t *mclk_freq) { uint32_t mem_clk = 0; *mclk_freq = 0; PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_UCLK << 16), &mem_clk) == 0, "[GetCurrentMClkFreq] Attempt to get Current MCLK Frequency Failed!", return -EINVAL); *mclk_freq = mem_clk * 100; return 0; } static int vega12_get_current_activity_percent( struct pp_hwmgr *hwmgr, int idx, uint32_t *activity_percent) { SmuMetrics_t metrics_table; int ret = 0; ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; switch (idx) { case AMDGPU_PP_SENSOR_GPU_LOAD: *activity_percent = metrics_table.AverageGfxActivity; break; case AMDGPU_PP_SENSOR_MEM_LOAD: *activity_percent = metrics_table.AverageUclkActivity; break; default: pr_err("Invalid index for retrieving clock activity\n"); return -EINVAL; } return ret; } static int vega12_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); SmuMetrics_t metrics_table; int ret = 0; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: ret = vega12_get_current_gfx_clk_freq(hwmgr, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = vega12_get_current_mclk_freq(hwmgr, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_GPU_LOAD: case AMDGPU_PP_SENSOR_MEM_LOAD: ret = vega12_get_current_activity_percent(hwmgr, idx, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = vega12_thermal_get_temperature(hwmgr); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; *((uint32_t *)value) = metrics_table.TemperatureHotspot * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = vega12_get_metrics_table(hwmgr, &metrics_table, false); if (ret) return ret; *((uint32_t *)value) = metrics_table.TemperatureHBM * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; *size = 4; break; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = vega12_get_gpu_power(hwmgr, (uint32_t *)value); if (!ret) *size = 4; break; case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: ret = vega12_get_enabled_smc_features(hwmgr, (uint64_t *)value); if (!ret) *size = 8; break; default: ret = -EOPNOTSUPP; break; } return ret; } static int vega12_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_disp) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_UCLK].enabled) return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetUclkFastSwitch, has_disp ? 1 : 0, NULL); return 0; } static int vega12_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { int result = 0; struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; PPCLK_e clk_select = 0; uint32_t clk_request = 0; if (data->smu_features[GNLD_DPM_DCEFCLK].enabled) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = PPCLK_DCEFCLK; break; case amd_pp_disp_clock: clk_select = PPCLK_DISPCLK; break; case amd_pp_pixel_clock: clk_select = PPCLK_PIXCLK; break; case amd_pp_phy_clock: clk_select = PPCLK_PHYCLK; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); result = -1; break; } if (!result) { clk_request = (clk_select << 16) | clk_freq; result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, clk_request, NULL); } } return result; } static int vega12_notify_smc_display_config_after_ps_adjustment( struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct PP_Clocks min_clocks = {0}; struct pp_display_clock_request clock_req; if ((hwmgr->display_config->num_display > 1) && !hwmgr->display_config->multi_monitor_in_sync && !hwmgr->display_config->nb_pstate_switch_disable) vega12_notify_smc_display_change(hwmgr, false); else vega12_notify_smc_display_change(hwmgr, true); min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; if (data->smu_features[GNLD_DPM_DCEFCLK].supported) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = min_clocks.dcefClock/10; if (!vega12_display_clock_voltage_request(hwmgr, &clock_req)) { if (data->smu_features[GNLD_DS_DCEFCLK].supported) PP_ASSERT_WITH_CODE( !smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, min_clocks.dcefClockInSR /100, NULL), "Attempt to set divider for DCEFCLK Failed!", return -1); } else { pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); } } return 0; } static int vega12_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t soft_level; soft_level = vega12_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_level].value; soft_level = vega12_find_highest_dpm_level(&(data->dpm_table.mem_table)); data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_level].value; PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega12_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t soft_level; soft_level = vega12_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_level].value; soft_level = vega12_find_lowest_dpm_level(&(data->dpm_table.mem_table)); data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_level].value; PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega12_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { PP_ASSERT_WITH_CODE(!vega12_upload_dpm_min_level(hwmgr), "Failed to upload DPM Bootup Levels!", return -1); PP_ASSERT_WITH_CODE(!vega12_upload_dpm_max_level(hwmgr), "Failed to upload DPM Max Levels!", return -1); return 0; } static int vega12_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *gfx_dpm_table = &(data->dpm_table.gfx_table); struct vega12_single_dpm_table *mem_dpm_table = &(data->dpm_table.mem_table); struct vega12_single_dpm_table *soc_dpm_table = &(data->dpm_table.soc_table); *sclk_mask = 0; *mclk_mask = 0; *soc_mask = 0; if (gfx_dpm_table->count > VEGA12_UMD_PSTATE_GFXCLK_LEVEL && mem_dpm_table->count > VEGA12_UMD_PSTATE_MCLK_LEVEL && soc_dpm_table->count > VEGA12_UMD_PSTATE_SOCCLK_LEVEL) { *sclk_mask = VEGA12_UMD_PSTATE_GFXCLK_LEVEL; *mclk_mask = VEGA12_UMD_PSTATE_MCLK_LEVEL; *soc_mask = VEGA12_UMD_PSTATE_SOCCLK_LEVEL; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { *sclk_mask = gfx_dpm_table->count - 1; *mclk_mask = mem_dpm_table->count - 1; *soc_mask = soc_dpm_table->count - 1; } return 0; } static void vega12_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { switch (mode) { case AMD_FAN_CTRL_NONE: break; case AMD_FAN_CTRL_MANUAL: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega12_fan_ctrl_stop_smc_fan_control(hwmgr); break; case AMD_FAN_CTRL_AUTO: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega12_fan_ctrl_start_smc_fan_control(hwmgr); break; default: break; } } static int vega12_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask = 0; uint32_t mclk_mask = 0; uint32_t soc_mask = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = vega12_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = vega12_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = vega12_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = vega12_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; vega12_force_clock_level(hwmgr, PP_SCLK, 1 << sclk_mask); vega12_force_clock_level(hwmgr, PP_MCLK, 1 << mclk_mask); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } static uint32_t vega12_get_fan_control_mode(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int vega12_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { #if 0 struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_clock_and_voltage_limits *max_limits = &table_info->max_clock_voltage_on_ac; info->engine_max_clock = max_limits->sclk; info->memory_max_clock = max_limits->mclk; #endif return 0; } static int vega12_get_clock_ranges(struct pp_hwmgr *hwmgr, uint32_t *clock, PPCLK_e clock_select, bool max) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (max) *clock = data->clk_range[clock_select].ACMax; else *clock = data->clk_range[clock_select].ACMin; return 0; } static int vega12_get_sclks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_GFXCLK].enabled) return -1; dpm_table = &(data->dpm_table.gfx_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } clocks->num_levels = ucount; return 0; } static uint32_t vega12_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clock) { return 25; } static int vega12_get_memclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_UCLK].enabled) return -1; dpm_table = &(data->dpm_table.mem_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; data->mclk_latency_table.entries[i].frequency = dpm_table->dpm_levels[i].value * 100; clocks->data[i].latency_in_us = data->mclk_latency_table.entries[i].latency = vega12_get_mem_latency(hwmgr, dpm_table->dpm_levels[i].value); } clocks->num_levels = data->mclk_latency_table.count = ucount; return 0; } static int vega12_get_dcefclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_DCEFCLK].enabled) return -1; dpm_table = &(data->dpm_table.dcef_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } clocks->num_levels = ucount; return 0; } static int vega12_get_socclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t ucount; int i; struct vega12_single_dpm_table *dpm_table; if (!data->smu_features[GNLD_DPM_SOCCLK].enabled) return -1; dpm_table = &(data->dpm_table.soc_table); ucount = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; for (i = 0; i < ucount; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } clocks->num_levels = ucount; return 0; } static int vega12_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { int ret; switch (type) { case amd_pp_sys_clock: ret = vega12_get_sclks(hwmgr, clocks); break; case amd_pp_mem_clock: ret = vega12_get_memclocks(hwmgr, clocks); break; case amd_pp_dcef_clock: ret = vega12_get_dcefclocks(hwmgr, clocks); break; case amd_pp_soc_clock: ret = vega12_get_socclocks(hwmgr, clocks); break; default: return -EINVAL; } return ret; } static int vega12_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { clocks->num_levels = 0; return 0; } static int vega12_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, void *clock_ranges) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); Watermarks_t *table = &(data->smc_state_table.water_marks_table); struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_ranges; if (!data->registry_data.disable_water_mark && data->smu_features[GNLD_DPM_DCEFCLK].supported && data->smu_features[GNLD_DPM_SOCCLK].supported) { smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); data->water_marks_bitmap |= WaterMarksExist; data->water_marks_bitmap &= ~WaterMarksLoaded; } return 0; } static int vega12_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); uint32_t soft_min_level, soft_max_level, hard_min_level; int ret = 0; switch (type) { case PP_SCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; data->dpm_table.gfx_table.dpm_state.soft_min_level = data->dpm_table.gfx_table.dpm_levels[soft_min_level].value; data->dpm_table.gfx_table.dpm_state.soft_max_level = data->dpm_table.gfx_table.dpm_levels[soft_max_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega12_upload_dpm_max_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_MCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; data->dpm_table.mem_table.dpm_state.soft_min_level = data->dpm_table.mem_table.dpm_levels[soft_min_level].value; data->dpm_table.mem_table.dpm_state.soft_max_level = data->dpm_table.mem_table.dpm_levels[soft_max_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega12_upload_dpm_max_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_SOCCLK: soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; if (soft_max_level >= data->dpm_table.soc_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", soft_max_level, data->dpm_table.soc_table.count - 1); return -EINVAL; } data->dpm_table.soc_table.dpm_state.soft_min_level = data->dpm_table.soc_table.dpm_levels[soft_min_level].value; data->dpm_table.soc_table.dpm_state.soft_max_level = data->dpm_table.soc_table.dpm_levels[soft_max_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); ret = vega12_upload_dpm_max_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload dpm max level to highest!", return ret); break; case PP_DCEFCLK: hard_min_level = mask ? (ffs(mask) - 1) : 0; if (hard_min_level >= data->dpm_table.dcef_table.count) { pr_err("Clock level specified %d is over max allowed %d\n", hard_min_level, data->dpm_table.dcef_table.count - 1); return -EINVAL; } data->dpm_table.dcef_table.dpm_state.hard_min_level = data->dpm_table.dcef_table.dpm_levels[hard_min_level].value; ret = vega12_upload_dpm_min_level(hwmgr); PP_ASSERT_WITH_CODE(!ret, "Failed to upload boot level to lowest!", return ret); //TODO: Setting DCEFCLK max dpm level is not supported break; case PP_PCIE: break; default: break; } return 0; } static int vega12_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) { static const char *ppfeature_name[] = { "DPM_PREFETCHER", "GFXCLK_DPM", "UCLK_DPM", "SOCCLK_DPM", "UVD_DPM", "VCE_DPM", "ULV", "MP0CLK_DPM", "LINK_DPM", "DCEFCLK_DPM", "GFXCLK_DS", "SOCCLK_DS", "LCLK_DS", "PPT", "TDC", "THERMAL", "GFX_PER_CU_CG", "RM", "DCEFCLK_DS", "ACDC", "VR0HOT", "VR1HOT", "FW_CTF", "LED_DISPLAY", "FAN_CONTROL", "DIDT", "GFXOFF", "CG", "ACG"}; static const char *output_title[] = { "FEATURES", "BITMASK", "ENABLEMENT"}; uint64_t features_enabled; int i; int ret = 0; int size = 0; phm_get_sysfs_buf(&buf, &size); ret = vega12_get_enabled_smc_features(hwmgr, &features_enabled); PP_ASSERT_WITH_CODE(!ret, "[EnableAllSmuFeatures] Failed to get enabled smc features!", return ret); size += sysfs_emit_at(buf, size, "Current ppfeatures: 0x%016llx\n", features_enabled); size += sysfs_emit_at(buf, size, "%-19s %-22s %s\n", output_title[0], output_title[1], output_title[2]); for (i = 0; i < GNLD_FEATURES_MAX; i++) { size += sysfs_emit_at(buf, size, "%-19s 0x%016llx %6s\n", ppfeature_name[i], 1ULL << i, (features_enabled & (1ULL << i)) ? "Y" : "N"); } return size; } static int vega12_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) { uint64_t features_enabled; uint64_t features_to_enable; uint64_t features_to_disable; int ret = 0; if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) return -EINVAL; ret = vega12_get_enabled_smc_features(hwmgr, &features_enabled); if (ret) return ret; features_to_disable = features_enabled & ~new_ppfeature_masks; features_to_enable = ~features_enabled & new_ppfeature_masks; pr_debug("features_to_disable 0x%llx\n", features_to_disable); pr_debug("features_to_enable 0x%llx\n", features_to_enable); if (features_to_disable) { ret = vega12_enable_smc_features(hwmgr, false, features_to_disable); if (ret) return ret; } if (features_to_enable) { ret = vega12_enable_smc_features(hwmgr, true, features_to_enable); if (ret) return ret; } return 0; } static int vega12_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; } static int vega12_get_current_pcie_link_width(struct pp_hwmgr *hwmgr) { uint32_t width_level; width_level = vega12_get_current_pcie_link_width_level(hwmgr); if (width_level > LINK_WIDTH_MAX) width_level = 0; return link_width[width_level]; } static int vega12_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr) { struct amdgpu_device *adev = hwmgr->adev; return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; } static int vega12_get_current_pcie_link_speed(struct pp_hwmgr *hwmgr) { uint32_t speed_level; speed_level = vega12_get_current_pcie_link_speed_level(hwmgr); if (speed_level > LINK_SPEED_MAX) speed_level = 0; return link_speed[speed_level]; } static int vega12_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { int i, now, size = 0; struct pp_clock_levels_with_latency clocks; switch (type) { case PP_SCLK: PP_ASSERT_WITH_CODE( vega12_get_current_gfx_clk_freq(hwmgr, &now) == 0, "Attempt to get current gfx clk Failed!", return -1); PP_ASSERT_WITH_CODE( vega12_get_sclks(hwmgr, &clocks) == 0, "Attempt to get gfx clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now / 100) ? "*" : ""); break; case PP_MCLK: PP_ASSERT_WITH_CODE( vega12_get_current_mclk_freq(hwmgr, &now) == 0, "Attempt to get current mclk freq Failed!", return -1); PP_ASSERT_WITH_CODE( vega12_get_memclocks(hwmgr, &clocks) == 0, "Attempt to get memory clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now / 100) ? "*" : ""); break; case PP_SOCCLK: PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_SOCCLK << 16), &now) == 0, "Attempt to get Current SOCCLK Frequency Failed!", return -EINVAL); PP_ASSERT_WITH_CODE( vega12_get_socclocks(hwmgr, &clocks) == 0, "Attempt to get soc clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now) ? "*" : ""); break; case PP_DCEFCLK: PP_ASSERT_WITH_CODE( smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetDpmClockFreq, (PPCLK_DCEFCLK << 16), &now) == 0, "Attempt to get Current DCEFCLK Frequency Failed!", return -EINVAL); PP_ASSERT_WITH_CODE( vega12_get_dcefclocks(hwmgr, &clocks) == 0, "Attempt to get dcef clk levels Failed!", return -1); for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.data[i].clocks_in_khz / 1000 == now) ? "*" : ""); break; case PP_PCIE: break; default: break; } return size; } static int vega12_apply_clocks_adjust_rules(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *dpm_table; bool vblank_too_short = false; bool disable_mclk_switching; uint32_t i, latency; disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && !hwmgr->display_config->multi_monitor_in_sync) || vblank_too_short; latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; /* gfxclk */ dpm_table = &(data->dpm_table.gfx_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_GFXCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_GFXCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_GFXCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* memclk */ dpm_table = &(data->dpm_table.mem_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_MCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_MCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_MCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[0].