Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 2564 | 45.07% | 31 | 24.41% |
Radhakrishna Sripada | 1115 | 19.60% | 6 | 4.72% |
Stanislav Lisovskiy | 780 | 13.71% | 9 | 7.09% |
Clint Taylor | 291 | 5.12% | 2 | 1.57% |
Jani Nikula | 202 | 3.55% | 15 | 11.81% |
Matt Roper | 131 | 2.30% | 8 | 6.30% |
Chris Wilson | 117 | 2.06% | 9 | 7.09% |
Wambui Karuga | 90 | 1.58% | 2 | 1.57% |
Jesse Barnes | 87 | 1.53% | 4 | 3.15% |
José Roberto de Souza | 60 | 1.05% | 2 | 1.57% |
Maarten Lankhorst | 46 | 0.81% | 8 | 6.30% |
Vinod Govindapillai | 29 | 0.51% | 1 | 0.79% |
Tejas Upadhyay | 28 | 0.49% | 1 | 0.79% |
Dave Airlie | 25 | 0.44% | 3 | 2.36% |
Lucas De Marchi | 16 | 0.28% | 2 | 1.57% |
Lukasz Bartosik | 16 | 0.28% | 1 | 0.79% |
Ashutosh Dixit | 12 | 0.21% | 1 | 0.79% |
Zou Nan hai | 11 | 0.19% | 1 | 0.79% |
Stuart Summers | 9 | 0.16% | 1 | 0.79% |
Damien Lespiau | 8 | 0.14% | 2 | 1.57% |
Tvrtko A. Ursulin | 8 | 0.14% | 3 | 2.36% |
Azhar Shaikh | 6 | 0.11% | 1 | 0.79% |
Kumar, Mahesh | 6 | 0.11% | 1 | 0.79% |
Pankaj Bharadiya | 6 | 0.11% | 1 | 0.79% |
Zhenyu Wang | 6 | 0.11% | 1 | 0.79% |
Imre Deak | 5 | 0.09% | 3 | 2.36% |
Paulo Zanoni | 4 | 0.07% | 3 | 2.36% |
Anusha Srivatsa | 3 | 0.05% | 1 | 0.79% |
Sagar Arun Kamble | 3 | 0.05% | 1 | 0.79% |
Michal Wajdeczko | 3 | 0.05% | 1 | 0.79% |
Shaohua Li | 1 | 0.02% | 1 | 0.79% |
Daniel Vetter | 1 | 0.02% | 1 | 0.79% |
Total | 5689 | 127 |
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include <drm/drm_atomic_state_helper.h> #include "i915_drv.h" #include "i915_reg.h" #include "i915_utils.h" #include "intel_atomic.h" #include "intel_bw.h" #include "intel_cdclk.h" #include "intel_display_core.h" #include "intel_display_types.h" #include "skl_watermark.h" #include "intel_mchbar_regs.h" #include "intel_pcode.h" /* Parameters for Qclk Geyserville (QGV) */ struct intel_qgv_point { u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd; }; struct intel_psf_gv_point { u8 clk; /* clock in multiples of 16.6666 MHz */ }; struct intel_qgv_info { struct intel_qgv_point points[I915_NUM_QGV_POINTS]; struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS]; u8 num_points; u8 num_psf_points; u8 t_bl; u8 max_numchannels; u8 channel_width; u8 deinterleave; }; static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv, struct intel_qgv_point *sp, int point) { u32 dclk_ratio, dclk_reference; u32 val; val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC); dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val); if (val & DG1_QCLK_REFERENCE) dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */ else dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */ sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000); val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU); if (val & DG1_GEAR_TYPE) sp->dclk *= 2; if (sp->dclk == 0) return -EINVAL; val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR); sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val); sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val); val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH); sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val); sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val); sp->t_rc = sp->t_rp + sp->t_ras; return 0; } static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv, struct intel_qgv_point *sp, int point) { u32 val = 0, val2 = 0; u16 dclk; int ret; ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point), &val, &val2); if (ret) return ret; dclk = val & 0xffff; sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000); sp->t_rp = (val & 0xff0000) >> 16; sp->t_rcd = (val & 0xff000000) >> 24; sp->t_rdpre = val2 & 0xff; sp->t_ras = (val2 & 0xff00) >> 8; sp->t_rc = sp->t_rp + sp->t_ras; return 0; } static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv, struct intel_psf_gv_point *points) { u32 val = 0; int ret; int i; ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO | ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL); if (ret) return ret; for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) { points[i].clk = val & 0xff; val >>= 8; } return 0; } int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv, u32 points_mask) { int ret; /* bspec says to keep retrying for at least 1 ms */ ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG, points_mask, ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK, ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE, 1); if (ret < 0) { drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask); return ret; } return 0; } static int mtl_read_qgv_point_info(struct drm_i915_private *dev_priv, struct intel_qgv_point *sp, int point) { u32 val, val2; u16 dclk; val = intel_uncore_read(&dev_priv->uncore, MTL_MEM_SS_INFO_QGV_POINT_LOW(point)); val2 = intel_uncore_read(&dev_priv->uncore, MTL_MEM_SS_INFO_QGV_POINT_HIGH(point)); dclk = REG_FIELD_GET(MTL_DCLK_MASK, val); sp->dclk = DIV_ROUND_UP((16667 * dclk), 1000); sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val); sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val); sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2); sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2); sp->t_rc = sp->t_rp + sp->t_ras; return 0; } static int intel_read_qgv_point_info(struct drm_i915_private *dev_priv, struct intel_qgv_point *sp, int point) { if (DISPLAY_VER(dev_priv) >= 14) return mtl_read_qgv_point_info(dev_priv, sp, point); else if (IS_DG1(dev_priv)) return dg1_mchbar_read_qgv_point_info(dev_priv, sp, point); else return icl_pcode_read_qgv_point_info(dev_priv, sp, point); } static int icl_get_qgv_points(struct drm_i915_private *dev_priv, struct intel_qgv_info *qi, bool is_y_tile) { const struct dram_info *dram_info = &dev_priv->dram_info; int i, ret; qi->num_points = dram_info->num_qgv_points; qi->num_psf_points = dram_info->num_psf_gv_points; if (DISPLAY_VER(dev_priv) >= 14) { switch (dram_info->type) { case INTEL_DRAM_DDR4: qi->t_bl = 4; qi->max_numchannels = 2; qi->channel_width = 64; qi->deinterleave = 2; break; case INTEL_DRAM_DDR5: qi->t_bl = 8; qi->max_numchannels = 4; qi->channel_width = 32; qi->deinterleave = 2; break; case INTEL_DRAM_LPDDR4: case INTEL_DRAM_LPDDR5: qi->t_bl = 16; qi->max_numchannels = 8; qi->channel_width = 16; qi->deinterleave = 4; break; default: MISSING_CASE(dram_info->type); return -EINVAL; } } else if (DISPLAY_VER(dev_priv) >= 12) { switch (dram_info->type) { case INTEL_DRAM_DDR4: qi->t_bl = is_y_tile ? 8 : 4; qi->max_numchannels = 2; qi->channel_width = 64; qi->deinterleave = is_y_tile ? 1 : 2; break; case INTEL_DRAM_DDR5: qi->t_bl = is_y_tile ? 16 : 8; qi->max_numchannels = 4; qi->channel_width = 32; qi->deinterleave = is_y_tile ? 1 : 2; break; case INTEL_DRAM_LPDDR4: if (IS_ROCKETLAKE(dev_priv)) { qi->t_bl = 8; qi->max_numchannels = 4; qi->channel_width = 32; qi->deinterleave = 2; break; } fallthrough; case INTEL_DRAM_LPDDR5: qi->t_bl = 16; qi->max_numchannels = 8; qi->channel_width = 16; qi->deinterleave = is_y_tile ? 2 : 4; break; default: qi->t_bl = 16; qi->max_numchannels = 1; break; } } else if (DISPLAY_VER(dev_priv) == 11) { qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8; qi->max_numchannels = 1; } if (drm_WARN_ON(&dev_priv->drm, qi->num_points > ARRAY_SIZE(qi->points))) qi->num_points = ARRAY_SIZE(qi->points); for (i = 0; i < qi->num_points; i++) { struct intel_qgv_point *sp = &qi->points[i]; ret = intel_read_qgv_point_info(dev_priv, sp, i); if (ret) return ret; drm_dbg_kms(&dev_priv->drm, "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n", i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras, sp->t_rcd, sp->t_rc); } if (qi->num_psf_points > 0) { ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points); if (ret) { drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n"); qi->num_psf_points = 0; } for (i = 0; i < qi->num_psf_points; i++) drm_dbg_kms(&dev_priv->drm, "PSF GV %d: CLK=%d \n", i, qi->psf_points[i].clk); } return 0; } static int adl_calc_psf_bw(int clk) { /* * clk is multiples of 16.666MHz (100/6) * According to BSpec PSF GV bandwidth is * calculated as BW = 64 * clk * 16.666Mhz */ return DIV_ROUND_CLOSEST(64 * clk * 100, 6); } static int icl_sagv_max_dclk(const struct intel_qgv_info *qi) { u16 dclk = 0; int i; for (i = 0; i < qi->num_points; i++) dclk = max(dclk, qi->points[i].dclk); return dclk; } struct intel_sa_info { u16 displayrtids; u8 deburst, deprogbwlimit, derating; }; static const struct intel_sa_info icl_sa_info = { .deburst = 8, .deprogbwlimit = 25, /* GB/s */ .displayrtids = 128, .derating = 10, }; static const struct