Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 2665 | 70.95% | 48 | 51.06% |
Daniel Vetter | 508 | 13.53% | 12 | 12.77% |
Nirmoy Das | 163 | 4.34% | 1 | 1.06% |
Thomas Hellstrom | 101 | 2.69% | 3 | 3.19% |
Dave Airlie | 73 | 1.94% | 4 | 4.26% |
Christian König | 68 | 1.81% | 2 | 2.13% |
Jérôme Glisse | 56 | 1.49% | 3 | 3.19% |
Thierry Reding | 20 | 0.53% | 1 | 1.06% |
Davidlohr Bueso A | 19 | 0.51% | 1 | 1.06% |
Thomas Gleixner | 17 | 0.45% | 1 | 1.06% |
Eric Anholt | 15 | 0.40% | 1 | 1.06% |
Ben Widawsky | 11 | 0.29% | 2 | 2.13% |
Vlastimil Babka | 8 | 0.21% | 1 | 1.06% |
Sam Ravnborg | 6 | 0.16% | 1 | 1.06% |
Heinrich Schuchardt | 5 | 0.13% | 1 | 1.06% |
Lauri Kasanen | 4 | 0.11% | 1 | 1.06% |
David Herrmann | 3 | 0.08% | 3 | 3.19% |
Akeem G. Abodunrin | 3 | 0.08% | 1 | 1.06% |
Ankitprasad Sharma | 3 | 0.08% | 1 | 1.06% |
Russell King | 2 | 0.05% | 1 | 1.06% |
Paul Gortmaker | 2 | 0.05% | 1 | 1.06% |
caihuoqing | 1 | 0.03% | 1 | 1.06% |
Matt Roper | 1 | 0.03% | 1 | 1.06% |
Liviu Dudau | 1 | 0.03% | 1 | 1.06% |
Khan, Imran | 1 | 0.03% | 1 | 1.06% |
Total | 3756 | 94 |
/************************************************************************** * * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. * Copyright 2016 Intel Corporation * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * **************************************************************************/ /* * Generic simple memory manager implementation. Intended to be used as a base * class implementation for more advanced memory managers. * * Note that the algorithm used is quite simple and there might be substantial * performance gains if a smarter free list is implemented. Currently it is * just an unordered stack of free regions. This could easily be improved if * an RB-tree is used instead. At least if we expect heavy fragmentation. * * Aligned allocations can also see improvement. * * Authors: * Thomas Hellström <thomas-at-tungstengraphics-dot-com> */ #include <linux/export.h> #include <linux/interval_tree_generic.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/stacktrace.h> #include <drm/drm_mm.h> /** * DOC: Overview * * drm_mm provides a simple range allocator. The drivers are free to use the * resource allocator from the linux core if it suits them, the upside of drm_mm * is that it's in the DRM core. Which means that it's easier to extend for * some of the crazier special purpose needs of gpus. * * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. * Drivers are free to embed either of them into their own suitable * datastructures. drm_mm itself will not do any memory allocations of its own, * so if drivers choose not to embed nodes they need to still allocate them * themselves. * * The range allocator also supports reservation of preallocated blocks. This is * useful for taking over initial mode setting configurations from the firmware, * where an object needs to be created which exactly matches the firmware's * scanout target. As long as the range is still free it can be inserted anytime * after the allocator is initialized, which helps with avoiding looped * dependencies in the driver load sequence. * * drm_mm maintains a stack of most recently freed holes, which of all * simplistic datastructures seems to be a fairly decent approach to clustering * allocations and avoiding too much fragmentation. This means free space * searches are O(num_holes). Given that all the fancy features drm_mm supports * something better would be fairly complex and since gfx thrashing is a fairly * steep cliff not a real concern. Removing a node again is O(1). * * drm_mm supports a few features: Alignment and range restrictions can be * supplied. Furthermore every &drm_mm_node has a color value (which is just an * opaque unsigned long) which in conjunction with a driver callback can be used * to implement sophisticated placement restrictions. The i915 DRM driver uses * this to implement guard pages between incompatible caching domains in the * graphics TT. * * Two behaviors are supported for searching and allocating: bottom-up and * top-down. The default is bottom-up. Top-down allocation can be used if the * memory area has different