Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 1857 | 25.54% | 47 | 25.68% |
Jani Nikula | 1368 | 18.81% | 44 | 24.04% |
Libin Yang | 818 | 11.25% | 6 | 3.28% |
Uma Shankar | 517 | 7.11% | 1 | 0.55% |
Kai Vehmanen | 404 | 5.56% | 7 | 3.83% |
Aditya Swarup | 394 | 5.42% | 2 | 1.09% |
Imre Deak | 343 | 4.72% | 4 | 2.19% |
Takashi Iwai | 229 | 3.15% | 6 | 3.28% |
Clint Taylor | 189 | 2.60% | 2 | 1.09% |
Dhinakaran Pandiyan | 154 | 2.12% | 3 | 1.64% |
Chris Wilson | 133 | 1.83% | 7 | 3.83% |
David Henningsson | 118 | 1.62% | 2 | 1.09% |
Jesse Barnes | 98 | 1.35% | 3 | 1.64% |
Radhakrishna Sripada | 94 | 1.29% | 1 | 0.55% |
Lu, Han | 72 | 0.99% | 1 | 0.55% |
Dave Airlie | 68 | 0.94% | 4 | 2.19% |
Jerome Anand | 67 | 0.92% | 2 | 1.09% |
Wambui Karuga | 50 | 0.69% | 1 | 0.55% |
Pankaj Bharadiya | 45 | 0.62% | 1 | 0.55% |
Vinod Govindapillai | 45 | 0.62% | 1 | 0.55% |
Maarten Lankhorst | 40 | 0.55% | 7 | 3.83% |
Matt Roper | 35 | 0.48% | 3 | 1.64% |
David Weinehall | 31 | 0.43% | 1 | 0.55% |
Daniel Vetter | 17 | 0.23% | 5 | 2.73% |
Ander Conselvan de Oliveira | 13 | 0.18% | 4 | 2.19% |
Eric Anholt | 12 | 0.17% | 1 | 0.55% |
Kai-Heng Feng | 7 | 0.10% | 1 | 0.55% |
Rodrigo Vivi | 7 | 0.10% | 2 | 1.09% |
Thierry Reding | 6 | 0.08% | 1 | 0.55% |
Manasi D Navare | 6 | 0.08% | 1 | 0.55% |
Wayne Boyer | 5 | 0.07% | 1 | 0.55% |
Pierre-Louis Bossart | 5 | 0.07% | 1 | 0.55% |
Fengguang Wu | 5 | 0.07% | 1 | 0.55% |
Mika Kahola | 4 | 0.06% | 2 | 1.09% |
Lucas De Marchi | 4 | 0.06% | 2 | 1.09% |
Paulo Zanoni | 3 | 0.04% | 1 | 0.55% |
Shaohua Li | 3 | 0.04% | 1 | 0.55% |
Anshuman Gupta | 2 | 0.03% | 1 | 0.55% |
Ankit Nautiyal | 2 | 0.03% | 1 | 0.55% |
Pradeep Bhat | 1 | 0.01% | 1 | 0.55% |
Total | 7271 | 183 |
/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <linux/component.h> #include <linux/kernel.h> #include <drm/drm_edid.h> #include <drm/i915_component.h> #include "i915_drv.h" #include "intel_atomic.h" #include "intel_audio.h" #include "intel_audio_regs.h" #include "intel_cdclk.h" #include "intel_crtc.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_lpe_audio.h" /** * DOC: High Definition Audio over HDMI and Display Port * * The graphics and audio drivers together support High Definition Audio over * HDMI and Display Port. The audio programming sequences are divided into audio * codec and controller enable and disable sequences. The graphics driver * handles the audio codec sequences, while the audio driver handles the audio * controller sequences. * * The disable sequences must be performed before disabling the transcoder or * port. The enable sequences may only be performed after enabling the * transcoder and port, and after completed link training. Therefore the audio * enable/disable sequences are part of the modeset sequence. * * The codec and controller sequences could be done either parallel or serial, * but generally the ELDV/PD change in the codec sequence indicates to the audio * driver that the controller sequence should start. Indeed, most of the * co-operation between the graphics and audio drivers is handled via audio * related registers. (The notable exception is the power management, not * covered here.) * * The struct &i915_audio_component is used to interact between the graphics * and audio drivers. The struct &i915_audio_component_ops @ops in it is * defined in graphics driver and called in audio driver. The * struct &i915_audio_component_audio_ops @audio_ops is called from i915 driver. */ struct intel_audio_funcs { void (*audio_codec_enable)(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state); void (*audio_codec_disable)(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state); void (*audio_codec_get_config)(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state); }; /* DP N/M table */ #define LC_810M 810000 #define LC_540M 540000 #define LC_270M 270000 #define LC_162M 162000 struct dp_aud_n_m { int sample_rate; int clock; u16 m; u16 n; }; struct hdmi_aud_ncts { int sample_rate; int clock; int n; int cts; }; /* Values according to DP 1.4 Table 2-104 */ static const struct dp_aud_n_m dp_aud_n_m[] = { { 32000, LC_162M, 1024, 10125 }, { 44100, LC_162M, 784, 5625 }, { 48000, LC_162M, 512, 3375 }, { 64000, LC_162M, 2048, 10125 }, { 88200, LC_162M, 1568, 5625 }, { 96000, LC_162M, 1024, 3375 }, { 128000, LC_162M, 4096, 10125 }, { 176400, LC_162M, 3136, 5625 }, { 192000, LC_162M, 2048, 3375 }, { 32000, LC_270M, 1024, 16875 }, { 44100, LC_270M, 784, 9375 }, { 48000, LC_270M, 512, 5625 }, { 64000, LC_270M, 2048, 16875 }, { 88200, LC_270M, 1568, 9375 }, { 96000, LC_270M, 1024, 5625 }, { 128000, LC_270M, 4096, 16875 }, { 176400, LC_270M, 3136, 9375 }, { 192000, LC_270M, 2048, 5625 }, { 32000, LC_540M, 1024, 33750 }, { 44100, LC_540M, 784, 18750 }, { 48000, LC_540M, 512, 11250 }, { 64000, LC_540M, 2048, 33750 }, { 88200, LC_540M, 1568, 18750 }, { 96000, LC_540M, 1024, 11250 }, { 128000, LC_540M, 4096, 33750 }, { 176400, LC_540M, 3136, 18750 }, { 192000, LC_540M, 2048, 11250 }, { 32000, LC_810M, 1024, 