Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guido Günther | 5548 | 96.62% | 2 | 13.33% |
Liu Ying | 141 | 2.46% | 5 | 33.33% |
Yongzhi Liu | 30 | 0.52% | 1 | 6.67% |
Jagan Teki | 6 | 0.10% | 1 | 6.67% |
Laurent Pinchart | 6 | 0.10% | 1 | 6.67% |
Miaoqian Lin | 5 | 0.09% | 1 | 6.67% |
Boris Brezillon | 3 | 0.05% | 1 | 6.67% |
Geert Uytterhoeven | 2 | 0.03% | 2 | 13.33% |
Ville Syrjälä | 1 | 0.02% | 1 | 6.67% |
Total | 5742 | 15 |
// SPDX-License-Identifier: GPL-2.0+ /* * i.MX8 NWL MIPI DSI host driver * * Copyright (C) 2017 NXP * Copyright (C) 2020 Purism SPC */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/irq.h> #include <linux/math64.h> #include <linux/mfd/syscon.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/mux/consumer.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/sys_soc.h> #include <linux/time64.h> #include <drm/drm_atomic_state_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_print.h> #include <video/mipi_display.h> #include "nwl-dsi.h" #define DRV_NAME "nwl-dsi" /* i.MX8 NWL quirks */ /* i.MX8MQ errata E11418 */ #define E11418_HS_MODE_QUIRK BIT(0) #define NWL_DSI_MIPI_FIFO_TIMEOUT msecs_to_jiffies(500) enum transfer_direction { DSI_PACKET_SEND, DSI_PACKET_RECEIVE, }; #define NWL_DSI_ENDPOINT_LCDIF 0 #define NWL_DSI_ENDPOINT_DCSS 1 struct nwl_dsi_transfer { const struct mipi_dsi_msg *msg; struct mipi_dsi_packet packet; struct completion completed; int status; /* status of transmission */ enum transfer_direction direction; bool need_bta; u8 cmd; u16 rx_word_count; size_t tx_len; /* in bytes */ size_t rx_len; /* in bytes */ }; struct nwl_dsi { struct drm_bridge bridge; struct mipi_dsi_host dsi_host; struct device *dev; struct phy *phy; union phy_configure_opts phy_cfg; unsigned int quirks; struct regmap *regmap; int irq; /* * The DSI host controller needs this reset sequence according to NWL: * 1. Deassert pclk reset to get access to DSI regs * 2. Configure DSI Host and DPHY and enable DPHY * 3. Deassert ESC and BYTE resets to allow host TX operations) * 4. Send DSI cmds to configure peripheral (handled by panel drv) * 5. Deassert DPI reset so DPI receives pixels and starts sending * DSI data * * TODO: Since panel_bridges do their DSI setup in enable we * currently have 4. and 5. swapped. */ struct reset_control *rst_byte; struct reset_control *rst_esc; struct reset_control *rst_dpi; struct reset_control *rst_pclk; struct mux_control *mux; /* DSI clocks */ struct clk *phy_ref_clk; struct clk *rx_esc_clk; struct clk *tx_esc_clk; struct clk *core_clk; /* * hardware bug: the i.MX8MQ needs this clock on during reset * even when not using LCDIF. */ struct clk *lcdif_clk; /* dsi lanes */ u32 lanes; enum mipi_dsi_pixel_format format; struct drm_display_mode mode; unsigned long dsi_mode_flags; int error; struct nwl_dsi_transfer *xfer; }; static const struct regmap_config nwl_dsi_regmap_config = { .reg_bits = 16, .val_bits = 32, .reg_stride = 4, .max_register = NWL_DSI_IRQ_MASK2, .name = DRV_NAME, }; static inline struct nwl_dsi *bridge_to_dsi(struct drm_bridge *bridge) { return container_of(bridge, struct nwl_dsi, bridge); } static int nwl_dsi_clear_error(struct nwl_dsi *dsi) { int ret = dsi->error; dsi->error = 0; return ret; } static void nwl_dsi_write(struct nwl_dsi *dsi, unsigned int reg, u32 val) { int ret; if (dsi->error) return; ret = regmap_write(dsi->regmap, reg, val); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to write NWL DSI reg 0x%x: %d\n", reg, ret); dsi->error = ret; } } static u32 nwl_dsi_read(struct nwl_dsi *dsi, u32 reg) { unsigned int val; int ret; if (dsi->error) return 0; ret = regmap_read(dsi->regmap, reg, &val); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to read NWL DSI reg 0x%x: %d\n", reg, ret); dsi->error = ret; } return