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* honour DAL's UCLK Hardmin */ if (dpm_table->dpm_state.hard_min_level < (hwmgr->display_config->min_mem_set_clock / 100)) dpm_table->dpm_state.hard_min_level = hwmgr->display_config->min_mem_set_clock / 100; /* Hardmin is dependent on displayconfig */ if (disable_mclk_switching) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; for (i = 0; i < data->mclk_latency_table.count - 1; i++) { if (data->mclk_latency_table.entries[i].latency <= latency) { if (dpm_table->dpm_levels[i].value >= (hwmgr->display_config->min_mem_set_clock / 100)) { dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[i].value; break; } } } } if (hwmgr->display_config->nb_pstate_switch_disable) dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; /* vclk */ dpm_table = &(data->dpm_table.vclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* dclk */ dpm_table = &(data->dpm_table.dclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_UVDCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_UVDCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* socclk */ dpm_table = &(data->dpm_table.soc_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_SOCCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_SOCCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_SOCCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } /* eclk */ dpm_table = &(data->dpm_table.eclk_table); dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[0].value; dpm_table->dpm_state.hard_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; if (PP_CAP(PHM_PlatformCaps_UMDPState)) { if (VEGA12_UMD_PSTATE_VCEMCLK_LEVEL < dpm_table->count) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_VCEMCLK_LEVEL].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[VEGA12_UMD_PSTATE_VCEMCLK_LEVEL].value; } if (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { dpm_table->dpm_state.soft_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; dpm_table->dpm_state.soft_max_level = dpm_table->dpm_levels[dpm_table->count - 1].value; } } return 0; } static int vega12_set_uclk_to_highest_dpm_level(struct pp_hwmgr *hwmgr, struct vega12_single_dpm_table *dpm_table) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (data->smu_features[GNLD_DPM_UCLK].enabled) { PP_ASSERT_WITH_CODE(dpm_table->count > 0, "[SetUclkToHightestDpmLevel] Dpm table has no entry!", return -EINVAL); PP_ASSERT_WITH_CODE(dpm_table->count <= NUM_UCLK_DPM_LEVELS, "[SetUclkToHightestDpmLevel] Dpm table has too many entries!", return -EINVAL); dpm_table->dpm_state.hard_min_level = dpm_table->dpm_levels[dpm_table->count - 1].value; PP_ASSERT_WITH_CODE(!(ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetHardMinByFreq, (PPCLK_UCLK << 16 ) | dpm_table->dpm_state.hard_min_level, NULL)), "[SetUclkToHightestDpmLevel] Set hard min uclk failed!", return ret); } return ret; } static int vega12_pre_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0, NULL); ret = vega12_set_uclk_to_highest_dpm_level(hwmgr, &data->dpm_table.mem_table); return ret; } static int vega12_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int result = 0; Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); if ((data->water_marks_bitmap & WaterMarksExist) && !(data->water_marks_bitmap & WaterMarksLoaded)) { result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, TABLE_WATERMARKS, false); PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL); data->water_marks_bitmap |= WaterMarksLoaded; } if ((data->water_marks_bitmap & WaterMarksExist) && data->smu_features[GNLD_DPM_DCEFCLK].supported && data->smu_features[GNLD_DPM_SOCCLK].supported) smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display, NULL); return result; } static int vega12_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_UVD].supported) { PP_ASSERT_WITH_CODE(!vega12_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), "Attempt to Enable/Disable DPM UVD Failed!", return -1); data->smu_features[GNLD_DPM_UVD].enabled = enable; } return 0; } static void vega12_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->vce_power_gated == bgate) return; data->vce_power_gated = bgate; vega12_enable_disable_vce_dpm(hwmgr, !bgate); } static void vega12_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); if (data->uvd_power_gated == bgate) return; data->uvd_power_gated = bgate; vega12_enable_disable_uvd_dpm(hwmgr, !bgate); } static bool vega12_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); bool is_update_required = false; if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) is_update_required = true; if (data->registry_data.gfx_clk_deep_sleep_support) { if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) is_update_required = true; } return is_update_required; } static int