50625 }, { 44100, LC_810M, 784, 28125 }, { 48000, LC_810M, 512, 16875 }, { 64000, LC_810M, 2048, 50625 }, { 88200, LC_810M, 1568, 28125 }, { 96000, LC_810M, 1024, 16875 }, { 128000, LC_810M, 4096, 50625 }, { 176400, LC_810M, 3136, 28125 }, { 192000, LC_810M, 2048, 16875 }, }; static const struct dp_aud_n_m * audio_config_dp_get_n_m(const struct intel_crtc_state *crtc_state, int rate) { int i; for (i = 0; i < ARRAY_SIZE(dp_aud_n_m); i++) { if (rate == dp_aud_n_m[i].sample_rate && crtc_state->port_clock == dp_aud_n_m[i].clock) return &dp_aud_n_m[i]; } return NULL; } static const struct { int clock; u32 config; } hdmi_audio_clock[] = { { 25175, AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 }, { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */ { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 }, { 27027, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 }, { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 }, { 54054, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 }, { 74176, AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 }, { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 }, { 148352, AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 }, { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 }, { 296703, AUD_CONFIG_PIXEL_CLOCK_HDMI_296703 }, { 297000, AUD_CONFIG_PIXEL_CLOCK_HDMI_297000 }, { 593407, AUD_CONFIG_PIXEL_CLOCK_HDMI_593407 }, { 594000, AUD_CONFIG_PIXEL_CLOCK_HDMI_594000 }, }; /* HDMI N/CTS table */ #define TMDS_297M 297000 #define TMDS_296M 296703 #define TMDS_594M 594000 #define TMDS_593M 593407 static const struct hdmi_aud_ncts hdmi_aud_ncts_24bpp[] = { { 32000, TMDS_296M, 5824, 421875 }, { 32000, TMDS_297M, 3072, 222750 }, { 32000, TMDS_593M, 5824, 843750 }, { 32000, TMDS_594M, 3072, 445500 }, { 44100, TMDS_296M, 4459, 234375 }, { 44100, TMDS_297M, 4704, 247500 }, { 44100, TMDS_593M, 8918, 937500 }, { 44100, TMDS_594M, 9408, 990000 }, { 88200, TMDS_296M, 8918, 234375 }, { 88200, TMDS_297M, 9408, 247500 }, { 88200, TMDS_593M, 17836, 937500 }, { 88200, TMDS_594M, 18816, 990000 }, { 176400, TMDS_296M, 17836, 234375 }, { 176400, TMDS_297M, 18816, 247500 }, { 176400, TMDS_593M, 35672, 937500 }, { 176400, TMDS_594M, 37632, 990000 }, { 48000, TMDS_296M, 5824, 281250 }, { 48000, TMDS_297M, 5120, 247500 }, { 48000, TMDS_593M, 5824, 562500 }, { 48000, TMDS_594M, 6144, 594000 }, { 96000, TMDS_296M, 11648, 281250 }, { 96000, TMDS_297M, 10240, 247500 }, { 96000, TMDS_593M, 11648, 562500 }, { 96000, TMDS_594M, 12288, 594000 }, { 192000, TMDS_296M, 23296, 281250 }, { 192000, TMDS_297M, 20480, 247500 }, { 192000, TMDS_593M, 23296, 562500 }, { 192000, TMDS_594M, 24576, 594000 }, }; /* Appendix C - N & CTS values for deep color from HDMI 2.0 spec*/ /* HDMI N/CTS table for 10 bit deep color(30 bpp)*/ #define TMDS_371M 371250 #define TMDS_370M 370878 static const struct hdmi_aud_ncts hdmi_aud_ncts_30bpp[] = { { 32000, TMDS_370M, 5824, 527344 }, { 32000, TMDS_371M, 6144, 556875 }, { 44100, TMDS_370M, 8918, 585938 }, { 44100, TMDS_371M, 4704, 309375 }, { 88200, TMDS_370M, 17836, 585938 }, { 88200, TMDS_371M, 9408, 309375 }, { 176400, TMDS_370M, 35672, 585938 }, { 176400, TMDS_371M, 18816, 309375 }, { 48000, TMDS_370M, 11648, 703125 }, { 48000, TMDS_371M, 5120, 309375 }, { 96000, TMDS_370M, 23296, 703125 }, { 96000, TMDS_371M, 10240, 309375 }, { 192000, TMDS_370M, 46592, 703125 }, { 192000, TMDS_371M, 20480, 309375 }, }; /* HDMI N/CTS table for 12 bit deep color(36 bpp)*/ #define TMDS_445_5M 445500 #define TMDS_445M 445054 static const struct hdmi_aud_ncts hdmi_aud_ncts_36bpp[] = { { 32000, TMDS_445M, 5824, 632813 }, { 32000, TMDS_445_5M, 4096, 445500 }, { 44100, TMDS_445M, 8918, 703125 }, { 44100, TMDS_445_5M, 4704, 371250 }, { 88200, TMDS_445M, 17836, 703125 }, { 88200, TMDS_445_5M, 9408, 371250 }, { 176400, TMDS_445M, 35672, 703125 }, { 176400, TMDS_445_5M, 18816, 371250 }, { 48000, TMDS_445M, 5824, 421875 }, { 48000, TMDS_445_5M, 5120, 371250 }, { 96000, TMDS_445M, 11648, 421875 }, { 96000, TMDS_445_5M, 10240, 371250 }, { 192000, TMDS_445M, 23296, 421875 }, { 192000, TMDS_445_5M, 20480, 371250 }, }; /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */ static u32 audio_config_hdmi_pixel_clock(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int i; for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) { if (adjusted_mode->crtc_clock == hdmi_audio_clock[i].clock) break; } if (DISPLAY_VER(i915) < 12 && adjusted_mode->crtc_clock > 148500) i = ARRAY_SIZE(hdmi_audio_clock); if (i == ARRAY_SIZE(hdmi_audio_clock)) { drm_dbg_kms(&i915->drm, "HDMI audio pixel clock setting for %d not found, falling back to defaults\n", adjusted_mode->crtc_clock); i = 1; } drm_dbg_kms(&i915->drm, "Configuring HDMI audio for pixel clock %d (0x%08x)\n", hdmi_audio_clock[i].clock, hdmi_audio_clock[i].config); return hdmi_audio_clock[i].config; } static int audio_config_hdmi_get_n(const struct intel_crtc_state *crtc_state, int rate) { const struct hdmi_aud_ncts *hdmi_ncts_table; int i, size; if (crtc_state->pipe_bpp == 36) { hdmi_ncts_table = hdmi_aud_ncts_36bpp; size = ARRAY_SIZE(hdmi_aud_ncts_36bpp); } else if (crtc_state->pipe_bpp == 30) { hdmi_ncts_table = hdmi_aud_ncts_30bpp; size = ARRAY_SIZE(hdmi_aud_ncts_30bpp); } else { hdmi_ncts_table = hdmi_aud_ncts_24bpp; size = ARRAY_SIZE(hdmi_aud_ncts_24bpp); } for (i = 0; i < size; i++) { if (rate == hdmi_ncts_table[i].sample_rate && crtc_state->port_clock == hdmi_ncts_table[i].clock) { return hdmi_ncts_table[i].n; } } return 0; } /* ELD buffer size in dwords */ static int g4x_eld_buffer_size(struct drm_i915_private *i915) { u32 tmp; tmp = intel_de_read(i915, G4X_AUD_CNTL_ST); return REG_FIELD_GET(G4X_ELD_BUFFER_SIZE_MASK, tmp); } static void g4x_audio_codec_get_config(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); u32 *eld = (u32 *)crtc_state->eld; int eld_buffer_size, len, i; u32 tmp; tmp = intel_de_read(i915, G4X_AUD_CNTL_ST); if ((tmp & G4X_ELD_VALID) == 0) return; intel_de_rmw(i915, G4X_AUD_CNTL_ST, G4X_ELD_ADDRESS_MASK, 0); eld_buffer_size = g4x_eld_buffer_size(i915); len = min_t(int, sizeof(crtc_state->eld) / 4, eld_buffer_size); for (i = 0; i < len; i++) eld[i] = intel_de_read(i915, G4X_HDMIW_HDMIEDID); } static void g4x_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); /* Invalidate ELD */ intel_de_rmw(i915, G4X_AUD_CNTL_ST, G4X_ELD_VALID, 0); intel_crtc_wait_for_next_vblank(crtc); intel_crtc_wait_for_next_vblank(crtc); } static void g4x_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const u32 *eld = (const u32 *)crtc_state->eld; int eld_buffer_size, len, i; intel_crtc_wait_for_next_vblank(crtc); intel_de_rmw(i915, G4X_AUD_CNTL_ST, G4X_ELD_VALID | G4X_ELD_ADDRESS_MASK, 0); eld_buffer_size = g4x_eld_buffer_size(i915); len = min(drm_eld_size(crtc_state->eld) / 4, eld_buffer_size); for (i = 0; i < len; i++) intel_de_write(i915, G4X_HDMIW_HDMIEDID, eld[i]); for (; i < eld_buffer_size; i++) intel_de_write(i915, G4X_HDMIW_HDMIEDID, 0); drm_WARN_ON(&i915->drm, (intel_de_read(i915, G4X_AUD_CNTL_ST) & G4X_ELD_ADDRESS_MASK) != 0); intel_de_rmw(i915, G4X_AUD_CNTL_ST, 0, G4X_ELD_VALID); } static void hsw_dp_audio_config_update(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct i915_audio_component *acomp = i915->display.audio.component; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; enum port port = encoder->port; const struct dp_aud_n_m *nm; int rate; u32 tmp; rate = acomp ? acomp->aud_sample_rate[port] : 0; nm = audio_config_dp_get_n_m(crtc_state, rate); if (nm) drm_dbg_kms(&i915->drm, "using Maud %u, Naud %u\n", nm->m, nm->n); else drm_dbg_kms(&i915->drm, "using automatic Maud, Naud\n"); tmp = intel_de_read(i915, HSW_AUD_CFG(cpu_transcoder)); tmp &= ~AUD_CONFIG_N_VALUE_INDEX; tmp &= ~AUD_CONFIG_PIXEL_CLOCK_HDMI_MASK; tmp &= ~AUD_CONFIG_N_PROG_ENABLE; tmp |= AUD_CONFIG_N_VALUE_INDEX; if (nm) { tmp &= ~AUD_CONFIG_N_MASK; tmp |= AUD_CONFIG_N(nm->n); tmp |= AUD_CONFIG_N_PROG_ENABLE; } intel_de_write(i915, HSW_AUD_CFG(cpu_transcoder), tmp); tmp = intel_de_read(i915, HSW_AUD_M_CTS_ENABLE(cpu_transcoder)); tmp &= ~AUD_CONFIG_M_MASK; tmp &= ~AUD_M_CTS_M_VALUE_INDEX; tmp &= ~AUD_M_CTS_M_PROG_ENABLE; if (nm) { tmp |= nm->m; tmp |= AUD_M_CTS_M_VALUE_INDEX; tmp |= AUD_M_CTS_M_PROG_ENABLE; } intel_de_write(i915, HSW_AUD_M_CTS_ENABLE(cpu_transcoder), tmp); } static void hsw_hdmi_audio_config_update(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct i915_audio_component *acomp = i915->display.audio.component; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; enum port port = encoder->port; int n, rate; u32 tmp; rate = acomp ? acomp->aud_sample_rate[port] : 0; tmp = intel_de_read(i915, HSW_AUD_CFG(cpu_transcoder)); tmp &= ~AUD_CONFIG_N_VALUE_INDEX; tmp &= ~AUD_CONFIG_PIXEL_CLOCK_HDMI_MASK; tmp &= ~AUD_CONFIG_N_PROG_ENABLE; tmp |= audio_config_hdmi_pixel_clock(crtc_state); n = audio_config_hdmi_get_n(crtc_state, rate); if (n != 0) { drm_dbg_kms(&i915->drm, "using N %d\n", n); tmp &= ~AUD_CONFIG_N_MASK; tmp |= AUD_CONFIG_N(n); tmp |= AUD_CONFIG_N_PROG_ENABLE; } else { drm_dbg_kms(&i915->drm, "using automatic N\n"); } intel_de_write(i915, HSW_AUD_CFG(cpu_transcoder), tmp); /* * Let's disable "Enable CTS or M Prog bit" * and let HW calculate the value */ tmp = intel_de_read(i915, HSW_AUD_M_CTS_ENABLE(cpu_transcoder)); tmp &= ~AUD_M_CTS_M_PROG_ENABLE; tmp &= ~AUD_M_CTS_M_VALUE_INDEX; intel_de_write(i915, HSW_AUD_M_CTS_ENABLE(cpu_transcoder), tmp); } static void hsw_audio_config_update(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_dp_encoder(crtc_state)) hsw_dp_audio_config_update(encoder, crtc_state); else hsw_hdmi_audio_config_update(encoder, crtc_state); } static void hsw_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; mutex_lock(&i915->display.audio.mutex); /* Disable timestamps */ intel_de_rmw(i915, HSW_AUD_CFG(cpu_transcoder), AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_UPPER_N_MASK | AUD_CONFIG_LOWER_N_MASK, AUD_CONFIG_N_PROG_ENABLE | (intel_crtc_has_dp_encoder(old_crtc_state) ? AUD_CONFIG_N_VALUE_INDEX : 