val; } static int nwl_dsi_get_dpi_pixel_format(enum mipi_dsi_pixel_format format) { switch (format) { case MIPI_DSI_FMT_RGB565: return NWL_DSI_PIXEL_FORMAT_16; case MIPI_DSI_FMT_RGB666: return NWL_DSI_PIXEL_FORMAT_18L; case MIPI_DSI_FMT_RGB666_PACKED: return NWL_DSI_PIXEL_FORMAT_18; case MIPI_DSI_FMT_RGB888: return NWL_DSI_PIXEL_FORMAT_24; default: return -EINVAL; } } /* * ps2bc - Picoseconds to byte clock cycles */ static u32 ps2bc(struct nwl_dsi *dsi, unsigned long long ps) { u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); return DIV64_U64_ROUND_UP(ps * dsi->mode.clock * bpp, dsi->lanes * 8ULL * NSEC_PER_SEC); } /* * ui2bc - UI time periods to byte clock cycles */ static u32 ui2bc(unsigned int ui) { return DIV_ROUND_UP(ui, BITS_PER_BYTE); } /* * us2bc - micro seconds to lp clock cycles */ static u32 us2lp(u32 lp_clk_rate, unsigned long us) { return DIV_ROUND_UP(us * lp_clk_rate, USEC_PER_SEC); } static int nwl_dsi_config_host(struct nwl_dsi *dsi) { u32 cycles; struct phy_configure_opts_mipi_dphy *cfg = &dsi->phy_cfg.mipi_dphy; if (dsi->lanes < 1 || dsi->lanes > 4) return -EINVAL; DRM_DEV_DEBUG_DRIVER(dsi->dev, "DSI Lanes %d\n", dsi->lanes); nwl_dsi_write(dsi, NWL_DSI_CFG_NUM_LANES, dsi->lanes - 1); if (dsi->dsi_mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) { nwl_dsi_write(dsi, NWL_DSI_CFG_NONCONTINUOUS_CLK, 0x01); nwl_dsi_write(dsi, NWL_DSI_CFG_AUTOINSERT_EOTP, 0x01); } else { nwl_dsi_write(dsi, NWL_DSI_CFG_NONCONTINUOUS_CLK, 0x00); nwl_dsi_write(dsi, NWL_DSI_CFG_AUTOINSERT_EOTP, 0x00); } /* values in byte clock cycles */ cycles = ui2bc(cfg->clk_pre); DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_t_pre: 0x%x\n", cycles); nwl_dsi_write(dsi, NWL_DSI_CFG_T_PRE, cycles); cycles = ps2bc(dsi, cfg->lpx + cfg->clk_prepare + cfg->clk_zero); DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_tx_gap (pre): 0x%x\n", cycles); cycles += ui2bc(cfg->clk_pre); DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_t_post: 0x%x\n", cycles); nwl_dsi_write(dsi, NWL_DSI_CFG_T_POST, cycles); cycles = ps2bc(dsi, cfg->hs_exit); DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_tx_gap: 0x%x\n", cycles); nwl_dsi_write(dsi, NWL_DSI_CFG_TX_GAP, cycles); nwl_dsi_write(dsi, NWL_DSI_CFG_EXTRA_CMDS_AFTER_EOTP, 0x01); nwl_dsi_write(dsi, NWL_DSI_CFG_HTX_TO_COUNT, 0x00); nwl_dsi_write(dsi, NWL_DSI_CFG_LRX_H_TO_COUNT, 0x00); nwl_dsi_write(dsi, NWL_DSI_CFG_BTA_H_TO_COUNT, 0x00); /* In LP clock cycles */ cycles = us2lp(cfg->lp_clk_rate, cfg->wakeup); DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_twakeup: 0x%x\n", cycles); nwl_dsi_write(dsi, NWL_DSI_CFG_TWAKEUP, cycles); return nwl_dsi_clear_error(dsi); } static int nwl_dsi_config_dpi(struct nwl_dsi *dsi) { u32 mode; int color_format; bool burst_mode; int hfront_porch, hback_porch, vfront_porch, vback_porch; int hsync_len, vsync_len; hfront_porch = dsi->mode.hsync_start - dsi->mode.hdisplay; hsync_len = dsi->mode.hsync_end - dsi->mode.hsync_start; hback_porch = dsi->mode.htotal - dsi->mode.hsync_end; vfront_porch = dsi->mode.vsync_start - dsi->mode.vdisplay; vsync_len = dsi->mode.vsync_end - dsi->mode.vsync_start; vback_porch = dsi->mode.vtotal - dsi->mode.vsync_end; DRM_DEV_DEBUG_DRIVER(dsi->dev, "hfront_porch = %d\n", hfront_porch); DRM_DEV_DEBUG_DRIVER(dsi->dev, "hback_porch = %d\n", hback_porch); DRM_DEV_DEBUG_DRIVER(dsi->dev, "hsync_len = %d\n", hsync_len); DRM_DEV_DEBUG_DRIVER(dsi->dev, "hdisplay = %d\n", dsi->mode.hdisplay); DRM_DEV_DEBUG_DRIVER(dsi->dev, "vfront_porch = %d\n", vfront_porch); DRM_DEV_DEBUG_DRIVER(dsi->dev, "vback_porch = %d\n", vback_porch); DRM_DEV_DEBUG_DRIVER(dsi->dev, "vsync_len = %d\n", vsync_len); DRM_DEV_DEBUG_DRIVER(dsi->dev, "vactive = %d\n", dsi->mode.vdisplay); DRM_DEV_DEBUG_DRIVER(dsi->dev, "clock = %d