vega12_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; tmp_result = vega12_disable_all_smu_features(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable all smu features!", result = tmp_result); return result; } static int vega12_power_off_asic(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int result; result = vega12_disable_dpm_tasks(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "[disable_dpm_tasks] Failed to disable DPM!", ); data->water_marks_bitmap &= ~(WaterMarksLoaded); return result; } #if 0 static void vega12_find_min_clock_index(struct pp_hwmgr *hwmgr, uint32_t *sclk_idx, uint32_t *mclk_idx, uint32_t min_sclk, uint32_t min_mclk) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_dpm_table *dpm_table = &(data->dpm_table); uint32_t i; for (i = 0; i < dpm_table->gfx_table.count; i++) { if (dpm_table->gfx_table.dpm_levels[i].enabled && dpm_table->gfx_table.dpm_levels[i].value >= min_sclk) { *sclk_idx = i; break; } } for (i = 0; i < dpm_table->mem_table.count; i++) { if (dpm_table->mem_table.dpm_levels[i].enabled && dpm_table->mem_table.dpm_levels[i].value >= min_mclk) { *mclk_idx = i; break; } } } #endif #if 0 static int vega12_set_power_profile_state(struct pp_hwmgr *hwmgr, struct amd_pp_profile *request) { return 0; } static int vega12_get_sclk_od(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega12_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); int value = sclk_table->dpm_levels[sclk_table->count - 1].value; int golden_value = golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value; value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega12_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { return 0; } static int vega12_get_mclk_od(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct vega12_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega12_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); int value = mclk_table->dpm_levels[mclk_table->count - 1].value; int golden_value = golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value; value -= golden_value; value = DIV_ROUND_UP(value * 100, golden_value); return value; } static int vega12_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { return 0; } #endif static int vega12_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, uint32_t virtual_addr_low, uint32_t virtual_addr_hi, uint32_t mc_addr_low, uint32_t mc_addr_hi, uint32_t size) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrHigh, virtual_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSystemVirtualDramAddrLow, virtual_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrHigh, mc_addr_hi, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramAddrLow, mc_addr_low, NULL); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_DramLogSetDramSize, size, NULL); return 0; } static int vega12_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, struct PP_TemperatureRange *thermal_data) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); thermal_data->max = pp_table->TedgeLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_crit_max = pp_table->ThbmLimit * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int vega12_enable_gfx_off(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (data->gfxoff_controlled_by_driver) ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_AllowGfxOff, NULL); return ret; } static int vega12_disable_gfx_off(struct pp_hwmgr *hwmgr) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); int ret = 0; if (data->gfxoff_controlled_by_driver) ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisallowGfxOff, NULL); return ret; } static int vega12_gfx_off_control(struct pp_hwmgr *hwmgr, bool enable) { if (enable) return vega12_enable_gfx_off(hwmgr); else return vega12_disable_gfx_off(hwmgr); } static int vega12_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { return 0; } static int vega12_set_mp1_state(struct pp_hwmgr *hwmgr, enum pp_mp1_state mp1_state) { uint16_t msg; int ret; switch (mp1_state) { case PP_MP1_STATE_UNLOAD: msg = PPSMC_MSG_PrepareMp1ForUnload; break; case PP_MP1_STATE_SHUTDOWN: case PP_MP1_STATE_RESET: case PP_MP1_STATE_NONE: default: return 0; } PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0, "[PrepareMp1] Failed!", return ret); return 0; } static void vega12_init_gpu_metrics_v1_0(struct gpu_metrics_v1_0 *gpu_metrics) { memset(gpu_metrics, 0xFF, sizeof(struct gpu_metrics_v1_0)); gpu_metrics->common_header.structure_size = sizeof(struct gpu_metrics_v1_0); gpu_metrics->common_header.format_revision = 1; gpu_metrics->common_header.content_revision = 0; gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); } static ssize_t vega12_get_gpu_metrics(struct pp_hwmgr *hwmgr, void **table) { struct vega12_hwmgr *data = (struct vega12_hwmgr *)(hwmgr->backend); struct gpu_metrics_v1_0 *gpu_metrics = &data->gpu_metrics_table; SmuMetrics_t metrics; uint32_t fan_speed_rpm; int ret; ret = vega12_get_metrics_table(hwmgr, &metrics, true); if (ret) return ret; vega12_init_gpu_metrics_v1_0(gpu_metrics); gpu_metrics->temperature_edge = metrics.TemperatureEdge; gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot; gpu_metrics->temperature_mem = metrics.TemperatureHBM; gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx; gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_umc_activity = metrics.AverageUclkActivity; gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency; gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK]; gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK]; gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK]; gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK]; gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; vega12_fan_ctrl_get_fan_speed_rpm(hwmgr, &fan_speed_rpm); gpu_metrics->current_fan_speed = (uint16_t)fan_speed_rpm; gpu_metrics->pcie_link_width = vega12_get_current_pcie_link_width(hwmgr); gpu_metrics->pcie_link_speed = vega12_get_current_pcie_link_speed(hwmgr); *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v1_0); } static const struct pp_hwmgr_func vega12_hwmgr_funcs = { .backend_init = vega12_hwmgr_backend_init, .backend_fini = vega12_hwmgr_backend_fini, .asic_setup = vega12_setup_asic_task, .dynamic_state_management_enable = vega12_enable_dpm_tasks, .dynamic_state_management_disable = vega12_disable_dpm_tasks, .patch_boot_state = vega12_patch_boot_state, .get_sclk = vega12_dpm_get_sclk, .get_mclk = vega12_dpm_get_mclk, .notify_smc_display_config_after_ps_adjustment = vega12_notify_smc_display_config_after_ps_adjustment, .force_dpm_level = vega12_dpm_force_dpm_level, .stop_thermal_controller = vega12_thermal_stop_thermal_controller, .get_fan_speed_info = vega12_fan_ctrl_get_fan_speed_info, .reset_fan_speed_to_default = vega12_fan_ctrl_reset_fan_speed_to_default, .get_fan_speed_rpm = vega12_fan_ctrl_get_fan_speed_rpm, .set_fan_control_mode = vega12_set_fan_control_mode, .get_fan_control_mode = vega12_get_fan_control_mode, .read_sensor = vega12_read_sensor, .get_dal_power_level = vega12_get_dal_power_level, .get_clock_by_type_with_latency = vega12_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = vega12_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = vega12_set_watermarks_for_clocks_ranges, .display_clock_voltage_request = vega12_display_clock_voltage_request, .force_clock_level = vega12_force_clock_level, .print_clock_levels = vega12_print_clock_levels, .apply_clocks_adjust_rules = vega12_apply_clocks_adjust_rules, .pre_display_config_changed = vega12_pre_display_configuration_changed_task, .display_config_changed = vega12_display_configuration_changed_task, .powergate_uvd = vega12_power_gate_uvd, .powergate_vce = vega12_power_gate_vce, .check_smc_update_required_for_display_configuration = vega12_check_smc_update_required_for_display_configuration, .power_off_asic = vega12_power_off_asic, .disable_smc_firmware_ctf = vega12_thermal_disable_alert, #if 0 .set_power_profile_state = vega12_set_power_profile_state, .get_sclk_od = vega12_get_sclk_od, .set_sclk_od = vega12_set_sclk_od, .get_mclk_od = vega12_get_mclk_od, .set_mclk_od = vega12_set_mclk_od, #endif .notify_cac_buffer_info = vega12_notify_cac_buffer_info, .get_thermal_temperature_range = vega12_get_thermal_temperature_range, .register_irq_handlers = smu9_register_irq_handlers, .start_thermal_controller = vega12_start_thermal_controller, .powergate_gfx = vega12_gfx_off_control, .get_performance_level = vega12_get_performance_level, .get_asic_baco_capability = smu9_baco_get_capability, .get_asic_baco_state = smu9_baco_get_state, .set_asic_baco_state = vega12_baco_set_state, .get_ppfeature_status = vega12_get_ppfeature_status, .set_ppfeature_status = vega12_set_ppfeature_status, .set_mp1_state = vega12_set_mp1_state, .get_gpu_metrics = vega12_get_gpu_metrics, }; int vega12_hwmgr_init(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &vega12_hwmgr_funcs; hwmgr->pptable_func = &vega12_pptable_funcs; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1