intel_sa_info tgl_sa_info = { .deburst = 16, .deprogbwlimit = 34, /* GB/s */ .displayrtids = 256, .derating = 10, }; static const struct intel_sa_info rkl_sa_info = { .deburst = 8, .deprogbwlimit = 20, /* GB/s */ .displayrtids = 128, .derating = 10, }; static const struct intel_sa_info adls_sa_info = { .deburst = 16, .deprogbwlimit = 38, /* GB/s */ .displayrtids = 256, .derating = 10, }; static const struct intel_sa_info adlp_sa_info = { .deburst = 16, .deprogbwlimit = 38, /* GB/s */ .displayrtids = 256, .derating = 20, }; static const struct intel_sa_info mtl_sa_info = { .deburst = 32, .deprogbwlimit = 38, /* GB/s */ .displayrtids = 256, .derating = 20, }; static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa) { struct intel_qgv_info qi = {}; bool is_y_tile = true; /* assume y tile may be used */ int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels); int ipqdepth, ipqdepthpch = 16; int dclk_max; int maxdebw; int num_groups = ARRAY_SIZE(dev_priv->display.bw.max); int i, ret; ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile); if (ret) { drm_dbg_kms(&dev_priv->drm, "Failed to get memory subsystem information, ignoring bandwidth limits"); return ret; } dclk_max = icl_sagv_max_dclk(&qi); maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10); ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); for (i = 0; i < num_groups; i++) { struct intel_bw_info *bi = &dev_priv->display.bw.max[i]; int clpchgroup; int j; clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; bi->num_qgv_points = qi.num_points; bi->num_psf_gv_points = qi.num_psf_points; for (j = 0; j < qi.num_points; j++) { const struct intel_qgv_point *sp = &qi.points[j]; int ct, bw; /* * Max row cycle time * * FIXME what is the logic behind the * assumed burst length? */ ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); bi->deratedbw[j] = min(maxdebw, bw * (100 - sa->derating) / 100); drm_dbg_kms(&dev_priv->drm, "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", i, j, bi->num_planes, bi->deratedbw[j]); } } /* * In case if SAGV is disabled in BIOS, we always get 1 * SAGV point, but we can't send PCode commands to restrict it * as it will fail and pointless anyway. */ if (qi.num_points == 1) dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED; else dev_priv->display.sagv.status = I915_SAGV_ENABLED; return 0; } static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa) { struct intel_qgv_info qi = {}; const struct dram_info *dram_info = &dev_priv->dram_info; bool is_y_tile = true; /* assume y tile may be used */ int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels); int ipqdepth, ipqdepthpch = 16; int dclk_max; int maxdebw, peakbw; int clperchgroup; int num_groups = ARRAY_SIZE(dev_priv->display.bw.max); int i, ret; ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile); if (ret) { drm_dbg_kms(&dev_priv->drm, "Failed to get memory subsystem information, ignoring bandwidth limits"); return ret; } if (DISPLAY_VER(dev_priv) < 14 && (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5)) num_channels *= 2; qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2); if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12) qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1); if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels) drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels."); if (qi.max_numchannels != 0) num_channels = min_t(u8, num_channels, qi.max_numchannels); dclk_max = icl_sagv_max_dclk(&qi); peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max; maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */ ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels); /* * clperchgroup = 4kpagespermempage * clperchperblock, * clperchperblock = 8 / num_channels * interleave */ clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave; for (i = 0; i < num_groups; i++) { struct intel_bw_info *bi = &dev_priv->display.bw.max[i]; struct intel_bw_info *bi_next; int clpchgroup; int j; clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i; if (i < num_groups - 1) { bi_next = &dev_priv->display.bw.max[i + 1]; if (clpchgroup < clperchgroup) bi_next->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1; else bi_next->num_planes = 0; } bi->num_qgv_points = qi.num_points; bi->num_psf_gv_points = qi.num_psf_points; for (j = 0; j < qi.num_points; j++) { const struct intel_qgv_point *sp = &qi.points[j]; int ct, bw; /* * Max row cycle time * * FIXME what is the logic behind the * assumed burst length? */ ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd + (clpchgroup - 1) * qi.t_bl + sp->t_rdpre); bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct); bi->deratedbw[j] = min(maxdebw, bw * (100 - sa->derating) / 100); drm_dbg_kms(&dev_priv->drm, "BW%d / QGV %d: num_planes=%d deratedbw=%u\n", i, j, bi->num_planes, bi->deratedbw[j]); } for (j = 0; j < qi.num_psf_points; j++) { const struct intel_psf_gv_point *sp = &qi.psf_points[j]; bi->psf_bw[j] = adl_calc_psf_bw(sp->clk); drm_dbg_kms(&dev_priv->drm, "BW%d / PSF GV %d: num_planes=%d bw=%u\n", i, j, bi->num_planes, bi->psf_bw[j]); } } /* * In case if SAGV is disabled in BIOS, we always get 1 * SAGV point, but we can't send PCode commands to restrict it * as it will fail and pointless anyway. */ if (qi.num_points == 1) dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED; else dev_priv->display.sagv.status = I915_SAGV_ENABLED; return 0; } static void dg2_get_bw_info(struct drm_i915_private *i915) { unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000; int num_groups = ARRAY_SIZE(i915->display.bw.max); int i; /* * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth * that doesn't depend on the number of planes enabled. So fill all the * plane group with constant bw information for uniformity with other * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth, * whereas DG2-G11 platforms have 38 GB/s. */ for (i = 0; i < num_groups; i++) { struct intel_bw_info *bi = &i915->display.bw.max[i]; bi->num_planes = 1; /* Need only one dummy QGV point per group */ bi->num_qgv_points = 1; bi->deratedbw[0] = deratedbw; } i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; } static unsigned int icl_max_bw(struct drm_i915_private *dev_priv, int num_planes, int qgv_point) { int i; /* * Let's return max bw for 0 planes */ num_planes = max(1, num_planes); for (i = 0; i < ARRAY_SIZE(dev_priv->display.bw.max); i++) { const struct intel_bw_info *bi = &dev_priv->display.bw.max[i]; /* * Pcode will not expose all QGV points when * SAGV is forced to off/min/med/max. */ if (qgv_point >= bi->num_qgv_points) return UINT_MAX; if (num_planes >= bi->num_planes) return bi->deratedbw[qgv_point]; } return 0; } static unsigned int tgl_max_bw(struct drm_i915_private *dev_priv, int num_planes, int qgv_point) { int i; /* * Let's return max bw for 0 planes */ num_planes = max(1, num_planes); for (i = ARRAY_SIZE(dev_priv->display.bw.max) - 1; i >= 0; i--) { const struct intel_bw_info *bi = &dev_priv->display.bw.max[i]; /* * Pcode will not expose all QGV points when * SAGV is forced to off/min/med/max. */ if (qgv_point >= bi->num_qgv_points) return UINT_MAX; if (num_planes <= bi->num_planes) return bi->deratedbw[qgv_point]; } return dev_priv->display.bw.max[0].deratedbw[qgv_point]; } static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv, int psf_gv_point) { const struct intel_bw_info *bi = &dev_priv->display.bw.max[0]; return bi->psf_bw[psf_gv_point]; } void intel_bw_init_hw(struct drm_i915_private *dev_priv) { if (!HAS_DISPLAY(dev_priv)) return; if (DISPLAY_VER(dev_priv) >= 14) tgl_get_bw_info(dev_priv, &mtl_sa_info); else if (IS_DG2(dev_priv)) dg2_get_bw_info(dev_priv); else if (IS_ALDERLAKE_P(dev_priv)) tgl_get_bw_info(dev_priv, &adlp_sa_info); else if (IS_ALDERLAKE_S(dev_priv)) tgl_get_bw_info(dev_priv, &adls_sa_info); else if (IS_ROCKETLAKE(dev_priv)) tgl_get_bw_info(dev_priv, &rkl_sa_info); else if (DISPLAY_VER(dev_priv) == 12) tgl_get_bw_info(dev_priv, &tgl_sa_info); else if (DISPLAY_VER(dev_priv) == 11) icl_get_bw_info(dev_priv, &icl_sa_info); } static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state) { /* * We assume cursors are small enough * to not not cause bandwidth problems. */ return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); } static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); unsigned int data_rate = 0; enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) { /* * We assume cursors are small enough * to not not cause bandwidth problems. */ if (plane_id == PLANE_CURSOR) continue; data_rate += crtc_state->data_rate[plane_id]; if (DISPLAY_VER(i915) < 11) data_rate += crtc_state->data_rate_y[plane_id]; } return data_rate; } /* "Maximum Pipe Read Bandwidth" */ static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); if (DISPLAY_VER(i915) < 12) return 0; return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512); } void intel_bw_crtc_update(struct intel_bw_state *bw_state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); bw_state->data_rate[crtc->pipe] = intel_bw_crtc_data_rate(crtc_state); bw_state->num_active_planes[crtc->pipe] = intel_bw_crtc_num_active_planes(crtc_state); drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n", pipe_name(crtc->pipe), bw_state->data_rate[crtc->pipe], bw_state->num_active_planes[crtc->pipe]); } static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv, const struct intel_bw_state *bw_state) { unsigned int num_active_planes = 0; enum pipe pipe; for_each_pipe(dev_priv, pipe) num_active_planes += bw_state->num_active_planes[pipe]; return num_active_planes; } static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv, const struct intel_bw_state *bw_state) { unsigned int data_rate = 0; enum pipe pipe; for_each_pipe(dev_priv, pipe) data_rate += bw_state->data_rate[pipe]; if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv)) data_rate = DIV_ROUND_UP(data_rate * 105, 100); return data_rate; } struct intel_bw_state * intel_atomic_get_old_bw_state(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_global_state *bw_state; bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->display.bw.obj); return to_intel_bw_state(bw_state); } struct intel_bw_state * intel_atomic_get_new_bw_state(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_global_state *bw_state; bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->display.bw.obj); return to_intel_bw_state(bw_state); } struct intel_bw_state * intel_atomic_get_bw_state(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_global_state *bw_state; bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.bw.obj); if (IS_ERR(bw_state)) return ERR_CAST(bw_state); return to_intel_bw_state(bw_state); } static bool intel_bw_state_changed(struct drm_i915_private *i915, const struct intel_bw_state *old_bw_state, const struct intel_bw_state *new_bw_state) { enum pipe pipe; for_each_pipe(i915, pipe) { const struct intel_dbuf_bw *old_crtc_bw = &old_bw_state->dbuf_bw[pipe]; const struct intel_dbuf_bw *new_crtc_bw = &new_bw_state->dbuf_bw[pipe]; enum dbuf_slice slice; for_each_dbuf_slice(i915, slice) { if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] || old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice]) return true; } if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe]) return true; } return false; } static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state, struct intel_crtc *crtc, enum plane_id plane_id, const struct skl_ddb_entry *ddb, unsigned int data_rate) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe]; unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb); enum dbuf_slice slice; /* * The arbiter can only really guarantee an * equal share of the total bw to each plane. */ for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) { crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate); crtc_bw->active_planes[slice] |= BIT(plane_id); } } static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe]; enum plane_id plane_id; memset(crtc_bw, 0, sizeof(*crtc_bw)); if (!crtc_state->hw.active) return; for_each_plane_id_on_crtc(crtc, plane_id) { /* * We assume cursors are small enough * to not cause bandwidth problems. */ if (plane_id == PLANE_CURSOR) continue; skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id, &crtc_state->wm.skl.plane_ddb[plane_id], crtc_state->data_rate[plane_id]); if (DISPLAY_VER(i915) < 11) skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id, &crtc_state->wm.skl.plane_ddb_y[plane_id], crtc_state->data_rate[plane_id]); } } /* "Maximum Data Buffer Bandwidth" */ static int intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915, const struct intel_bw_state *bw_state) { unsigned int total_max_bw = 0; enum dbuf_slice slice; for_each_dbuf_slice(i915, slice) { int num_active_planes = 0; unsigned int max_bw = 0; enum pipe pipe; /* * The