kHz\n", dsi->mode.clock); color_format = nwl_dsi_get_dpi_pixel_format(dsi->format); if (color_format < 0) { DRM_DEV_ERROR(dsi->dev, "Invalid color format 0x%x\n", dsi->format); return color_format; } DRM_DEV_DEBUG_DRIVER(dsi->dev, "pixel fmt = %d\n", dsi->format); nwl_dsi_write(dsi, NWL_DSI_INTERFACE_COLOR_CODING, NWL_DSI_DPI_24_BIT); nwl_dsi_write(dsi, NWL_DSI_PIXEL_FORMAT, color_format); /* * Adjusting input polarity based on the video mode results in * a black screen so always pick active low: */ nwl_dsi_write(dsi, NWL_DSI_VSYNC_POLARITY, NWL_DSI_VSYNC_POLARITY_ACTIVE_LOW); nwl_dsi_write(dsi, NWL_DSI_HSYNC_POLARITY, NWL_DSI_HSYNC_POLARITY_ACTIVE_LOW); burst_mode = (dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_BURST) && !(dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE); if (burst_mode) { nwl_dsi_write(dsi, NWL_DSI_VIDEO_MODE, NWL_DSI_VM_BURST_MODE); nwl_dsi_write(dsi, NWL_DSI_PIXEL_FIFO_SEND_LEVEL, 256); } else { mode = ((dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) ? NWL_DSI_VM_BURST_MODE_WITH_SYNC_PULSES : NWL_DSI_VM_NON_BURST_MODE_WITH_SYNC_EVENTS); nwl_dsi_write(dsi, NWL_DSI_VIDEO_MODE, mode); nwl_dsi_write(dsi, NWL_DSI_PIXEL_FIFO_SEND_LEVEL, dsi->mode.hdisplay); } nwl_dsi_write(dsi, NWL_DSI_HFP, hfront_porch); nwl_dsi_write(dsi, NWL_DSI_HBP, hback_porch); nwl_dsi_write(dsi, NWL_DSI_HSA, hsync_len); nwl_dsi_write(dsi, NWL_DSI_ENABLE_MULT_PKTS, 0x0); nwl_dsi_write(dsi, NWL_DSI_BLLP_MODE, 0x1); nwl_dsi_write(dsi, NWL_DSI_USE_NULL_PKT_BLLP, 0x0); nwl_dsi_write(dsi, NWL_DSI_VC, 0x0); nwl_dsi_write(dsi, NWL_DSI_PIXEL_PAYLOAD_SIZE, dsi->mode.hdisplay); nwl_dsi_write(dsi, NWL_DSI_VACTIVE, dsi->mode.vdisplay - 1); nwl_dsi_write(dsi, NWL_DSI_VBP, vback_porch); nwl_dsi_write(dsi, NWL_DSI_VFP, vfront_porch); return nwl_dsi_clear_error(dsi); } static int nwl_dsi_init_interrupts(struct nwl_dsi *dsi) { u32 irq_enable = ~(u32)(NWL_DSI_TX_PKT_DONE_MASK | NWL_DSI_RX_PKT_HDR_RCVD_MASK | NWL_DSI_TX_FIFO_OVFLW_MASK | NWL_DSI_HS_TX_TIMEOUT_MASK); nwl_dsi_write(dsi, NWL_DSI_IRQ_MASK, irq_enable); nwl_dsi_write(dsi, NWL_DSI_IRQ_MASK2, 0x7); return nwl_dsi_clear_error(dsi); } static int nwl_dsi_host_attach(struct mipi_dsi_host *dsi_host, struct mipi_dsi_device *device) { struct nwl_dsi *dsi = container_of(dsi_host, struct nwl_dsi, dsi_host); struct device *dev = dsi->dev; DRM_DEV_INFO(dev, "lanes=%u, format=0x%x flags=0x%lx\n", device->lanes, device->format, device->mode_flags); if (device->lanes < 1 || device->lanes > 4) return -EINVAL; dsi->lanes = device->lanes; dsi->format = device->format; dsi->dsi_mode_flags = device->mode_flags; return 0; } static bool nwl_dsi_read_packet(struct nwl_dsi *dsi, u32 status) { struct device *dev = dsi->dev; struct nwl_dsi_transfer *xfer = dsi->xfer; int err; u8 *payload = xfer->msg->rx_buf; u32 val; u16 word_count; u8 channel; u8 data_type; xfer->status = 0; if (xfer->rx_word_count == 0) { if (!(status & NWL_DSI_RX_PKT_HDR_RCVD)) return false; /* Get the RX header and parse it */ val = nwl_dsi_read(dsi, NWL_DSI_RX_PKT_HEADER); err = nwl_dsi_clear_error(dsi); if (err) xfer->status = err; word_count = NWL_DSI_WC(val); channel = NWL_DSI_RX_VC(val); data_type = NWL_DSI_RX_DT(val); if (channel != xfer->msg->channel) { DRM_DEV_ERROR(dev, "[%02X] Channel mismatch (%u != %u)\n", xfer->cmd, channel, xfer->msg->channel); xfer->status = -EINVAL; return true; } switch (data_type) { case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: if (xfer->msg->rx_len > 1) { /* read second byte */ payload[1] = word_count >> 8; ++xfer->rx_len; } fallthrough; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: if (xfer->msg->rx_len > 0) { /* read first byte */ payload[0] = word_count & 0xff; ++xfer->rx_len; } xfer->status = xfer->rx_len; return true; case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: word_count &= 0xff; DRM_DEV_ERROR(dev, "[%02X] DSI error report: 0x%02x\n", xfer->cmd, word_count); xfer->status = -EPROTO; return true; } if (word_count > xfer->msg->rx_len) { DRM_DEV_ERROR(dev, "[%02X] Receive buffer too small: %zu (< %u)\n", xfer->cmd, xfer->msg->rx_len, word_count); xfer->status = -EINVAL; return true; } xfer->rx_word_count = word_count; } else { /* Set word_count from previous header read */ word_count = xfer->rx_word_count; } /* If RX payload is not yet received, wait for it */ if (!