Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Herrmann | 1104 | 35.71% | 29 | 18.24% |
Daniel Vetter | 591 | 19.11% | 28 | 17.61% |
Dave Airlie | 456 | 14.75% | 23 | 14.47% |
Oded Gabbay | 166 | 5.37% | 1 | 0.63% |
Noralf Trönnes | 153 | 4.95% | 5 | 3.14% |
Chris Wilson | 91 | 2.94% | 7 | 4.40% |
Linus Torvalds | 64 | 2.07% | 5 | 3.14% |
Gerd Hoffmann | 36 | 1.16% | 1 | 0.63% |
Ben Gamari | 28 | 0.91% | 1 | 0.63% |
Kristian Högsberg | 27 | 0.87% | 2 | 1.26% |
Alexandru Moise | 25 | 0.81% | 1 | 0.63% |
Maíra Canal | 24 | 0.78% | 1 | 0.63% |
Gabriel Krisman Bertazi | 23 | 0.74% | 1 | 0.63% |
Ville Syrjälä | 20 | 0.65% | 2 | 1.26% |
Linus Torvalds (pre-git) | 20 | 0.65% | 8 | 5.03% |
Eric Anholt | 17 | 0.55% | 2 | 1.26% |
Arnd Bergmann | 17 | 0.55% | 3 | 1.89% |
Aishwarya Pant | 16 | 0.52% | 1 | 0.63% |
David Howells | 16 | 0.52% | 1 | 0.63% |
Andrzej Hajda | 16 | 0.52% | 1 | 0.63% |
Andrey Grodzovsky | 16 | 0.52% | 1 | 0.63% |
Wang Hai | 14 | 0.45% | 1 | 0.63% |
Thomas Hellstrom | 13 | 0.42% | 3 | 1.89% |
Oleksandr Andrushchenko | 13 | 0.42% | 1 | 0.63% |
Hans de Goede | 13 | 0.42% | 2 | 1.26% |
Nicolas Iooss | 12 | 0.39% | 2 | 1.26% |
Joonas Lahtinen | 11 | 0.36% | 1 | 0.63% |
Al Viro | 11 | 0.36% | 1 | 0.63% |
Tom Gundersen | 9 | 0.29% | 1 | 0.63% |
Thierry Reding | 9 | 0.29% | 2 | 1.26% |
Aditya Pakki | 8 | 0.26% | 1 | 0.63% |
Laurent Pinchart | 6 | 0.19% | 1 | 0.63% |
Jesse Barnes | 5 | 0.16% | 1 | 0.63% |
Benjamin Gaignard | 4 | 0.13% | 1 | 0.63% |
Joe Perches | 4 | 0.13% | 1 | 0.63% |
Emil Velikov | 4 | 0.13% | 1 | 0.63% |
Jordan Crouse | 4 | 0.13% | 1 | 0.63% |
Ilia Mirkin | 3 | 0.10% | 1 | 0.63% |
Joe Moriarty | 3 | 0.10% | 1 | 0.63% |
Sam Ravnborg | 3 | 0.10% | 1 | 0.63% |
Leann Ogasawara | 3 | 0.10% | 1 | 0.63% |
Christoph Hellwig | 3 | 0.10% | 1 | 0.63% |
Tian Tao | 2 | 0.06% | 1 | 0.63% |
Arjan van de Ven | 2 | 0.06% | 2 | 1.26% |
Haneen Mohammed | 2 | 0.06% | 1 | 0.63% |
Shang XiaoJing | 1 | 0.03% | 1 | 0.63% |
Thomas Zimmermann | 1 | 0.03% | 1 | 0.63% |
GeunSik Lim | 1 | 0.03% | 1 | 0.63% |
caihuoqing | 1 | 0.03% | 1 | 0.63% |
Benjamin Herrenschmidt | 1 | 0.03% | 1 | 0.63% |
Total | 3092 | 159 |
/* * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org * * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Author Rickard E. (Rik) Faith <faith@valinux.com> * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <linux/debugfs.h> #include <linux/fs.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/slab.h> #include <linux/srcu.h> #include <drm/drm_accel.h> #include <drm/drm_cache.h> #include <drm/drm_client.h> #include <drm/drm_color_mgmt.h> #include <drm/drm_drv.h> #include <drm/drm_file.h> #include <drm/drm_managed.h> #include <drm/drm_mode_object.h> #include <drm/drm_print.h> #include <drm/drm_privacy_screen_machine.h> #include "drm_crtc_internal.h" #include "drm_internal.h" #include "drm_legacy.h" MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); MODULE_DESCRIPTION("DRM shared core routines"); MODULE_LICENSE("GPL and additional rights"); static DEFINE_SPINLOCK(drm_minor_lock); static struct idr drm_minors_idr; /* * If the drm core fails to init for whatever reason, * we should prevent any drivers from registering with it. * It's best to check this at drm_dev_init(), as some drivers * prefer to embed struct drm_device into their own device * structure and call drm_dev_init() themselves. */ static bool drm_core_init_complete; static struct dentry *drm_debugfs_root; DEFINE_STATIC_SRCU(drm_unplug_srcu); /* * DRM Minors * A DRM device can provide several char-dev interfaces on the DRM-Major. Each * of them is represented by a drm_minor object. Depending on the capabilities * of the device-driver, different interfaces are registered. * * Minors can be accessed via dev->$minor_name. This pointer is either * NULL or a valid drm_minor pointer and stays valid as long as the device is * valid. This means, DRM minors have the same life-time as the underlying * device. However, this doesn't mean that the minor is active. Minors are * registered and unregistered dynamically according to device-state. */ static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, unsigned int type) { switch (type) { case DRM_MINOR_PRIMARY: return &dev->primary; case DRM_MINOR_RENDER: return &dev->render; case DRM_MINOR_ACCEL: return &dev->accel; default: BUG(); } } static void drm_minor_alloc_release(struct drm_device *dev, void *data) { struct drm_minor *minor = data; unsigned long flags; WARN_ON(dev != minor->dev); put_device(minor->kdev); if (minor->type == DRM_MINOR_ACCEL) { accel_minor_remove(minor->index); } else { spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); } } static int drm_minor_alloc(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; int r; minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); if (!minor) return -ENOMEM; minor->type = type; minor->dev = dev; idr_preload(GFP_KERNEL); if (type == DRM_MINOR_ACCEL) { r = accel_minor_alloc(); } else { spin_lock_irqsave(&drm_minor_lock, flags); r = idr_alloc(&drm_minors_idr, NULL, 64 * type, 64 * (type + 1), GFP_NOWAIT); spin_unlock_irqrestore(&drm_minor_lock, flags); } idr_preload_end(); if (r < 0) return r; minor->index = r; r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); if (r) return r; minor->kdev = drm_sysfs_minor_alloc(minor); if (IS_ERR(minor->kdev)) return PTR_ERR(minor->kdev); *drm_minor_get_slot(dev, type) = minor; return 0; } static int drm_minor_register(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; int ret; DRM_DEBUG("\n"); minor = *drm_minor_get_slot(dev, type); if (!minor) return 0; if (minor->type == DRM_MINOR_ACCEL) { accel_debugfs_init(minor, minor->index); } else { ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); if (ret) { DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); goto err_debugfs; } } ret = device_add(minor->kdev); if (ret) goto err_debugfs; /* replace NULL with @minor so lookups will succeed from now on */ if (minor->type == DRM_MINOR_ACCEL) { accel_minor_replace(minor, minor->index); } else { spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, minor, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); } DRM_DEBUG("new minor registered %d\n", minor->index); return 0; err_debugfs: drm_debugfs_cleanup(minor); return ret; } static void drm_minor_unregister(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; minor = *drm_minor_get_slot(dev, type); if (!minor || !device_is_registered(minor->kdev)) return; /* replace @minor with NULL so lookups will fail from now on */ if (minor->type == DRM_MINOR_ACCEL) { accel_minor_replace(NULL, minor->index); } else { spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, NULL, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); } device_del(minor->kdev); dev_set_drvdata(minor->kdev, NULL); /* safety belt */ drm_debugfs_cleanup(minor); } /* * Looks up the given minor-ID and returns the respective DRM-minor object. The * refence-count of the underlying device is increased so you must release this * object with drm_minor_release(). * * As long as you hold this minor, it is guaranteed that the object and the * minor->dev pointer will stay valid! However, the device may get unplugged and * unregistered while you hold the minor. */ struct drm_minor *drm_minor_acquire(unsigned int minor_id) { struct drm_minor *minor; unsigned long flags; spin_lock_irqsave(&drm_minor_lock, flags); minor = idr_find(&drm_minors_idr, minor_id); if (minor) drm_dev_get(minor->dev); spin_unlock_irqrestore(&drm_minor_lock, flags); if (!minor) { return ERR_PTR(-ENODEV); } else if (drm_dev_is_unplugged(minor->dev)) { drm_dev_put(minor->dev); return ERR_PTR(-ENODEV); } return minor; } void drm_minor_release(struct drm_minor *minor) { drm_dev_put(minor->dev); } /** * DOC: driver instance overview * * A device instance for a drm driver is represented by &struct drm_device. This * is allocated and initialized with devm_drm_dev_alloc(), usually from * bus-specific ->probe() callbacks implemented by the driver. The driver then * needs to initialize all the various subsystems for the drm device like memory * management, vblank handling, modesetting support and initial output * configuration plus obviously initialize all the corresponding hardware bits. * Finally when everything is up and running and ready for userspace the device * instance can be published using drm_dev_register(). * * There is also deprecated support for initializing device instances using * bus-specific helpers and the &drm_driver.load callback. But due to * backwards-compatibility needs the device instance have to be published too * early, which requires unpretty