0)); /* Invalidate ELD */ intel_de_rmw(i915, HSW_AUD_PIN_ELD_CP_VLD, AUDIO_ELD_VALID(cpu_transcoder), 0); intel_crtc_wait_for_next_vblank(crtc); intel_crtc_wait_for_next_vblank(crtc); /* Disable audio presence detect */ intel_de_rmw(i915, HSW_AUD_PIN_ELD_CP_VLD, AUDIO_OUTPUT_ENABLE(cpu_transcoder), 0); mutex_unlock(&i915->display.audio.mutex); } static unsigned int calc_hblank_early_prog(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); unsigned int link_clks_available, link_clks_required; unsigned int tu_data, tu_line, link_clks_active; unsigned int h_active, h_total, hblank_delta, pixel_clk; unsigned int fec_coeff, cdclk, vdsc_bpp; unsigned int link_clk, lanes; unsigned int hblank_rise; h_active = crtc_state->hw.adjusted_mode.crtc_hdisplay; h_total = crtc_state->hw.adjusted_mode.crtc_htotal; pixel_clk = crtc_state->hw.adjusted_mode.crtc_clock; vdsc_bpp = crtc_state->dsc.compressed_bpp; cdclk = i915->display.cdclk.hw.cdclk; /* fec= 0.972261, using rounding multiplier of 1000000 */ fec_coeff = 972261; link_clk = crtc_state->port_clock; lanes = crtc_state->lane_count; drm_dbg_kms(&i915->drm, "h_active = %u link_clk = %u :" "lanes = %u vdsc_bpp = %u cdclk = %u\n", h_active, link_clk, lanes, vdsc_bpp, cdclk); if (WARN_ON(!link_clk || !pixel_clk || !lanes || !vdsc_bpp || !cdclk)) return 0; link_clks_available = (h_total - h_active) * link_clk / pixel_clk - 28; link_clks_required = DIV_ROUND_UP(192000 * h_total, 1000 * pixel_clk) * (48 / lanes + 2); if (link_clks_available > link_clks_required) hblank_delta = 32; else hblank_delta = DIV64_U64_ROUND_UP(mul_u32_u32(5 * (link_clk + cdclk), pixel_clk), mul_u32_u32(link_clk, cdclk)); tu_data = div64_u64(mul_u32_u32(pixel_clk * vdsc_bpp * 8, 1000000), mul_u32_u32(link_clk * lanes, fec_coeff)); tu_line = div64_u64(h_active * mul_u32_u32(link_clk, fec_coeff), mul_u32_u32(64 * pixel_clk, 1000000)); link_clks_active = (tu_line - 1) * 64 + tu_data; hblank_rise = (link_clks_active + 6 * DIV_ROUND_UP(link_clks_active, 250) + 4) * pixel_clk / link_clk; return h_active - hblank_rise + hblank_delta; } static unsigned int calc_samples_room(const struct intel_crtc_state *crtc_state) { unsigned int h_active, h_total, pixel_clk; unsigned int link_clk, lanes; h_active = crtc_state->hw.adjusted_mode.hdisplay; h_total = crtc_state->hw.adjusted_mode.htotal; pixel_clk = crtc_state->hw.adjusted_mode.clock; link_clk = crtc_state->port_clock; lanes = crtc_state->lane_count; return ((h_total - h_active) * link_clk - 12 * pixel_clk) / (pixel_clk * (48 / lanes + 2)); } static void enable_audio_dsc_wa(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; unsigned int hblank_early_prog, samples_room; unsigned int val; if (DISPLAY_VER(i915) < 11) return; val = intel_de_read(i915, AUD_CONFIG_BE); if (DISPLAY_VER(i915) == 11) val |= HBLANK_EARLY_ENABLE_ICL(pipe); else if (DISPLAY_VER(i915) >= 12) val |= HBLANK_EARLY_ENABLE_TGL(pipe); if (crtc_state->dsc.compression_enable && crtc_state->hw.adjusted_mode.hdisplay >= 3840 && crtc_state->hw.adjusted_mode.vdisplay >= 2160) { /* Get hblank early enable value required */ val &= ~HBLANK_START_COUNT_MASK(pipe); hblank_early_prog = calc_hblank_early_prog(encoder, crtc_state); if (hblank_early_prog < 32) val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_32); else if (hblank_early_prog < 64) val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_64); else if (hblank_early_prog < 96) val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_96); else val |= HBLANK_START_COUNT(pipe, HBLANK_START_COUNT_128); /* Get samples room value required */ val &= ~NUMBER_SAMPLES_PER_LINE_MASK(pipe); samples_room = calc_samples_room(crtc_state); if (samples_room < 3) val |= NUMBER_SAMPLES_PER_LINE(pipe, samples_room); else /* Program 0 i.e "All Samples available in buffer" */ val |= NUMBER_SAMPLES_PER_LINE(pipe, 0x0); } intel_de_write(i915, AUD_CONFIG_BE, val); } static void hsw_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; mutex_lock(&i915->display.audio.mutex); /* Enable Audio WA for 4k DSC usecases */ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP)) enable_audio_dsc_wa(encoder, crtc_state); /* Enable audio presence detect */ intel_de_rmw(i915, HSW_AUD_PIN_ELD_CP_VLD, 0, AUDIO_OUTPUT_ENABLE(cpu_transcoder)); intel_crtc_wait_for_next_vblank(crtc); /* Invalidate ELD */ intel_de_rmw(i915, HSW_AUD_PIN_ELD_CP_VLD, AUDIO_ELD_VALID(cpu_transcoder), 0); /* * The audio componenent is used to convey the ELD * instead using of the hardware ELD buffer. */ /* Enable timestamps */ hsw_audio_config_update(encoder, crtc_state); mutex_unlock(&i915->display.audio.mutex); } struct ibx_audio_regs { i915_reg_t hdmiw_hdmiedid, aud_config, aud_cntl_st, aud_cntrl_st2; }; static void ibx_audio_regs_init(struct drm_i915_private *i915, enum pipe pipe, struct ibx_audio_regs *regs) { if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { regs->hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe); regs->aud_config = VLV_AUD_CFG(pipe); regs->aud_cntl_st = VLV_AUD_CNTL_ST(pipe); regs->aud_cntrl_st2 = VLV_AUD_CNTL_ST2; } else if (HAS_PCH_CPT(i915)) { regs->hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe); regs->aud_config = CPT_AUD_CFG(pipe); regs->aud_cntl_st = CPT_AUD_CNTL_ST(pipe); regs->aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; } else if (HAS_PCH_IBX(i915)) { regs->hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe); regs->aud_config = IBX_AUD_CFG(pipe); regs->aud_cntl_st = IBX_AUD_CNTL_ST(pipe); regs->aud_cntrl_st2 = IBX_AUD_CNTL_ST2; } } static void ibx_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); enum port port = encoder->port; enum pipe pipe = crtc->pipe; struct ibx_audio_regs regs; if (drm_WARN_ON(&i915->drm, port == PORT_A)) return; ibx_audio_regs_init(i915, pipe, ®s); mutex_lock(&i915->display.audio.mutex); /* Disable timestamps */ intel_de_rmw(i915, regs.aud_config, AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_UPPER_N_MASK | AUD_CONFIG_LOWER_N_MASK, AUD_CONFIG_N_PROG_ENABLE | (intel_crtc_has_dp_encoder(old_crtc_state) ? AUD_CONFIG_N_VALUE_INDEX : 0)); /* Invalidate ELD */ intel_de_rmw(i915, regs.aud_cntrl_st2, IBX_ELD_VALID(port), 0); mutex_unlock(&i915->display.audio.mutex); intel_crtc_wait_for_next_vblank(crtc); intel_crtc_wait_for_next_vblank(crtc); } static void ibx_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum port port = encoder->port; enum pipe pipe = crtc->pipe; struct ibx_audio_regs regs; if (drm_WARN_ON(&i915->drm, port == PORT_A)) return; intel_crtc_wait_for_next_vblank(crtc); ibx_audio_regs_init(i915, pipe, ®s); mutex_lock(&i915->display.audio.mutex); /* Invalidate ELD */ intel_de_rmw(i915, regs.aud_cntrl_st2, IBX_ELD_VALID(port), 0); /* * The audio componenent is used to convey the ELD * instead using of the hardware ELD buffer. */ /* Enable timestamps */ intel_de_rmw(i915, regs.aud_config, AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE | AUD_CONFIG_PIXEL_CLOCK_HDMI_MASK, (intel_crtc_has_dp_encoder(crtc_state) ? AUD_CONFIG_N_VALUE_INDEX : audio_config_hdmi_pixel_clock(crtc_state))); mutex_unlock(&i915->display.audio.mutex); } void intel_audio_sdp_split_update(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum transcoder trans = crtc_state->cpu_transcoder; if (HAS_DP20(i915)) intel_de_rmw(i915, AUD_DP_2DOT0_CTRL(trans), AUD_ENABLE_SDP_SPLIT, crtc_state->sdp_split_enable ? AUD_ENABLE_SDP_SPLIT : 0); } bool intel_audio_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct drm_connector *connector = conn_state->connector; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; if (!connector->eld[0]) { drm_dbg_kms(&i915->drm, "Bogus ELD on [CONNECTOR:%d:%s]\n", connector->base.id, connector->name); return false; } BUILD_BUG_ON(sizeof(crtc_state->eld) != sizeof(connector->eld)); memcpy(crtc_state->eld, connector->eld, sizeof(crtc_state->eld)); crtc_state->eld[6] = drm_av_sync_delay(connector, adjusted_mode) / 2; return true; } /** * intel_audio_codec_enable - Enable the audio codec for HD audio * @encoder: encoder on which to enable audio * @crtc_state: pointer to the current crtc state. * @conn_state: pointer to the current connector state. * * The enable sequences may only be performed after enabling the transcoder and * port, and after completed link training. */ void intel_audio_codec_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct i915_audio_component *acomp = i915->display.audio.component; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_connector *connector = to_intel_connector(conn_state->connector); struct intel_audio_state *audio_state; enum port port = encoder->port; enum pipe pipe = crtc->pipe; if (!crtc_state->has_audio) return; drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s][ENCODER:%d:%s] Enable audio codec on [CRTC:%d:%s], %u bytes ELD\n", connector->base.base.id, connector->base.name, encoder->base.base.id, encoder->base.name, crtc->base.base.id, crtc->base.name, drm_eld_size(crtc_state->eld)); if (i915->display.funcs.audio) i915->display.funcs.audio->audio_codec_enable(encoder, crtc_state, conn_state); mutex_lock(&i915->display.audio.mutex); audio_state = &i915->display.audio.state[pipe]; audio_state->encoder = encoder; BUILD_BUG_ON(sizeof(audio_state->eld) != sizeof(crtc_state->eld)); memcpy(audio_state->eld, crtc_state->eld, sizeof(audio_state->eld)); mutex_unlock(&i915->display.audio.mutex); if (acomp && acomp->base.audio_ops && acomp->base.audio_ops->pin_eld_notify) { /* audio drivers expect pipe = -1 to indicate Non-MST cases */ if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) pipe = -1; acomp->base.audio_ops->pin_eld_notify(acomp->base.audio_ops->audio_ptr, (int)port, (int)pipe); } intel_lpe_audio_notify(i915, pipe, port, crtc_state->eld, crtc_state->port_clock, intel_crtc_has_dp_encoder(crtc_state)); } /** * intel_audio_codec_disable - Disable the audio codec for HD audio * @encoder: encoder on which to disable audio * @old_crtc_state: pointer to the old crtc state. * @old_conn_state: pointer to the old connector state. * * The disable sequences must be performed