(status & NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD)) return false; /* Read the RX payload */ while (word_count >= 4) { val = nwl_dsi_read(dsi, NWL_DSI_RX_PAYLOAD); payload[0] = (val >> 0) & 0xff; payload[1] = (val >> 8) & 0xff; payload[2] = (val >> 16) & 0xff; payload[3] = (val >> 24) & 0xff; payload += 4; xfer->rx_len += 4; word_count -= 4; } if (word_count > 0) { val = nwl_dsi_read(dsi, NWL_DSI_RX_PAYLOAD); switch (word_count) { case 3: payload[2] = (val >> 16) & 0xff; ++xfer->rx_len; fallthrough; case 2: payload[1] = (val >> 8) & 0xff; ++xfer->rx_len; fallthrough; case 1: payload[0] = (val >> 0) & 0xff; ++xfer->rx_len; break; } } xfer->status = xfer->rx_len; err = nwl_dsi_clear_error(dsi); if (err) xfer->status = err; return true; } static void nwl_dsi_finish_transmission(struct nwl_dsi *dsi, u32 status) { struct nwl_dsi_transfer *xfer = dsi->xfer; bool end_packet = false; if (!xfer) return; if (xfer->direction == DSI_PACKET_SEND && status & NWL_DSI_TX_PKT_DONE) { xfer->status = xfer->tx_len; end_packet = true; } else if (status & NWL_DSI_DPHY_DIRECTION && ((status & (NWL_DSI_RX_PKT_HDR_RCVD | NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD)))) { end_packet = nwl_dsi_read_packet(dsi, status); } if (end_packet) complete(&xfer->completed); } static void nwl_dsi_begin_transmission(struct nwl_dsi *dsi) { struct nwl_dsi_transfer *xfer = dsi->xfer; struct mipi_dsi_packet *pkt = &xfer->packet; const u8 *payload; size_t length; u16 word_count; u8 hs_mode; u32 val; u32 hs_workaround = 0; /* Send the payload, if any */ length = pkt->payload_length; payload = pkt->payload; while (length >= 4) { val = *(u32 *)payload; hs_workaround |= !(val & 0xFFFF00); nwl_dsi_write(dsi, NWL_DSI_TX_PAYLOAD, val); payload += 4; length -= 4; } /* Send the rest of the payload */ val = 0; switch (length) { case 3: val |= payload[2] << 16; fallthrough; case 2: val |= payload[1] << 8; hs_workaround |= !(val & 0xFFFF00); fallthrough; case 1: val |= payload[0]; nwl_dsi_write(dsi, NWL_DSI_TX_PAYLOAD, val); break; } xfer->tx_len = pkt->payload_length; /* * Send the header * header[0] = Virtual Channel + Data Type * header[1] = Word Count LSB (LP) or first param (SP) * header[2] = Word Count MSB (LP) or second param (SP) */ word_count = pkt->header[1] | (pkt->header[2] << 8); if (hs_workaround && (dsi->quirks & E11418_HS_MODE_QUIRK)) { DRM_DEV_DEBUG_DRIVER(dsi->dev, "Using hs mode workaround for cmd 0x%x\n", xfer->cmd); hs_mode = 1; } else { hs_mode = (xfer->msg->flags & MIPI_DSI_MSG_USE_LPM) ? 0 : 1; } val = NWL_DSI_WC(word_count) | NWL_DSI_TX_VC(xfer->msg->channel) | NWL_DSI_TX_DT(xfer->msg->type) | NWL_DSI_HS_SEL(hs_mode) | NWL_DSI_BTA_TX(xfer->need_bta); nwl_dsi_write(dsi, NWL_DSI_PKT_CONTROL, val); /* Send packet command */ nwl_dsi_write(dsi, NWL_DSI_SEND_PACKET, 0x1); } static ssize_t nwl_dsi_host_transfer(struct mipi_dsi_host *dsi_host, const struct mipi_dsi_msg *msg) { struct nwl_dsi *dsi = container_of(dsi_host, struct nwl_dsi, dsi_host); struct nwl_dsi_transfer xfer; ssize_t ret = 0; /* Create packet to be sent */ dsi->xfer = &xfer; ret = mipi_dsi_create_packet(&xfer.packet, msg); if (ret < 0) { dsi->xfer = NULL; return ret; } if ((msg->type & MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM || msg->type & MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM || msg->type & MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM || msg->type & MIPI_DSI_DCS_READ) && msg->rx_len > 0 && msg->rx_buf) xfer.direction = DSI_PACKET_RECEIVE; else xfer.direction = DSI_PACKET_SEND; xfer.need_bta = (xfer.direction == DSI_PACKET_RECEIVE); xfer.need_bta |= (msg->flags & MIPI_DSI_MSG_REQ_ACK) ? 