global locking to make safe and is therefore * only support for existing drivers not yet converted to the new scheme. * * When cleaning up a device instance everything needs to be done in reverse: * First unpublish the device instance with drm_dev_unregister(). Then clean up * any other resources allocated at device initialization and drop the driver's * reference to &drm_device using drm_dev_put(). * * Note that any allocation or resource which is visible to userspace must be * released only when the final drm_dev_put() is called, and not when the * driver is unbound from the underlying physical struct &device. Best to use * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and * related functions. * * devres managed resources like devm_kmalloc() can only be used for resources * directly related to the underlying hardware device, and only used in code * paths fully protected by drm_dev_enter() and drm_dev_exit(). * * Display driver example * ~~~~~~~~~~~~~~~~~~~~~~ * * The following example shows a typical structure of a DRM display driver. * The example focus on the probe() function and the other functions that is * almost always present and serves as a demonstration of devm_drm_dev_alloc(). * * .. code-block:: c * * struct driver_device { * struct drm_device drm; * void *userspace_facing; * struct clk *pclk; * }; * * static const struct drm_driver driver_drm_driver = { * [...] * }; * * static int driver_probe(struct platform_device *pdev) * { * struct driver_device *priv; * struct drm_device *drm; * int ret; * * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, * struct driver_device, drm); * if (IS_ERR(priv)) * return PTR_ERR(priv); * drm = &priv->drm; * * ret = drmm_mode_config_init(drm); * if (ret) * return ret; * * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); * if (!priv->userspace_facing) * return -ENOMEM; * * priv->pclk = devm_clk_get(dev, "PCLK"); * if (IS_ERR(priv->pclk)) * return PTR_ERR(priv->pclk); * * // Further setup, display pipeline etc * * platform_set_drvdata(pdev, drm); * * drm_mode_config_reset(drm); * * ret = drm_dev_register(drm); * if (ret) * return ret; * * drm_fbdev_generic_setup(drm, 32); * * return 0; * } * * // This function is called before the devm_ resources are released * static int driver_remove(struct platform_device *pdev) * { * struct drm_device *drm = platform_get_drvdata(pdev); * * drm_dev_unregister(drm); * drm_atomic_helper_shutdown(drm) * * return 0; * } * * // This function is called on kernel restart and shutdown * static void driver_shutdown(struct platform_device *pdev) * { * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); * } * * static int __maybe_unused driver_pm_suspend(struct device *dev) * { * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); * } * * static int __maybe_unused driver_pm_resume(struct device *dev) * { * drm_mode_config_helper_resume(dev_get_drvdata(dev)); * * return 0; * } * * static const struct dev_pm_ops driver_pm_ops = { * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) * }; * * static struct platform_driver driver_driver = { * .driver = { * [...] * .pm = &driver_pm_ops, * }, * .probe = driver_probe, * .remove = driver_remove, * .shutdown = driver_shutdown, * }; * module_platform_driver(driver_driver); * * Drivers that want to support device unplugging (USB, DT overlay unload) should * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect * regions that is accessing device resources to prevent use after they're * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before * drm_atomic_helper_shutdown() is called. This means that if the disable code * paths are protected, they will not run on regular driver module unload, * possibly leaving the hardware enabled. */ /** * drm_put_dev - Unregister and release a DRM device * @dev: DRM device * * Called at module unload time or when a PCI device is unplugged. * * Cleans up all DRM device, calling drm_lastclose(). * * Note: Use of this function is deprecated. It will eventually go away * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly * instead to make sure that the device isn't userspace accessible any more * while teardown is in progress, ensuring that userspace can't access an * inconsistent state. */ void drm_put_dev(struct drm_device *dev) { DRM_DEBUG("\n"); if (!dev) { DRM_ERROR("cleanup