before disabling the transcoder or * port. */ void intel_audio_codec_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct i915_audio_component *acomp = i915->display.audio.component; struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct intel_connector *connector = to_intel_connector(old_conn_state->connector); struct intel_audio_state *audio_state; enum port port = encoder->port; enum pipe pipe = crtc->pipe; if (!old_crtc_state->has_audio) return; drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s][ENCODER:%d:%s] Disable audio codec on [CRTC:%d:%s]\n", connector->base.base.id, connector->base.name, encoder->base.base.id, encoder->base.name, crtc->base.base.id, crtc->base.name); if (i915->display.funcs.audio) i915->display.funcs.audio->audio_codec_disable(encoder, old_crtc_state, old_conn_state); mutex_lock(&i915->display.audio.mutex); audio_state = &i915->display.audio.state[pipe]; audio_state->encoder = NULL; memset(audio_state->eld, 0, sizeof(audio_state->eld)); mutex_unlock(&i915->display.audio.mutex); if (acomp && acomp->base.audio_ops && acomp->base.audio_ops->pin_eld_notify) { /* audio drivers expect pipe = -1 to indicate Non-MST cases */ if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST)) pipe = -1; acomp->base.audio_ops->pin_eld_notify(acomp->base.audio_ops->audio_ptr, (int)port, (int)pipe); } intel_lpe_audio_notify(i915, pipe, port, NULL, 0, false); } static void intel_acomp_get_config(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_audio_state *audio_state; enum pipe pipe = crtc->pipe; mutex_lock(&i915->display.audio.mutex); audio_state = &i915->display.audio.state[pipe]; if (audio_state->encoder) memcpy(crtc_state->eld, audio_state->eld, sizeof(audio_state->eld)); mutex_unlock(&i915->display.audio.mutex); } void intel_audio_codec_get_config(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); if (!crtc_state->has_audio) return; if (i915->display.funcs.audio) i915->display.funcs.audio->audio_codec_get_config(encoder, crtc_state); } static const struct intel_audio_funcs g4x_audio_funcs = { .audio_codec_enable = g4x_audio_codec_enable, .audio_codec_disable = g4x_audio_codec_disable, .audio_codec_get_config = g4x_audio_codec_get_config, }; static const struct intel_audio_funcs ibx_audio_funcs = { .audio_codec_enable = ibx_audio_codec_enable, .audio_codec_disable = ibx_audio_codec_disable, .audio_codec_get_config = intel_acomp_get_config, }; static const struct intel_audio_funcs hsw_audio_funcs = { .audio_codec_enable = hsw_audio_codec_enable, .audio_codec_disable = hsw_audio_codec_disable, .audio_codec_get_config = intel_acomp_get_config, }; /** * intel_audio_hooks_init - Set up chip specific audio hooks * @i915: device private */ void intel_audio_hooks_init(struct drm_i915_private *i915) { if (IS_G4X(i915)) i915->display.funcs.audio = &g4x_audio_funcs; else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915) || HAS_PCH_CPT(i915) || HAS_PCH_IBX(i915)) i915->display.funcs.audio = &ibx_audio_funcs; else if (IS_HASWELL(i915) || DISPLAY_VER(i915) >= 8) i915->display.funcs.audio = &hsw_audio_funcs; } struct aud_ts_cdclk_m_n { u8 m; u16 n; }; void intel_audio_cdclk_change_pre(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 13) intel_de_rmw(i915, AUD_TS_CDCLK_M, AUD_TS_CDCLK_M_EN, 0); } static void get_aud_ts_cdclk_m_n(int refclk, int cdclk, struct aud_ts_cdclk_m_n *aud_ts) { if (refclk == 24000) aud_ts->m = 12; else aud_ts->m = 15; aud_ts->n = cdclk * aud_ts->m / 24000; } void intel_audio_cdclk_change_post(struct drm_i915_private *i915) { struct aud_ts_cdclk_m_n aud_ts; if (DISPLAY_VER(i915) >= 13) { get_aud_ts_cdclk_m_n(i915->display.cdclk.hw.ref, i915->display.cdclk.hw.cdclk, &aud_ts); intel_de_write(i915, AUD_TS_CDCLK_N, aud_ts.n); intel_de_write(i915, AUD_TS_CDCLK_M, aud_ts.m | AUD_TS_CDCLK_M_EN); drm_dbg_kms(&i915->drm, "aud_ts_cdclk set to M=%u, N=%u\n", aud_ts.m, aud_ts.n); } } static int glk_force_audio_cdclk_commit(struct intel_atomic_state *state, struct intel_crtc *crtc, bool enable) { struct intel_cdclk_state *cdclk_state; int ret; /* need to hold at least one crtc lock for the global state */ ret = drm_modeset_lock(&crtc->base.mutex, state->base.acquire_ctx); if (ret) return ret; cdclk_state = intel_atomic_get_cdclk_state(state); if (IS_ERR(cdclk_state)) return PTR_ERR(cdclk_state); cdclk_state->force_min_cdclk = enable ? 