1 : 0; xfer.msg = msg; xfer.status = -ETIMEDOUT; xfer.rx_word_count = 0; xfer.rx_len = 0; xfer.cmd = 0x00; if (msg->tx_len > 0) xfer.cmd = ((u8 *)(msg->tx_buf))[0]; init_completion(&xfer.completed); ret = clk_prepare_enable(dsi->rx_esc_clk); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to enable rx_esc clk: %zd\n", ret); return ret; } DRM_DEV_DEBUG_DRIVER(dsi->dev, "Enabled rx_esc clk @%lu Hz\n", clk_get_rate(dsi->rx_esc_clk)); /* Initiate the DSI packet transmision */ nwl_dsi_begin_transmission(dsi); if (!wait_for_completion_timeout(&xfer.completed, NWL_DSI_MIPI_FIFO_TIMEOUT)) { DRM_DEV_ERROR(dsi_host->dev, "[%02X] DSI transfer timed out\n", xfer.cmd); ret = -ETIMEDOUT; } else { ret = xfer.status; } clk_disable_unprepare(dsi->rx_esc_clk); return ret; } static const struct mipi_dsi_host_ops nwl_dsi_host_ops = { .attach = nwl_dsi_host_attach, .transfer = nwl_dsi_host_transfer, }; static irqreturn_t nwl_dsi_irq_handler(int irq, void *data) { u32 irq_status; struct nwl_dsi *dsi = data; irq_status = nwl_dsi_read(dsi, NWL_DSI_IRQ_STATUS); if (irq_status & NWL_DSI_TX_FIFO_OVFLW) DRM_DEV_ERROR_RATELIMITED(dsi->dev, "tx fifo overflow\n"); if (irq_status & NWL_DSI_HS_TX_TIMEOUT) DRM_DEV_ERROR_RATELIMITED(dsi->dev, "HS tx timeout\n"); if (irq_status & NWL_DSI_TX_PKT_DONE || irq_status & NWL_DSI_RX_PKT_HDR_RCVD || irq_status & NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD) nwl_dsi_finish_transmission(dsi, irq_status); return IRQ_HANDLED; } static int nwl_dsi_mode_set(struct nwl_dsi *dsi) { struct device *dev = dsi->dev; union phy_configure_opts *phy_cfg = &dsi->phy_cfg; int ret; if (!dsi->lanes) { DRM_DEV_ERROR(dev, "Need DSI lanes: %d\n", dsi->lanes); return -EINVAL; } ret = phy_init(dsi->phy); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to init DSI phy: %d\n", ret); return ret; } ret = phy_set_mode(dsi->phy, PHY_MODE_MIPI_DPHY); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to set DSI phy mode: %d\n", ret); goto uninit_phy; } ret = phy_configure(dsi->phy, phy_cfg); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to configure DSI phy: %d\n", ret); goto uninit_phy; } ret = clk_prepare_enable(dsi->tx_esc_clk); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to enable tx_esc clk: %d\n", ret); goto uninit_phy; } DRM_DEV_DEBUG_DRIVER(dsi->dev, "Enabled tx_esc clk @%lu Hz\n", clk_get_rate(dsi->tx_esc_clk)); ret = nwl_dsi_config_host(dsi); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to set up DSI: %d", ret); goto disable_clock; } ret = nwl_dsi_config_dpi(dsi); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to set up DPI: %d", ret); goto disable_clock; } ret = phy_power_on(dsi->phy); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to power on DPHY (%d)\n", ret); goto disable_clock; } ret = nwl_dsi_init_interrupts(dsi); if (ret < 0) goto power_off_phy; return ret; power_off_phy: phy_power_off(dsi->phy); disable_clock: clk_disable_unprepare(dsi->tx_esc_clk); uninit_phy: phy_exit(dsi->phy); return ret; } static int nwl_dsi_disable(struct nwl_dsi *dsi) { struct device *dev = dsi->dev; DRM_DEV_DEBUG_DRIVER(dev, "Disabling clocks and phy\n"); phy_power_off(dsi->phy); phy_exit(dsi->phy); /* Disabling the clock before the phy breaks enabling dsi again */ clk_disable_unprepare(dsi->tx_esc_clk); return 0; } static void