called no dev\n"); return; } drm_dev_unregister(dev); drm_dev_put(dev); } EXPORT_SYMBOL(drm_put_dev); /** * drm_dev_enter - Enter device critical section * @dev: DRM device * @idx: Pointer to index that will be passed to the matching drm_dev_exit() * * This function marks and protects the beginning of a section that should not * be entered after the device has been unplugged. The section end is marked * with drm_dev_exit(). Calls to this function can be nested. * * Returns: * True if it is OK to enter the section, false otherwise. */ bool drm_dev_enter(struct drm_device *dev, int *idx) { *idx = srcu_read_lock(&drm_unplug_srcu); if (dev->unplugged) { srcu_read_unlock(&drm_unplug_srcu, *idx); return false; } return true; } EXPORT_SYMBOL(drm_dev_enter); /** * drm_dev_exit - Exit device critical section * @idx: index returned from drm_dev_enter() * * This function marks the end of a section that should not be entered after * the device has been unplugged. */ void drm_dev_exit(int idx) { srcu_read_unlock(&drm_unplug_srcu, idx); } EXPORT_SYMBOL(drm_dev_exit); /** * drm_dev_unplug - unplug a DRM device * @dev: DRM device * * This unplugs a hotpluggable DRM device, which makes it inaccessible to * userspace operations. Entry-points can use drm_dev_enter() and * drm_dev_exit() to protect device resources in a race free manner. This * essentially unregisters the device like drm_dev_unregister(), but can be * called while there are still open users of @dev. */ void drm_dev_unplug(struct drm_device *dev) { /* * After synchronizing any critical read section is guaranteed to see * the new value of ->unplugged, and any critical section which might * still have seen the old value of ->unplugged is guaranteed to have * finished. */ dev->unplugged = true; synchronize_srcu(&drm_unplug_srcu); drm_dev_unregister(dev); /* Clear all CPU mappings pointing to this device */ unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); } EXPORT_SYMBOL(drm_dev_unplug); /* * DRM internal mount * We want to be able to allocate our own "struct address_space" to control * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow * stand-alone address_space objects, so we need an underlying inode. As there * is no way to allocate an independent inode easily, we need a fake internal * VFS mount-point. * * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() * frees it again. You are allowed to use iget() and iput() to get references to * the inode. But each drm_fs_inode_new() call must be paired with exactly one * drm_fs_inode_free() call (which does not have to be the last iput()). * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it * between multiple inode-users. You could, technically, call * iget() + drm_fs_inode_free() directly after alloc and sometime later do an * iput(), but this way you'd end up with a new vfsmount for each inode. */ static int drm_fs_cnt; static struct vfsmount *drm_fs_mnt; static int drm_fs_init_fs_context(struct fs_context *fc) { return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; } static struct file_system_type drm_fs_type = { .name = "drm", .owner = THIS_MODULE, .init_fs_context = drm_fs_init_fs_context, .kill_sb = kill_anon_super, }; static struct inode *drm_fs_inode_new(void) { struct inode *inode; int r; r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); if (r < 0) { DRM_ERROR("Cannot mount pseudo fs: %d\n", r); return ERR_PTR(r); } inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); if (IS_ERR(inode)) simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); return inode; } static void drm_fs_inode_free(struct inode *inode) { if (inode) { iput(inode); simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); } } /** * DOC: component helper usage recommendations * * DRM drivers that drive hardware where a logical device consists of a pile of * independent hardware blocks are recommended to use the :ref:`component helper * library<component>`. For consistency and better options for code reuse the * following guidelines apply: * * - The entire device initialization procedure should be run from the * &component_master_ops.master_bind callback, starting with * devm_drm_dev_alloc(), then binding all components with * component_bind_all() and finishing with drm_dev_register(). * * - The opaque pointer passed to