2 * 96000 : 0; return drm_atomic_commit(&state->base); } static void glk_force_audio_cdclk(struct drm_i915_private *i915, bool enable) { struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *state; struct intel_crtc *crtc; int ret; crtc = intel_first_crtc(i915); if (!crtc) return; drm_modeset_acquire_init(&ctx, 0); state = drm_atomic_state_alloc(&i915->drm); if (drm_WARN_ON(&i915->drm, !state)) return; state->acquire_ctx = &ctx; retry: ret = glk_force_audio_cdclk_commit(to_intel_atomic_state(state), crtc, enable); if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } drm_WARN_ON(&i915->drm, ret); drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } static unsigned long i915_audio_component_get_power(struct device *kdev) { struct drm_i915_private *i915 = kdev_to_i915(kdev); intel_wakeref_t ret; /* Catch potential impedance mismatches before they occur! */ BUILD_BUG_ON(sizeof(intel_wakeref_t) > sizeof(unsigned long)); ret = intel_display_power_get(i915, POWER_DOMAIN_AUDIO_PLAYBACK); if (i915->display.audio.power_refcount++ == 0) { if (DISPLAY_VER(i915) >= 9) { intel_de_write(i915, AUD_FREQ_CNTRL, i915->display.audio.freq_cntrl); drm_dbg_kms(&i915->drm, "restored AUD_FREQ_CNTRL to 0x%x\n", i915->display.audio.freq_cntrl); } /* Force CDCLK to 2*BCLK as long as we need audio powered. */ if (IS_GEMINILAKE(i915)) glk_force_audio_cdclk(i915, true); if (DISPLAY_VER(i915) >= 10) intel_de_rmw(i915, AUD_PIN_BUF_CTL, 0, AUD_PIN_BUF_ENABLE); } return ret; } static void i915_audio_component_put_power(struct device *kdev, unsigned long cookie) { struct drm_i915_private *i915 = kdev_to_i915(kdev); /* Stop forcing CDCLK to 2*BCLK if no need for audio to be powered. */ if (--i915->display.audio.power_refcount == 0) if (IS_GEMINILAKE(i915)) glk_force_audio_cdclk(i915, false); intel_display_power_put(i915, POWER_DOMAIN_AUDIO_PLAYBACK, cookie); } static void i915_audio_component_codec_wake_override(struct device *kdev, bool enable) { struct drm_i915_private *i915 = kdev_to_i915(kdev); unsigned long cookie; if (DISPLAY_VER(i915) < 9) return; cookie = i915_audio_component_get_power(kdev); /* * Enable/disable generating the codec wake signal, overriding the * internal logic to generate the codec wake to controller. */ intel_de_rmw(i915, HSW_AUD_CHICKENBIT, SKL_AUD_CODEC_WAKE_SIGNAL, 0); usleep_range(1000, 1500); if (enable) { intel_de_rmw(i915, HSW_AUD_CHICKENBIT, 0, SKL_AUD_CODEC_WAKE_SIGNAL); usleep_range(1000, 1500); } i915_audio_component_put_power(kdev, cookie); } /* Get CDCLK in kHz */ static int i915_audio_component_get_cdclk_freq(struct device *kdev) { struct drm_i915_private *i915 = kdev_to_i915(kdev); if (drm_WARN_ON_ONCE(&i915->drm, !HAS_DDI(i915))) return -ENODEV; return i915->display.cdclk.hw.cdclk; } /* * get the intel audio state according to the parameter port and pipe * MST & (pipe >= 0): return the audio.state[pipe].encoder], * when port is matched * MST & (pipe < 0): this is invalid * Non-MST & (pipe >= 0): only pipe = 0 (the first device entry) * will get the right intel_encoder with port matched * Non-MST & (pipe < 0): get the right intel_encoder with port matched */ static struct intel_audio_state *find_audio_state(struct drm_i915_private *i915, int port, int pipe) { /* MST */ if (pipe >= 0) { struct intel_audio_state *audio_state; struct intel_encoder *encoder; if (drm_WARN_ON(&i915->drm, pipe >= ARRAY_SIZE(i915->display.audio.state))) return NULL; audio_state = &i915->display.audio.state[pipe]; encoder = audio_state->encoder; if (encoder && encoder->port == port && encoder->type == INTEL_OUTPUT_DP_MST) return audio_state; } /* Non-MST */ if (pipe > 0) return NULL; for_each_pipe(i915, pipe) { struct intel_audio_state *audio_state; struct intel_encoder *encoder; audio_state = &i915->display.audio.state[pipe]; encoder = audio_state->encoder; if (encoder && encoder->port == port && encoder->type != INTEL_OUTPUT_DP_MST) return audio_state; } return NULL; } static int i915_audio_component_sync_audio_rate(struct device *kdev, int port, int pipe, int rate) { struct drm_i915_private *i915 = kdev_to_i915(kdev); struct i915_audio_component *acomp = i915->display.audio.component; const struct intel_audio_state *audio_state; struct intel_encoder *encoder; struct intel_crtc *crtc; unsigned long cookie; int err = 0; if (!HAS_DDI(i915)) return 0; cookie = i915_audio_component_get_power(kdev); mutex_lock(&i915->display.audio.mutex); audio_state = find_audio_state(i915, port, pipe); if (!audio_state) { drm_dbg_kms(&i915->drm, "Not valid for port %c\n", port_name(port)); err = -ENODEV; goto unlock; } encoder = audio_state->encoder; /* FIXME stop using the legacy crtc pointer */ crtc = to_intel_crtc(encoder->base.crtc); /* port must be valid now, otherwise the pipe will be invalid */ acomp->aud_sample_rate[port] = rate; /* FIXME get rid of the crtc->config stuff */ hsw_audio_config_update(encoder, crtc->config); unlock: mutex_unlock(&i915->display.audio.mutex); i915_audio_component_put_power(kdev, cookie); return err; } static int i915_audio_component_get_eld(struct device *kdev, int port, int pipe, bool *enabled, unsigned char *buf, int max_bytes) { struct drm_i915_private *i915 = kdev_to_i915(kdev); const struct intel_audio_state *audio_state; int ret = 0; mutex_lock(&i915->display.audio.mutex); audio_state = find_audio_state(i915, port, pipe); if (!audio_state) { drm_dbg_kms(&i915->drm, "Not valid for port %c\n", port_name(port)); mutex_unlock(&i915->display.audio.mutex); return -EINVAL; } *enabled = audio_state->encoder != NULL; if (*enabled) { const u8 *eld = audio_state->eld; ret = drm_eld_size(eld); memcpy(buf, eld, min(max_bytes, ret)); } mutex_unlock(&i915->display.audio.mutex); return