nwl_dsi_bridge_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct nwl_dsi *dsi = bridge_to_dsi(bridge); int ret; nwl_dsi_disable(dsi); ret = reset_control_assert(dsi->rst_dpi); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to assert DPI: %d\n", ret); return; } ret = reset_control_assert(dsi->rst_byte); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to assert ESC: %d\n", ret); return; } ret = reset_control_assert(dsi->rst_esc); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to assert BYTE: %d\n", ret); return; } ret = reset_control_assert(dsi->rst_pclk); if (ret < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to assert PCLK: %d\n", ret); return; } clk_disable_unprepare(dsi->core_clk); clk_disable_unprepare(dsi->lcdif_clk); pm_runtime_put(dsi->dev); } static int nwl_dsi_get_dphy_params(struct nwl_dsi *dsi, const struct drm_display_mode *mode, union phy_configure_opts *phy_opts) { unsigned long rate; int ret; if (dsi->lanes < 1 || dsi->lanes > 4) return -EINVAL; /* * So far the DPHY spec minimal timings work for both mixel * dphy and nwl dsi host */ ret = phy_mipi_dphy_get_default_config(mode->clock * 1000, mipi_dsi_pixel_format_to_bpp(dsi->format), dsi->lanes, &phy_opts->mipi_dphy); if (ret < 0) return ret; rate = clk_get_rate(dsi->tx_esc_clk); DRM_DEV_DEBUG_DRIVER(dsi->dev, "LP clk is @%lu Hz\n", rate); phy_opts->mipi_dphy.lp_clk_rate = rate; return 0; } static enum drm_mode_status nwl_dsi_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct nwl_dsi *dsi = bridge_to_dsi(bridge); int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); if (mode->clock * bpp > 15000000 * dsi->lanes) return MODE_CLOCK_HIGH; if (mode->clock * bpp < 80000 * dsi->lanes) return MODE_CLOCK_LOW; return MODE_OK; } static int nwl_dsi_bridge_atomic_check(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; /* At least LCDIF + NWL needs active high sync */ adjusted_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC); adjusted_mode->flags &= ~(DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC); /* * Do a full modeset if crtc_state->active is changed to be true. * This ensures our ->mode_set() is called to get the DSI controller * and the PHY ready to send DCS commands, when only the connector's * DPMS is brought out of "Off" status. */ if (crtc_state->active_changed && crtc_state->active) crtc_state->mode_changed = true; return 0; } static void nwl_dsi_bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct nwl_dsi *dsi = bridge_to_dsi(bridge); struct device *dev = dsi->dev; union phy_configure_opts new_cfg; unsigned long phy_ref_rate; int ret; ret = nwl_dsi_get_dphy_params(dsi, adjusted_mode, &new_cfg); if (ret < 0) return; phy_ref_rate = clk_get_rate(dsi->phy_ref_clk); DRM_DEV_DEBUG_DRIVER(dev, "PHY at ref rate: %lu\n", phy_ref_rate); /* Save the new desired phy config */ memcpy(&dsi->phy_cfg, &new_cfg, sizeof(new_cfg)); drm_mode_copy(&dsi->mode, adjusted_mode); drm_mode_debug_printmodeline(adjusted_mode); if (pm_runtime_resume_and_get(dev) < 0) return; if (clk_prepare_enable(dsi->lcdif_clk) < 0) goto runtime_put; if (clk_prepare_enable(dsi->core_clk) < 0) goto runtime_put; /* Step 1 from DSI reset-out instructions */ ret = reset_control_deassert(dsi->rst_pclk); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to deassert PCLK: %d\n", ret); goto runtime_put; } /* Step 2 from DSI reset-out instructions */ nwl_dsi_mode_set(dsi); /* Step 3 from DSI reset-out instructions */ ret = reset_control_deassert(dsi->rst_esc); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to deassert ESC: %d\n", ret); goto runtime_put; } ret = reset_control_deassert(dsi->rst_byte); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to deassert BYTE: %d\n", ret); goto runtime_put; } return; runtime_put: pm_runtime_put_sync(dev); } static void