all components through component_bind_all() * should point at &struct drm_device of the device instance, not some driver * specific private structure. * * - The component helper fills the niche where further standardization of * interfaces is not practical. When there already is, or will be, a * standardized interface like &drm_bridge or &drm_panel, providing its own * functions to find such components at driver load time, like * drm_of_find_panel_or_bridge(), then the component helper should not be * used. */ static void drm_dev_init_release(struct drm_device *dev, void *res) { drm_legacy_ctxbitmap_cleanup(dev); drm_legacy_remove_map_hash(dev); drm_fs_inode_free(dev->anon_inode); put_device(dev->dev); /* Prevent use-after-free in drm_managed_release when debugging is * enabled. Slightly awkward, but can't really be helped. */ dev->dev = NULL; mutex_destroy(&dev->master_mutex); mutex_destroy(&dev->clientlist_mutex); mutex_destroy(&dev->filelist_mutex); mutex_destroy(&dev->struct_mutex); mutex_destroy(&dev->debugfs_mutex); drm_legacy_destroy_members(dev); } static int drm_dev_init(struct drm_device *dev, const struct drm_driver *driver, struct device *parent) { struct inode *inode; int ret; if (!drm_core_init_complete) { DRM_ERROR("DRM core is not initialized\n"); return -ENODEV; } if (WARN_ON(!parent)) return -EINVAL; kref_init(&dev->ref); dev->dev = get_device(parent); dev->driver = driver; INIT_LIST_HEAD(&dev->managed.resources); spin_lock_init(&dev->managed.lock); /* no per-device feature limits by default */ dev->driver_features = ~0u; if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && (drm_core_check_feature(dev, DRIVER_RENDER) || drm_core_check_feature(dev, DRIVER_MODESET))) { DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); return -EINVAL; } drm_legacy_init_members(dev); INIT_LIST_HEAD(&dev->filelist); INIT_LIST_HEAD(&dev->filelist_internal); INIT_LIST_HEAD(&dev->clientlist); INIT_LIST_HEAD(&dev->vblank_event_list); INIT_LIST_HEAD(&dev->debugfs_list); spin_lock_init(&dev->event_lock); mutex_init(&dev->struct_mutex); mutex_init(&dev->filelist_mutex); mutex_init(&dev->clientlist_mutex); mutex_init(&dev->master_mutex); mutex_init(&dev->debugfs_mutex); ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); if (ret) return ret; inode = drm_fs_inode_new(); if (IS_ERR(inode)) { ret = PTR_ERR(inode); DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); goto err; } dev->anon_inode = inode; if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); if (ret) goto err; } else { if (drm_core_check_feature(dev, DRIVER_RENDER)) { ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); if (ret) goto err; } ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); if (ret) goto err; } ret = drm_legacy_create_map_hash(dev); if (ret) goto err; drm_legacy_ctxbitmap_init(dev); if (drm_core_check_feature(dev, DRIVER_GEM)) { ret = drm_gem_init(dev); if (ret) { DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); goto err; } } ret = drm_dev_set_unique(dev, dev_name(parent)); if (ret) goto err; return 0; err: drm_managed_release(dev); return ret; } static void devm_drm_dev_init_release(void *data) { drm_dev_put(data); } static int devm_drm_dev_init(struct device *parent, struct drm_device *dev, const struct drm_driver *driver) { int ret; ret = drm_dev_init(dev, driver, parent); if (ret) return ret; return devm_add_action_or_reset(parent, devm_drm_dev_init_release, dev); } void *__devm_drm_dev_alloc(struct device *parent, const struct drm_driver *driver, size_t size, size_t offset) { void *container; struct drm_device *drm; int ret; container = kzalloc(size, GFP_KERNEL); if (!container) return ERR_PTR(-ENOMEM); drm = container + offset; ret = devm_drm_dev_init(parent, drm, driver); if (ret) { kfree(container); return ERR_PTR(ret); } drmm_add_final_kfree(drm, container); return container; } EXPORT_SYMBOL(__devm_drm_dev_alloc); /** * drm_dev_alloc - Allocate new DRM device * @driver: DRM driver to allocate device for * @parent: Parent device object * * This is the deprecated version of devm_drm_dev_alloc(), which does not support * subclassing through embedding the struct &drm_device in a driver private * structure, and which does not support automatic cleanup through devres. * * RETURNS: * Pointer to new DRM device, or ERR_PTR on failure. */ struct drm_device *drm_dev_alloc(const struct drm_driver *driver, struct device *parent) { struct drm_device *dev; int ret; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return ERR_PTR(-ENOMEM); ret = drm_dev_init(dev, driver, parent); if (ret) { kfree(dev); return ERR_PTR(ret); } drmm_add_final_kfree(dev, dev); return dev; } EXPORT_SYMBOL(drm_dev_alloc); static void drm_dev_release(struct kref *ref) { struct drm_device *dev = container_of(ref, struct drm_device, ref); if (dev->driver->release) dev->driver->release(dev); drm_managed_release(dev); kfree(dev->managed.final_kfree); } /** * drm_dev_get - Take reference of a DRM device * @dev: device to take reference of or NULL * * This increases the ref-count of @dev by one. You *must* already own a * reference when calling this. Use drm_dev_put() to drop this reference * again. * * This function never fails. However, this function does not provide *any* * guarantee whether the device is alive or running. It only provides a * reference to the object and the memory associated with it. */ void drm_dev_get(struct drm_device *dev) { if (dev) kref_get(&dev->ref); } EXPORT_SYMBOL(drm_dev_get); /** * drm_dev_put - Drop reference of a DRM device * @dev: device to drop reference of or NULL * * This decreases the ref-count of @dev by one. The device is destroyed if the * ref-count drops to zero. */ void drm_dev_put(struct drm_device *dev) { if (dev) kref_put(&dev->ref, drm_dev_release); } EXPORT_SYMBOL(drm_dev_put); static int create_compat_control_link(struct drm_device *dev) { struct drm_minor *minor; char *name; int ret; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return 0; minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); if (!minor) return 0; /* * Some existing userspace out there uses the existing of the controlD* * sysfs files to figure out whether it's a modeset driver. It only does * readdir, hence a symlink is sufficient (and the least confusing * option). Otherwise controlD* is entirely unused. * * Old controlD chardev have been allocated in the range * 64-127. */ name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); if (!name) return -ENOMEM; ret = sysfs_create_link(minor->kdev->kobj.parent, &minor->kdev->kobj, name); kfree(name); return ret; } static void remove_compat_control_link(struct drm_device *dev) { struct drm_minor *minor; char *name; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return; minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); if (!minor) return; name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); if (!name) return; sysfs_remove_link(minor->kdev->kobj.parent, name); kfree(name); } /** * drm_dev_register - Register DRM device * @dev: Device to register * @flags: Flags passed to the driver's .load() function * * Register the DRM device @dev with the system, advertise device to user-space * and start normal device operation. @dev must be initialized via drm_dev_init() * previously. * * Never call this twice on any device! * * NOTE: To ensure backward compatibility with existing drivers method this * function calls the &drm_driver.load method after registering the device * nodes, creating race conditions. Usage of the &drm_driver.load methods is * therefore deprecated, drivers must perform all initialization before calling * drm_dev_register(). * * RETURNS: * 0 on success, negative error code on failure. */ int drm_dev_register(struct drm_device *dev, unsigned long flags) { const struct drm_driver *driver = dev->driver; int ret; if (!driver->load) drm_mode_config_validate(dev); WARN_ON(!dev->managed.final_kfree); if (drm_dev_needs_global_mutex(dev)) mutex_lock(&drm_global_mutex); ret = drm_minor_register(dev, DRM_MINOR_RENDER); if (ret) goto err_minors; ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); if (ret) goto err_minors; ret = drm_minor_register(dev, DRM_MINOR_ACCEL); if (ret) goto err_minors; ret = create_compat_control_link(dev); if (ret) goto err_minors; dev->registered = true; if (driver->load) { ret = driver->load(dev, flags); if (ret) goto err_minors; } if (drm_core_check_feature(dev, DRIVER_MODESET)) drm_modeset_register_all(dev); DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", driver->name, driver->major, driver->minor, driver->patchlevel, driver->date, dev->dev ? dev_name(dev->dev) : "virtual