arbiter can only really guarantee an * equal share of the total bw to each plane. */ for_each_pipe(i915, pipe) { const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe]; max_bw = max(crtc_bw->max_bw[slice], max_bw); num_active_planes += hweight8(crtc_bw->active_planes[slice]); } max_bw *= num_active_planes; total_max_bw = max(total_max_bw, max_bw); } return DIV_ROUND_UP(total_max_bw, 64); } int intel_bw_min_cdclk(struct drm_i915_private *i915, const struct intel_bw_state *bw_state) { enum pipe pipe; int min_cdclk; min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state); for_each_pipe(i915, pipe) min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk); return min_cdclk; } int intel_bw_calc_min_cdclk(struct intel_atomic_state *state, bool *need_cdclk_calc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_bw_state *new_bw_state = NULL; const struct intel_bw_state *old_bw_state = NULL; const struct intel_cdclk_state *cdclk_state; const struct intel_crtc_state *crtc_state; int old_min_cdclk, new_min_cdclk; struct intel_crtc *crtc; int i; if (DISPLAY_VER(dev_priv) < 9) return 0; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { new_bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(new_bw_state)) return PTR_ERR(new_bw_state); old_bw_state = intel_atomic_get_old_bw_state(state); skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state); new_bw_state->min_cdclk[crtc->pipe] = intel_bw_crtc_min_cdclk(crtc_state); } if (!old_bw_state) return 0; if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) { int ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; } old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state); new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state); /* * No need to check against the cdclk state if * the min cdclk doesn't increase. * * Ie. we only ever increase the cdclk due to bandwidth * requirements. This can reduce back and forth * display blinking due to constant cdclk changes. */ if (new_min_cdclk <= old_min_cdclk) return 0; cdclk_state = intel_atomic_get_cdclk_state(state); if (IS_ERR(cdclk_state)) return PTR_ERR(cdclk_state); /* * No need to recalculate the cdclk state if * the min cdclk doesn't increase. * * Ie. we only ever increase the cdclk due to bandwidth * requirements. This can reduce back and forth * display blinking due to constant cdclk changes. */ if (new_min_cdclk <= cdclk_state->bw_min_cdclk) return 0; drm_dbg_kms(&dev_priv->drm, "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n", new_min_cdclk, cdclk_state->bw_min_cdclk); *need_cdclk_calc = true; return 0; } static u16 icl_qgv_points_mask(struct drm_i915_private *i915) { unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points; unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points; u16 qgv_points = 0, psf_points = 0; /* * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects * it with failure if we try masking any unadvertised points. * So need to operate only with those returned from PCode. */ if (num_qgv_points > 0) qgv_points = GENMASK(num_qgv_points - 1, 0); if (num_psf_gv_points > 0) psf_points = GENMASK(num_psf_gv_points - 1, 0); return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points); } static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { unsigned int old_data_rate = intel_bw_crtc_data_rate(old_crtc_state); unsigned int new_data_rate = intel_bw_crtc_data_rate(new_crtc_state); unsigned int old_active_planes = intel_bw_crtc_num_active_planes(old_crtc_state); unsigned int new_active_planes = intel_bw_crtc_num_active_planes(new_crtc_state); struct intel_bw_state *new_bw_state; /* * Avoid locking the bw state when * nothing significant has changed. */ if (old_data_rate == new_data_rate && old_active_planes == new_active_planes) continue; new_bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(new_bw_state)) return PTR_ERR(new_bw_state); new_bw_state->data_rate[crtc->pipe] = new_data_rate; new_bw_state->num_active_planes[crtc->pipe] = new_active_planes; *changed = true; drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] data rate %u num active planes %u\n", crtc->base.base.id, crtc->base.name, new_bw_state->data_rate[crtc->pipe], new_bw_state->num_active_planes[crtc->pipe]); } return 0; } int