restrictions, or just to reduce fragmentation. * * Finally iteration helpers to walk all nodes and all holes are provided as are * some basic allocator dumpers for debugging. * * Note that this range allocator is not thread-safe, drivers need to protect * modifications with their own locking. The idea behind this is that for a full * memory manager additional data needs to be protected anyway, hence internal * locking would be fully redundant. */ #ifdef CONFIG_DRM_DEBUG_MM #include <linux/stackdepot.h> #define STACKDEPTH 32 #define BUFSZ 4096 static noinline void save_stack(struct drm_mm_node *node) { unsigned long entries[STACKDEPTH]; unsigned int n; n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); /* May be called under spinlock, so avoid sleeping */ node->stack = stack_depot_save(entries, n, GFP_NOWAIT); } static void show_leaks(struct drm_mm *mm) { struct drm_mm_node *node; char *buf; buf = kmalloc(BUFSZ, GFP_KERNEL); if (!buf) return; list_for_each_entry(node, drm_mm_nodes(mm), node_list) { if (!node->stack) { DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", node->start, node->size); continue; } stack_depot_snprint(node->stack, buf, BUFSZ, 0); DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", node->start, node->size, buf); } kfree(buf); } #undef STACKDEPTH #undef BUFSZ #else static void save_stack(struct drm_mm_node *node) { } static void show_leaks(struct drm_mm *mm) { } #endif #define START(node) ((node)->start) #define LAST(node) ((node)->start + (node)->size - 1) INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, u64, __subtree_last, START, LAST, static inline, drm_mm_interval_tree) struct drm_mm_node * __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) { return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, start, last) ?: (struct drm_mm_node *)&mm->head_node; } EXPORT_SYMBOL(__drm_mm_interval_first); static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, struct drm_mm_node *node) { struct drm_mm *mm = hole_node->mm; struct rb_node **link, *rb; struct drm_mm_node *parent; bool leftmost; node->__subtree_last = LAST(node); if (drm_mm_node_allocated(hole_node)) { rb = &hole_node->rb; while (rb) { parent = rb_entry(rb, struct drm_mm_node, rb); if (parent->__subtree_last >= node->__subtree_last) break; parent->__subtree_last = node->__subtree_last; rb = rb_parent(rb); } rb = &hole_node->rb; link = &hole_node->rb.rb_right; leftmost = false; } else { rb = NULL; link = &mm->interval_tree.rb_root.rb_node; leftmost = true; } while (*link) { rb = *link; parent = rb_entry(rb, struct drm_mm_node, rb); if (parent->__subtree_last < node->__subtree_last) parent->__subtree_last = node->__subtree_last; if (node->start < parent->start) { link = &parent->rb.rb_left; } else { link = &parent->rb.rb_right; leftmost = false; } } rb_link_node(&node->rb, rb, link); rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, &drm_mm_interval_tree_augment); } #define HOLE_SIZE(NODE) ((NODE)->hole_size) #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) static u64 rb_to_hole_size(struct rb_node *rb) { return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; } static void insert_hole_size(struct rb_root_cached *root, struct drm_mm_node *node) { struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; u64 x = node->hole_size; bool first = true; while (*link) { rb = *link; if (x > rb_to_hole_size(rb)) { link = &rb->rb_left; } else { link = &rb->rb_right; first = false; } } rb_link_node(&node->rb_hole_size, rb, link); rb_insert_color_cached(&node->rb_hole_size, root, first); } RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks, struct drm_mm_node, rb_hole_addr, u64, subtree_max_hole, HOLE_SIZE) static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node) { struct rb_node **link = &root->rb_node, *rb_parent = NULL; u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole; struct drm_mm_node *parent; while (*link) { rb_parent = *link; parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr); if (parent->subtree_max_hole < subtree_max_hole) parent->subtree_max_hole = subtree_max_hole; if (start < HOLE_ADDR(parent)) link = &parent->rb_hole_addr.rb_left; else link = &parent->rb_hole_addr.rb_right; } rb_link_node(&node->rb_hole_addr, rb_parent, link); rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks); } static void add_hole(struct drm_mm_node *node) { struct drm_mm *mm = node->mm; node->hole_size = __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); node->subtree_max_hole = node->hole_size; DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); insert_hole_size(&mm->holes_size, node); insert_hole_addr(&mm->holes_addr, node); list_add(&node->hole_stack, &mm->hole_stack); } static void rm_hole(struct drm_mm_node *node) { DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); list_del(&node->hole_stack); rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr, &augment_callbacks); node->hole_size = 0; node->subtree_max_hole = 0; DRM_MM_BUG_ON(drm_mm_hole_follows(node)); } static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) { return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); } static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) { return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); } static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) { struct rb_node *rb = mm->holes_size.rb_root.rb_node; struct drm_mm_node *best = NULL; do { struct drm_mm_node *node = rb_entry(rb, struct drm_mm_node, rb_hole_size); if (size <= node->hole_size) { best = node; rb = rb->rb_right; } else { rb = rb->rb_left; } } while (rb); return best; } static bool usable_hole_addr(struct rb_node *rb, u64 size) { return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size; } static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size) { struct rb_node *rb = mm->holes_addr.rb_node; struct drm_mm_node *node = NULL; while (rb) { u64 hole_start; if (!usable_hole_addr(rb, size)) break; node = rb_hole_addr_to_node(rb); hole_start = __drm_mm_hole_node_start(node); if (addr < hole_start) rb = node->rb_hole_addr.rb_left; else if (addr > hole_start + node->hole_size) rb = node->rb_hole_addr.rb_right; else break; } return node; } static struct drm_mm_node * first_hole(struct drm_mm *mm, u64 start, u64 end, u64 size, enum drm_mm_insert_mode mode) { switch (mode) { default: case DRM_MM_INSERT_BEST: return best_hole(mm, size); case DRM_MM_INSERT_LOW: return find_hole_addr(mm, start, size); case DRM_MM_INSERT_HIGH: return find_hole_addr(mm, end, size); case DRM_MM_INSERT_EVICT: return list_first_entry_or_null(&mm->hole_stack, struct drm_mm_node, hole_stack); } } /** * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions * @name: name of function to declare * @first: first rb member to traverse (either rb_left or rb_right). * @last: last rb member to traverse (either rb_right or rb_left). * * This macro declares a function to return the next hole of the addr rb tree. * While traversing the tree we take the searched size into account and only * visit branches with potential big enough holes. */ #define DECLARE_NEXT_HOLE_ADDR(name, first, last) \ static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size) \ { \ struct rb_node *parent, *node = &entry->rb_hole_addr; \ \ if (!entry || RB_EMPTY_NODE(node)) \ return NULL; \ \ if (usable_hole_addr(node->first, size)) { \ node = node->first; \ while (usable_hole_addr(node->last, size)) \ node = node->last; \ return rb_hole_addr_to_node(node); \ } \ \ while ((parent = rb_parent(node)) && node == parent->first) \ node = parent; \ \ return rb_hole_addr_to_node(parent); \ } DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right) DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left) static struct drm_mm_node * next_hole(struct drm_mm *mm, struct drm_mm_node *node, u64 size, enum drm_mm_insert_mode mode) { switch (mode) { default: case DRM_MM_INSERT_BEST: return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); case DRM_MM_INSERT_LOW: return next_hole_low_addr(node, size); case DRM_MM_INSERT_HIGH: return next_hole_high_addr(node, size); case DRM_MM_INSERT_EVICT: node = list_next_entry(node, hole_stack); return &node->hole_stack == &mm->hole_stack ? NULL : node; } } /** * drm_mm_reserve_node - insert an pre-initialized node * @mm: drm_mm allocator to insert @node into * @node: drm_mm_node