nwl_dsi_bridge_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct nwl_dsi *dsi = bridge_to_dsi(bridge); int ret; /* Step 5 from DSI reset-out instructions */ ret = reset_control_deassert(dsi->rst_dpi); if (ret < 0) DRM_DEV_ERROR(dsi->dev, "Failed to deassert DPI: %d\n", ret); } static int nwl_dsi_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct nwl_dsi *dsi = bridge_to_dsi(bridge); struct drm_bridge *panel_bridge; panel_bridge = devm_drm_of_get_bridge(dsi->dev, dsi->dev->of_node, 1, 0); if (IS_ERR(panel_bridge)) return PTR_ERR(panel_bridge); return drm_bridge_attach(bridge->encoder, panel_bridge, bridge, flags); } static u32 *nwl_bridge_atomic_get_input_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { u32 *input_fmts, input_fmt; *num_input_fmts = 0; switch (output_fmt) { /* If MEDIA_BUS_FMT_FIXED is tested, return default bus format */ case MEDIA_BUS_FMT_FIXED: input_fmt = MEDIA_BUS_FMT_RGB888_1X24; break; case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_RGB666_1X18: case MEDIA_BUS_FMT_RGB565_1X16: input_fmt = output_fmt; break; default: return NULL; } input_fmts = kcalloc(1, sizeof(*input_fmts), GFP_KERNEL); if (!input_fmts) return NULL; input_fmts[0] = input_fmt; *num_input_fmts = 1; return input_fmts; } static const struct drm_bridge_funcs nwl_dsi_bridge_funcs = { .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_check = nwl_dsi_bridge_atomic_check, .atomic_enable = nwl_dsi_bridge_atomic_enable, .atomic_disable = nwl_dsi_bridge_atomic_disable, .atomic_get_input_bus_fmts = nwl_bridge_atomic_get_input_bus_fmts, .mode_set = nwl_dsi_bridge_mode_set, .mode_valid = nwl_dsi_bridge_mode_valid, .attach = nwl_dsi_bridge_attach, }; static int nwl_dsi_parse_dt(struct nwl_dsi *dsi) { struct platform_device *pdev = to_platform_device(dsi->dev); struct clk *clk; void __iomem *base; int ret; dsi->phy = devm_phy_get(dsi->dev, "dphy"); if (IS_ERR(dsi->phy)) { ret = PTR_ERR(dsi->phy); if (ret != -EPROBE_DEFER) DRM_DEV_ERROR(dsi->dev, "Could not get PHY: %d\n", ret); return ret; } clk = devm_clk_get(dsi->dev, "lcdif"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); DRM_DEV_ERROR(dsi->dev, "Failed to get lcdif clock: %d\n", ret); return ret; } dsi->lcdif_clk = clk; clk = devm_clk_get(dsi->dev, "core"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); DRM_DEV_ERROR(dsi->dev, "Failed to get core clock: %d\n", ret); return ret; } dsi->core_clk = clk; clk = devm_clk_get(dsi->dev, "phy_ref"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); DRM_DEV_ERROR(dsi->dev, "Failed to get phy_ref clock: %d\n", ret); return ret; } dsi->phy_ref_clk = clk; clk = devm_clk_get(dsi->dev, "rx_esc"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); DRM_DEV_ERROR(dsi->dev, "Failed to get rx_esc clock: %d\n", ret); return ret; } dsi->rx_esc_clk = clk; clk = devm_clk_get(dsi->dev, "tx_esc"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); DRM_DEV_ERROR(dsi->dev, "Failed to get tx_esc clock: %d\n", ret); return ret; } dsi->tx_esc_clk = clk; dsi->mux = devm_mux_control_get(dsi->dev, NULL); if (IS_ERR(dsi->mux)) { ret = PTR_ERR(dsi->mux); if (ret != -EPROBE_DEFER) DRM_DEV_ERROR(dsi->dev, "Failed to get mux: %d\n", ret); return ret; } base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); dsi->regmap = devm_regmap_init_mmio(dsi->dev, base, &nwl_dsi_regmap_config); if (IS_ERR(dsi->regmap)) { ret = PTR_ERR(dsi->regmap); DRM_DEV_ERROR(dsi->dev, "Failed to create NWL DSI regmap: %d\n", ret); return ret; } dsi->irq = platform_get_irq(pdev, 0); if (dsi->irq < 0) { DRM_DEV_ERROR(dsi->dev, "Failed to get device IRQ: %d\n", dsi->irq); return dsi->irq; } dsi->rst_pclk = devm_reset_control_get_exclusive(dsi->dev, "pclk"); if (IS_ERR(dsi->rst_pclk)) { DRM_DEV_ERROR(dsi->dev, "Failed to get pclk