intel_bw_atomic_check(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_bw_state *old_bw_state; struct intel_bw_state *new_bw_state; unsigned int data_rate; unsigned int num_active_planes; int i, ret; u16 qgv_points = 0, psf_points = 0; unsigned int max_bw_point = 0, max_bw = 0; unsigned int num_qgv_points = dev_priv->display.bw.max[0].num_qgv_points; unsigned int num_psf_gv_points = dev_priv->display.bw.max[0].num_psf_gv_points; bool changed = false; /* FIXME earlier gens need some checks too */ if (DISPLAY_VER(dev_priv) < 11) return 0; ret = intel_bw_check_data_rate(state, &changed); if (ret) return ret; old_bw_state = intel_atomic_get_old_bw_state(state); new_bw_state = intel_atomic_get_new_bw_state(state); if (new_bw_state && intel_can_enable_sagv(dev_priv, old_bw_state) != intel_can_enable_sagv(dev_priv, new_bw_state)) changed = true; /* * If none of our inputs (data rates, number of active * planes, SAGV yes/no) changed then nothing to do here. */ if (!changed) return 0; ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; data_rate = intel_bw_data_rate(dev_priv, new_bw_state); data_rate = DIV_ROUND_UP(data_rate, 1000); num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state); for (i = 0; i < num_qgv_points; i++) { unsigned int max_data_rate; if (DISPLAY_VER(dev_priv) > 11) max_data_rate = tgl_max_bw(dev_priv, num_active_planes, i); else max_data_rate = icl_max_bw(dev_priv, num_active_planes, i); /* * We need to know which qgv point gives us * maximum bandwidth in order to disable SAGV * if we find that we exceed SAGV block time * with watermarks. By that moment we already * have those, as it is calculated earlier in * intel_atomic_check, */ if (max_data_rate > max_bw) { max_bw_point = i; max_bw = max_data_rate; } if (max_data_rate >= data_rate) qgv_points |= BIT(i); drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n", i, max_data_rate, data_rate); } for (i = 0; i < num_psf_gv_points; i++) { unsigned int max_data_rate = adl_psf_bw(dev_priv, i); if (max_data_rate >= data_rate) psf_points |= BIT(i); drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d" " required %d\n", i, max_data_rate, data_rate); } /* * BSpec states that we always should have at least one allowed point * left, so if we couldn't - simply reject the configuration for obvious * reasons. */ if (qgv_points == 0) { drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory" " bandwidth %d for display configuration(%d active planes).\n", data_rate, num_active_planes); return -EINVAL; } if (num_psf_gv_points > 0 && psf_points == 0) { drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory" " bandwidth %d for display configuration(%d active planes).\n", data_rate, num_active_planes); return -EINVAL; } /* * Leave only single point with highest bandwidth, if * we can't enable SAGV due to the increased memory latency it may * cause. */ if (!intel_can_enable_sagv(dev_priv, new_bw_state)) { qgv_points = BIT(max_bw_point); drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n", max_bw_point); } /* * We store the ones which need to be masked as that is what PCode * actually accepts as a parameter. */ new_bw_state->qgv_points_mask = ~(ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points)) & icl_qgv_points_mask(dev_priv); /* * If the actual mask had changed we need to make sure that * the commits are serialized(in case this is a nomodeset, nonblocking) */ if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) { ret = intel_atomic_serialize_global_state(&new_bw_state->base); if (ret) return ret; } return 0; } static struct intel_global_state * intel_bw_duplicate_state(struct intel_global_obj *obj) { struct intel_bw_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; return &state->base; } static void intel_bw_destroy_state(struct intel_global_obj *obj, struct intel_global_state *state) { kfree(state); } static const struct intel_global_state_funcs intel_bw_funcs = { .atomic_duplicate_state = intel_bw_duplicate_state, .atomic_destroy_state = intel_bw_destroy_state, }; int intel_bw_init(struct drm_i915_private *dev_priv) { struct intel_bw_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; intel_atomic_global_obj_init(dev_priv, &dev_priv->display.bw.obj, &state->base, &intel_bw_funcs); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1