to insert * * This functions inserts an already set-up &drm_mm_node into the allocator, * meaning that start, size and color must be set by the caller. All other * fields must be cleared to 0. This is useful to initialize the allocator with * preallocated objects which must be set-up before the range allocator can be * set-up, e.g. when taking over a firmware framebuffer. * * Returns: * 0 on success, -ENOSPC if there's no hole where @node is. */ int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) { struct drm_mm_node *hole; u64 hole_start, hole_end; u64 adj_start, adj_end; u64 end; end = node->start + node->size; if (unlikely(end <= node->start)) return -ENOSPC; /* Find the relevant hole to add our node to */ hole = find_hole_addr(mm, node->start, 0); if (!hole) return -ENOSPC; adj_start = hole_start = __drm_mm_hole_node_start(hole); adj_end = hole_end = hole_start + hole->hole_size; if (mm->color_adjust) mm->color_adjust(hole, node->color, &adj_start, &adj_end); if (adj_start > node->start || adj_end < end) return -ENOSPC; node->mm = mm; __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); list_add(&node->node_list, &hole->node_list); drm_mm_interval_tree_add_node(hole, node); node->hole_size = 0; rm_hole(hole); if (node->start > hole_start) add_hole(hole); if (end < hole_end) add_hole(node); save_stack(node); return 0; } EXPORT_SYMBOL(drm_mm_reserve_node); static u64 rb_to_hole_size_or_zero(struct rb_node *rb) { return rb ? rb_to_hole_size(rb) : 0; } /** * drm_mm_insert_node_in_range - ranged search for space and insert @node * @mm: drm_mm to allocate from * @node: preallocate node to insert * @size: size of the allocation * @alignment: alignment of the allocation * @color: opaque tag value to use for this node * @range_start: start of the allowed range for this node * @range_end: end of the allowed range for this node * @mode: fine-tune the allocation search and placement * * The preallocated @node must be cleared to 0. * * Returns: * 0 on success, -ENOSPC if there's no suitable hole. */ int drm_mm_insert_node_in_range(struct drm_mm * const mm, struct drm_mm_node * const node, u64 size, u64 alignment, unsigned long color, u64 range_start, u64 range_end, enum drm_mm_insert_mode mode) { struct drm_mm_node *hole; u64 remainder_mask; bool once; DRM_MM_BUG_ON(range_start > range_end); if (unlikely(size == 0 || range_end - range_start < size)) return -ENOSPC; if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) return -ENOSPC; if (alignment <= 1) alignment = 0; once = mode & DRM_MM_INSERT_ONCE; mode &= ~DRM_MM_INSERT_ONCE; remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; for (hole = first_hole(mm, range_start, range_end, size, mode); hole; hole = once ? NULL : next_hole(mm, hole, size, mode)) { u64 hole_start = __drm_mm_hole_node_start(hole); u64 hole_end = hole_start + hole->hole_size; u64 adj_start, adj_end; u64 col_start, col_end; if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) break; if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) break; col_start = hole_start; col_end = hole_end; if (mm->color_adjust) mm->color_adjust(hole, color, &col_start, &col_end); adj_start = max(col_start, range_start); adj_end = min(col_end, range_end); if (adj_end <= adj_start || adj_end - adj_start < size) continue; if (mode == DRM_MM_INSERT_HIGH) adj_start = adj_end - size; if (alignment) { u64 rem; if (likely(remainder_mask)) rem = adj_start & remainder_mask; else div64_u64_rem(adj_start, alignment, &rem); if (rem) { adj_start -= rem; if (mode != DRM_MM_INSERT_HIGH) adj_start += alignment; if (adj_start < max(col_start, range_start) || min(col_end, range_end) - adj_start < size) continue; if (adj_end <= adj_start || adj_end - adj_start < size) continue; } } node->mm = mm; node->size = size; node->start = adj_start; node->color = color; node->hole_size = 0; __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); list_add(&node->node_list, &hole->node_list); drm_mm_interval_tree_add_node(hole, node); rm_hole(hole); if (adj_start > hole_start) add_hole(hole); if (adj_start + size < hole_end) add_hole(node); save_stack(node); return 0; } return -ENOSPC; } EXPORT_SYMBOL(drm_mm_insert_node_in_range); static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node) { return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); } /** * drm_mm_remove_node - Remove a memory node from the allocator. * @node: drm_mm_node to remove * * This just removes a node from its drm_mm allocator. The node does not need to * be cleared again before it can be re-inserted into this or any other drm_mm * allocator. It is a bug to call this function on a unallocated node. */ void drm_mm_remove_node(struct drm_mm_node *node) { struct drm_mm *mm = node->mm; struct drm_mm_node *prev_node; DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); prev_node = list_prev_entry(node, node_list); if (drm_mm_hole_follows(node)) rm_hole(node); drm_mm_interval_tree_remove(node, &mm->interval_tree); list_del(&node->node_list); if (drm_mm_hole_follows(prev_node)) rm_hole(prev_node); add_hole(prev_node); clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); } EXPORT_SYMBOL(drm_mm_remove_node); /** * drm_mm_replace_node - move an allocation from @old to @new * @old: drm_mm_node to remove from the allocator * @new: drm_mm_node which should inherit @old's allocation * * This is useful for when drivers embed the drm_mm_node structure and hence * can't move allocations by reassigning pointers. It's a combination of remove * and insert with the guarantee that the allocation start will match. */ void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) { struct drm_mm *mm = old->mm; DRM_MM_BUG_ON(!drm_mm_node_allocated(old)); *new = *old; __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags); list_replace(&old->node_list, &new->node_list); rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); if (drm_mm_hole_follows(old)) { list_replace(&old->hole_stack, &new->hole_stack); rb_replace_node_cached(&old->rb_hole_size, &new->rb_hole_size, &mm->holes_size); rb_replace_node(&old->rb_hole_addr, &new->rb_hole_addr, &mm->holes_addr); } clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags); } EXPORT_SYMBOL(drm_mm_replace_node); /** * DOC: lru scan roster * * Very often GPUs need to have continuous allocations for a given object. When * evicting objects to make space for a new one it is therefore not most * efficient when we simply start to select all objects from the tail of an LRU * until there's a suitable hole: Especially for big objects or nodes that * otherwise have special allocation constraints there's a good chance we evict * lots of (smaller) objects unnecessarily. * * The DRM range allocator supports this use-case through the scanning * interfaces. First a scan operation needs to be initialized with * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds * objects to the roster, probably by walking an LRU list, but this can be * freely implemented. Eviction candidates are added using * drm_mm_scan_add_block() until a suitable hole is found or there are no * further evictable objects. Eviction roster metadata is tracked in &struct * drm_mm_scan. * * The driver must walk through all objects again in exactly the reverse * order to restore the allocator state. Note that while the allocator is used * in the scan mode no other operation is allowed. * * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() * reported true) in the scan, and any overlapping nodes after color adjustment * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and * since freeing a node is also O(1) the overall complexity is * O(scanned_objects). So like the free stack which needs to be walked before a * scan operation even begins this is linear in the number of objects. It * doesn't seem to hurt too badly. */ /** * drm_mm_scan_init_with_range - initialize range-restricted lru scanning * @scan: scan state * @mm: drm_mm to scan * @size: size of the allocation * @alignment: alignment of the allocation * @color: opaque tag value to use for the allocation * @start: start of the allowed range for the allocation * @end: end of the allowed range for the allocation * @mode: fine-tune the allocation search and placement * * This simply sets up the scanning routines with the parameters for the desired * hole. * * Warning: * As long as the