reset: %ld\n", PTR_ERR(dsi->rst_pclk)); return PTR_ERR(dsi->rst_pclk); } dsi->rst_byte = devm_reset_control_get_exclusive(dsi->dev, "byte"); if (IS_ERR(dsi->rst_byte)) { DRM_DEV_ERROR(dsi->dev, "Failed to get byte reset: %ld\n", PTR_ERR(dsi->rst_byte)); return PTR_ERR(dsi->rst_byte); } dsi->rst_esc = devm_reset_control_get_exclusive(dsi->dev, "esc"); if (IS_ERR(dsi->rst_esc)) { DRM_DEV_ERROR(dsi->dev, "Failed to get esc reset: %ld\n", PTR_ERR(dsi->rst_esc)); return PTR_ERR(dsi->rst_esc); } dsi->rst_dpi = devm_reset_control_get_exclusive(dsi->dev, "dpi"); if (IS_ERR(dsi->rst_dpi)) { DRM_DEV_ERROR(dsi->dev, "Failed to get dpi reset: %ld\n", PTR_ERR(dsi->rst_dpi)); return PTR_ERR(dsi->rst_dpi); } return 0; } static int nwl_dsi_select_input(struct nwl_dsi *dsi) { struct device_node *remote; u32 use_dcss = 1; int ret; remote = of_graph_get_remote_node(dsi->dev->of_node, 0, NWL_DSI_ENDPOINT_LCDIF); if (remote) { use_dcss = 0; } else { remote = of_graph_get_remote_node(dsi->dev->of_node, 0, NWL_DSI_ENDPOINT_DCSS); if (!remote) { DRM_DEV_ERROR(dsi->dev, "No valid input endpoint found\n"); return -EINVAL; } } DRM_DEV_INFO(dsi->dev, "Using %s as input source\n", (use_dcss) ? "DCSS" : "LCDIF"); ret = mux_control_try_select(dsi->mux, use_dcss); if (ret < 0) DRM_DEV_ERROR(dsi->dev, "Failed to select input: %d\n", ret); of_node_put(remote); return ret; } static int nwl_dsi_deselect_input(struct nwl_dsi *dsi) { int ret; ret = mux_control_deselect(dsi->mux); if (ret < 0) DRM_DEV_ERROR(dsi->dev, "Failed to deselect input: %d\n", ret); return ret; } static const struct drm_bridge_timings nwl_dsi_timings = { .input_bus_flags = DRM_BUS_FLAG_DE_LOW, }; static const struct of_device_id nwl_dsi_dt_ids[] = { { .compatible = "fsl,imx8mq-nwl-dsi", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, nwl_dsi_dt_ids); static const struct soc_device_attribute nwl_dsi_quirks_match[] = { { .soc_id = "i.MX8MQ", .revision = "2.0", .data = (void *)E11418_HS_MODE_QUIRK }, { /* sentinel. */ } }; static int nwl_dsi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct soc_device_attribute *attr; struct nwl_dsi *dsi; int ret; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->dev = dev; ret = nwl_dsi_parse_dt(dsi); if (ret) return ret; ret = devm_request_irq(dev, dsi->irq, nwl_dsi_irq_handler, 0, dev_name(dev), dsi); if (ret < 0) { DRM_DEV_ERROR(dev, "Failed to request IRQ %d: %d\n", dsi->irq, ret); return ret; } dsi->dsi_host.ops = &nwl_dsi_host_ops; dsi->dsi_host.dev = dev; ret = mipi_dsi_host_register(&dsi->dsi_host); if (ret) { DRM_DEV_ERROR(dev, "Failed to register MIPI host: %d\n", ret); return ret; } attr = soc_device_match(nwl_dsi_quirks_match); if (attr) dsi->quirks = (uintptr_t)attr->data; dsi->bridge.driver_private = dsi; dsi->bridge.funcs = &nwl_dsi_bridge_funcs; dsi->bridge.of_node = dev->of_node; dsi->bridge.timings = &nwl_dsi_timings; dev_set_drvdata(dev, dsi); pm_runtime_enable(dev); ret = nwl_dsi_select_input(dsi); if (ret < 0) { pm_runtime_disable(dev); mipi_dsi_host_unregister(&dsi->dsi_host); return ret; } drm_bridge_add(&dsi->bridge); return 0; } static int nwl_dsi_remove(struct platform_device *pdev) { struct nwl_dsi *dsi = platform_get_drvdata(pdev); nwl_dsi_deselect_input(dsi); mipi_dsi_host_unregister(&dsi->dsi_host); drm_bridge_remove(&dsi->bridge); pm_runtime_disable(&pdev->dev); return 0; } static struct platform_driver nwl_dsi_driver = { .probe = nwl_dsi_probe, .remove = nwl_dsi_remove, .driver = { .of_match_table = nwl_dsi_dt_ids, .name = DRV_NAME, }, }; module_platform_driver(nwl_dsi_driver); MODULE_AUTHOR("NXP Semiconductor"); MODULE_AUTHOR("Purism SPC"); MODULE_DESCRIPTION("Northwest Logic MIPI-DSI driver"); MODULE_LICENSE("GPL"); /* GPLv2 or later */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1