device", dev->primary ? dev->primary->index : dev->accel->index); goto out_unlock; err_minors: remove_compat_control_link(dev); drm_minor_unregister(dev, DRM_MINOR_ACCEL); drm_minor_unregister(dev, DRM_MINOR_PRIMARY); drm_minor_unregister(dev, DRM_MINOR_RENDER); out_unlock: if (drm_dev_needs_global_mutex(dev)) mutex_unlock(&drm_global_mutex); return ret; } EXPORT_SYMBOL(drm_dev_register); /** * drm_dev_unregister - Unregister DRM device * @dev: Device to unregister * * Unregister the DRM device from the system. This does the reverse of * drm_dev_register() but does not deallocate the device. The caller must call * drm_dev_put() to drop their final reference. * * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), * which can be called while there are still open users of @dev. * * This should be called first in the device teardown code to make sure * userspace can't access the device instance any more. */ void drm_dev_unregister(struct drm_device *dev) { if (drm_core_check_feature(dev, DRIVER_LEGACY)) drm_lastclose(dev); dev->registered = false; drm_client_dev_unregister(dev); if (drm_core_check_feature(dev, DRIVER_MODESET)) drm_modeset_unregister_all(dev); if (dev->driver->unload) dev->driver->unload(dev); drm_legacy_pci_agp_destroy(dev); drm_legacy_rmmaps(dev); remove_compat_control_link(dev); drm_minor_unregister(dev, DRM_MINOR_ACCEL); drm_minor_unregister(dev, DRM_MINOR_PRIMARY); drm_minor_unregister(dev, DRM_MINOR_RENDER); } EXPORT_SYMBOL(drm_dev_unregister); /** * drm_dev_set_unique - Set the unique name of a DRM device * @dev: device of which to set the unique name * @name: unique name * * Sets the unique name of a DRM device using the specified string. This is * already done by drm_dev_init(), drivers should only override the default * unique name for backwards compatibility reasons. * * Return: 0 on success or a negative error code on failure. */ int drm_dev_set_unique(struct drm_device *dev, const char *name) { drmm_kfree(dev, dev->unique); dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL); return dev->unique ? 0 : -ENOMEM; } EXPORT_SYMBOL(drm_dev_set_unique); /* * DRM Core * The DRM core module initializes all global DRM objects and makes them * available to drivers. Once setup, drivers can probe their respective * devices. * Currently, core management includes: * - The "DRM-Global" key/value database * - Global ID management for connectors * - DRM major number allocation * - DRM minor management * - DRM sysfs class * - DRM debugfs root * * Furthermore, the DRM core provides dynamic char-dev lookups. For each * interface registered on a DRM device, you can request minor numbers from DRM * core. DRM core takes care of major-number management and char-dev * registration. A stub ->open() callback forwards any open() requests to the * registered minor. */ static int drm_stub_open(struct inode *inode, struct file *filp) { const struct file_operations *new_fops; struct drm_minor *minor; int err; DRM_DEBUG("\n"); minor = drm_minor_acquire(iminor(inode)); if (IS_ERR(minor)) return PTR_ERR(minor); new_fops = fops_get(minor->dev->driver->fops); if (!new_fops) { err = -ENODEV; goto out; } replace_fops(filp, new_fops); if (filp->f_op->open) err = filp->f_op->open(inode, filp); else err = 0; out: drm_minor_release(minor); return err; } static const struct file_operations drm_stub_fops = { .owner = THIS_MODULE, .open = drm_stub_open, .llseek = noop_llseek, }; static void drm_core_exit(void) { drm_privacy_screen_lookup_exit(); accel_core_exit(); unregister_chrdev(DRM_MAJOR, "drm"); debugfs_remove(drm_debugfs_root); drm_sysfs_destroy(); idr_destroy(&drm_minors_idr); drm_connector_ida_destroy(); } static int __init drm_core_init(void) { int ret; drm_connector_ida_init(); idr_init(&drm_minors_idr); drm_memcpy_init_early(); ret = drm_sysfs_init(); if (ret < 0) { DRM_ERROR("Cannot create DRM class: %d\n", ret); goto error; } drm_debugfs_root = debugfs_create_dir("dri", NULL); ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); if (ret < 0) goto error; ret = accel_core_init(); if (ret < 0) goto error; drm_privacy_screen_lookup_init(); drm_core_init_complete = true; DRM_DEBUG("Initialized\n"); return 0; error: drm_core_exit(); return ret; } module_init(drm_core_init); module_exit(drm_core_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1