scan list is non-empty, no other operations than * adding/removing nodes to/from the scan list are allowed. */ void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, struct drm_mm *mm, u64 size, u64 alignment, unsigned long color, u64 start, u64 end, enum drm_mm_insert_mode mode) { DRM_MM_BUG_ON(start >= end); DRM_MM_BUG_ON(!size || size > end - start); DRM_MM_BUG_ON(mm->scan_active); scan->mm = mm; if (alignment <= 1) alignment = 0; scan->color = color; scan->alignment = alignment; scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; scan->size = size; scan->mode = mode; DRM_MM_BUG_ON(end <= start); scan->range_start = start; scan->range_end = end; scan->hit_start = U64_MAX; scan->hit_end = 0; } EXPORT_SYMBOL(drm_mm_scan_init_with_range); /** * drm_mm_scan_add_block - add a node to the scan list * @scan: the active drm_mm scanner * @node: drm_mm_node to add * * Add a node to the scan list that might be freed to make space for the desired * hole. * * Returns: * True if a hole has been found, false otherwise. */ bool drm_mm_scan_add_block(struct drm_mm_scan *scan, struct drm_mm_node *node) { struct drm_mm *mm = scan->mm; struct drm_mm_node *hole; u64 hole_start, hole_end; u64 col_start, col_end; u64 adj_start, adj_end; DRM_MM_BUG_ON(node->mm != mm); DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); mm->scan_active++; /* Remove this block from the node_list so that we enlarge the hole * (distance between the end of our previous node and the start of * or next), without poisoning the link so that we can restore it * later in drm_mm_scan_remove_block(). */ hole = list_prev_entry(node, node_list); DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); __list_del_entry(&node->node_list); hole_start = __drm_mm_hole_node_start(hole); hole_end = __drm_mm_hole_node_end(hole); col_start = hole_start; col_end = hole_end; if (mm->color_adjust) mm->color_adjust(hole, scan->color, &col_start, &col_end); adj_start = max(col_start, scan->range_start); adj_end = min(col_end, scan->range_end); if (adj_end <= adj_start || adj_end - adj_start < scan->size) return false; if (scan->mode == DRM_MM_INSERT_HIGH) adj_start = adj_end - scan->size; if (scan->alignment) { u64 rem; if (likely(scan->remainder_mask)) rem = adj_start & scan->remainder_mask; else div64_u64_rem(adj_start, scan->alignment, &rem); if (rem) { adj_start -= rem; if (scan->mode != DRM_MM_INSERT_HIGH) adj_start += scan->alignment; if (adj_start < max(col_start, scan->range_start) || min(col_end, scan->range_end) - adj_start < scan->size) return false; if (adj_end <= adj_start || adj_end - adj_start < scan->size) return false; } } scan->hit_start = adj_start; scan->hit_end = adj_start + scan->size; DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); DRM_MM_BUG_ON(scan->hit_start < hole_start); DRM_MM_BUG_ON(scan->hit_end > hole_end); return true; } EXPORT_SYMBOL(drm_mm_scan_add_block); /** * drm_mm_scan_remove_block - remove a node from the scan list * @scan: the active drm_mm scanner * @node: drm_mm_node to remove * * Nodes **must** be removed in exactly the reverse order from the scan list as * they have been added (e.g. using list_add() as they are added and then * list_for_each() over that eviction list to remove), otherwise the internal * state of the memory manager will be corrupted. * * When the scan list is empty, the selected memory nodes can be freed. An * immediately following drm_mm_insert_node_in_range_generic() or one of the * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return * the just freed block (because it's at the top of the free_stack list). * * Returns: * True if this block should be evicted, false otherwise. Will always * return false when no hole has been found. */ bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, struct drm_mm_node *node) { struct drm_mm_node *prev_node; DRM_MM_BUG_ON(node->mm != scan->mm); DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); DRM_MM_BUG_ON(!node->mm->scan_active); node->mm->scan_active--; /* During drm_mm_scan_add_block() we decoupled this node leaving * its pointers intact. Now that the caller is walking back along * the eviction list we can restore this block into its rightful * place on the full node_list. To confirm that the caller is walking * backwards correctly we check that prev_node->next == node->next, * i.e. both believe the same node should be on the other side of the * hole. */ prev_node = list_prev_entry(node, node_list); DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != list_next_entry(node, node_list)); list_add(&node->node_list, &prev_node->node_list); return (node->start + node->size > scan->hit_start && node->start < scan->hit_end); } EXPORT_SYMBOL(drm_mm_scan_remove_block); /** * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole * @scan: drm_mm scan with target hole * * After completing an eviction scan and removing the selected nodes, we may * need to remove a few more nodes from either side of the target hole if * mm.color_adjust is being used. * * Returns: * A node to evict, or NULL if there are no overlapping nodes. */ struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) { struct drm_mm *mm = scan->mm; struct drm_mm_node *hole; u64 hole_start, hole_end; DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); if (!mm->color_adjust) return NULL; /* * The hole found during scanning should ideally be the first element * in the hole_stack list, but due to side-effects in the driver it * may not be. */ list_for_each_entry(hole, &mm->hole_stack, hole_stack) { hole_start = __drm_mm_hole_node_start(hole); hole_end = hole_start + hole->hole_size; if (hole_start <= scan->hit_start && hole_end >= scan->hit_end) break; } /* We should only be called after we found the hole previously */ DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); if (unlikely(&hole->hole_stack == &mm->hole_stack)) return NULL; DRM_MM_BUG_ON(hole_start > scan->hit_start); DRM_MM_BUG_ON(hole_end < scan->hit_end); mm->color_adjust(hole, scan->color, &hole_start, &hole_end); if (hole_start > scan->hit_start) return hole; if (hole_end < scan->hit_end) return list_next_entry(hole, node_list); return NULL; } EXPORT_SYMBOL(drm_mm_scan_color_evict); /** * drm_mm_init - initialize a drm-mm allocator * @mm: the drm_mm structure to initialize * @start: start of the range managed by @mm * @size: end of the range managed by @mm * * Note that @mm must be cleared to 0 before calling this function. */ void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) { DRM_MM_BUG_ON(start + size <= start); mm->color_adjust = NULL; INIT_LIST_HEAD(&mm->hole_stack); mm->interval_tree = RB_ROOT_CACHED; mm->holes_size = RB_ROOT_CACHED; mm->holes_addr = RB_ROOT; /* Clever trick to avoid a special case in the free hole tracking. */ INIT_LIST_HEAD(&mm->head_node.node_list); mm->head_node.flags = 0; mm->head_node.mm = mm; mm->head_node.start = start + size; mm->head_node.size = -size; add_hole(&mm->head_node); mm->scan_active = 0; #ifdef CONFIG_DRM_DEBUG_MM stack_depot_init(); #endif } EXPORT_SYMBOL(drm_mm_init); /** * drm_mm_takedown - clean up a drm_mm allocator * @mm: drm_mm allocator to clean up * * Note that it is a bug to call this function on an allocator which is not * clean. */ void drm_mm_takedown(struct drm_mm *mm) { if (WARN(!drm_mm_clean(mm), "Memory manager not clean during takedown.\n")) show_leaks(mm); } EXPORT_SYMBOL(drm_mm_takedown); static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) { u64 start, size; size = entry->hole_size; if (size) { start = drm_mm_hole_node_start(entry); drm_printf(p, "%#018llx-%#018llx: %llu: free\n", start, start + size, size); } return size; } /** * drm_mm_print - print allocator state * @mm: drm_mm allocator to print * @p: DRM printer to use */ void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) { const struct drm_mm_node *entry; u64 total_used = 0, total_free = 0, total = 0; total_free += drm_mm_dump_hole(p, &mm->head_node); drm_mm_for_each_node(entry, mm) { drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, entry->start + entry->size, entry->size); total_used += entry->size; total_free += drm_mm_dump_hole(p, entry); } total = total_free + total_used; drm_printf(p, "total: %llu, used %llu free %llu\n", total, total_used, total_free); } EXPORT_SYMBOL(drm_mm_print);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1