ret; } static const struct drm_audio_component_ops i915_audio_component_ops = { .owner = THIS_MODULE, .get_power = i915_audio_component_get_power, .put_power = i915_audio_component_put_power, .codec_wake_override = i915_audio_component_codec_wake_override, .get_cdclk_freq = i915_audio_component_get_cdclk_freq, .sync_audio_rate = i915_audio_component_sync_audio_rate, .get_eld = i915_audio_component_get_eld, }; static int i915_audio_component_bind(struct device *i915_kdev, struct device *hda_kdev, void *data) { struct i915_audio_component *acomp = data; struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); int i; if (drm_WARN_ON(&i915->drm, acomp->base.ops || acomp->base.dev)) return -EEXIST; if (drm_WARN_ON(&i915->drm, !device_link_add(hda_kdev, i915_kdev, DL_FLAG_STATELESS))) return -ENOMEM; drm_modeset_lock_all(&i915->drm); acomp->base.ops = &i915_audio_component_ops; acomp->base.dev = i915_kdev; BUILD_BUG_ON(MAX_PORTS != I915_MAX_PORTS); for (i = 0; i < ARRAY_SIZE(acomp->aud_sample_rate); i++) acomp->aud_sample_rate[i] = 0; i915->display.audio.component = acomp; drm_modeset_unlock_all(&i915->drm); return 0; } static void i915_audio_component_unbind(struct device *i915_kdev, struct device *hda_kdev, void *data) { struct i915_audio_component *acomp = data; struct drm_i915_private *i915 = kdev_to_i915(i915_kdev); drm_modeset_lock_all(&i915->drm); acomp->base.ops = NULL; acomp->base.dev = NULL; i915->display.audio.component = NULL; drm_modeset_unlock_all(&i915->drm); device_link_remove(hda_kdev, i915_kdev); if (i915->display.audio.power_refcount) drm_err(&i915->drm, "audio power refcount %d after unbind\n", i915->display.audio.power_refcount); } static const struct component_ops i915_audio_component_bind_ops = { .bind = i915_audio_component_bind, .unbind = i915_audio_component_unbind, }; #define AUD_FREQ_TMODE_SHIFT 14 #define AUD_FREQ_4T 0 #define AUD_FREQ_8T (2 << AUD_FREQ_TMODE_SHIFT) #define AUD_FREQ_PULLCLKS(x) (((x) & 0x3) << 11) #define AUD_FREQ_BCLK_96M BIT(4) #define AUD_FREQ_GEN12 (AUD_FREQ_8T | AUD_FREQ_PULLCLKS(0) | AUD_FREQ_BCLK_96M) #define AUD_FREQ_TGL_BROKEN (AUD_FREQ_8T | AUD_FREQ_PULLCLKS(2) | AUD_FREQ_BCLK_96M) /** * i915_audio_component_init - initialize and register the audio component * @i915: i915 device instance * * This will register with the component framework a child component which * will bind dynamically to the snd_hda_intel driver's corresponding master * component when the latter is registered. During binding the child * initializes an instance of struct i915_audio_component which it receives * from the master. The master can then start to use the interface defined by * this struct. Each side can break the binding at any point by deregistering * its own component after which each side's component unbind callback is * called. * * We ignore any error during registration and continue with reduced * functionality (i.e. without HDMI audio). */ static void i915_audio_component_init(struct drm_i915_private *i915) { u32 aud_freq, aud_freq_init; int ret; ret = component_add_typed(i915->drm.dev, &i915_audio_component_bind_ops, I915_COMPONENT_AUDIO); if (ret < 0) { drm_err(&i915->drm, "failed to add audio component (%d)\n", ret); /* continue with reduced functionality */ return; } if (DISPLAY_VER(i915) >= 9) { aud_freq_init = intel_de_read(i915, AUD_FREQ_CNTRL); if (DISPLAY_VER(i915) >= 12) aud_freq = AUD_FREQ_GEN12; else aud_freq = aud_freq_init; /* use BIOS provided value for TGL and RKL unless it is a known bad value */ if ((IS_TIGERLAKE(i915) || IS_ROCKETLAKE(i915)) && aud_freq_init != AUD_FREQ_TGL_BROKEN) aud_freq = aud_freq_init; drm_dbg_kms(&i915->drm, "use AUD_FREQ_CNTRL of 0x%x (init value 0x%x)\n", aud_freq, aud_freq_init); i915->display.audio.freq_cntrl = aud_freq; } /* init with current cdclk */ intel_audio_cdclk_change_post(i915); i915->display.audio.component_registered = true; } /** * i915_audio_component_cleanup - deregister the audio component * @i915: i915 device instance * * Deregisters the audio component, breaking any existing binding to the * corresponding snd_hda_intel driver's master component. */ static void i915_audio_component_cleanup(struct drm_i915_private *i915) { if (!i915->display.audio.component_registered) return; component_del(i915->drm.dev, &i915_audio_component_bind_ops); i915->display.audio.component_registered = false; } /** * intel_audio_init() - Initialize the audio driver either using * component framework or using lpe audio bridge * @i915: the i915 drm device private data * */ void intel_audio_init(struct drm_i915_private *i915) { if (intel_lpe_audio_init(i915) < 0) i915_audio_component_init(i915); } /** * intel_audio_deinit() - deinitialize the audio driver * @i915: the i915 drm device private data * */ void intel_audio_deinit(struct drm_i915_private *i915) { if (i915->display.audio.lpe.platdev != NULL) intel_lpe_audio_teardown(i915); else i915_audio_component_cleanup(i915); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1