Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 9787 | 61.89% | 124 | 58.77% |
Swati Sharma | 1795 | 11.35% | 14 | 6.64% |
Lionel Landwerlin | 1592 | 10.07% | 4 | 1.90% |
Shashank Sharma | 414 | 2.62% | 3 | 1.42% |
Matt Roper | 376 | 2.38% | 4 | 1.90% |
Dave Airlie | 328 | 2.07% | 3 | 1.42% |
Ander Conselvan de Oliveira | 257 | 1.63% | 4 | 1.90% |
Jani Nikula | 247 | 1.56% | 17 | 8.06% |
Uma Shankar | 242 | 1.53% | 7 | 3.32% |
Jesse Barnes | 228 | 1.44% | 3 | 1.42% |
Chris Wilson | 153 | 0.97% | 7 | 3.32% |
Maarten Lankhorst | 130 | 0.82% | 4 | 1.90% |
Animesh Manna | 74 | 0.47% | 3 | 1.42% |
Shawn C Lee | 72 | 0.46% | 1 | 0.47% |
Tvrtko A. Ursulin | 47 | 0.30% | 3 | 1.42% |
Pankaj Bharadiya | 34 | 0.21% | 2 | 0.95% |
Johnson Lin | 15 | 0.09% | 1 | 0.47% |
Wambui Karuga | 10 | 0.06% | 2 | 0.95% |
Lucas De Marchi | 7 | 0.04% | 2 | 0.95% |
Piotr Piórkowski | 3 | 0.02% | 1 | 0.47% |
Jyri Sarha | 2 | 0.01% | 1 | 0.47% |
Julia Lawall | 1 | 0.01% | 1 | 0.47% |
Total | 15814 | 211 |
/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * */ #include "i915_reg.h" #include "intel_color.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dsb.h" struct intel_color_funcs { int (*color_check)(struct intel_crtc_state *crtc_state); /* * Program non-arming double buffered color management registers * before vblank evasion. The registers should then latch after * the arming register is written (by color_commit_arm()) during * the next vblank start, alongside any other double buffered * registers involved with the same commit. This hook is optional. */ void (*color_commit_noarm)(const struct intel_crtc_state *crtc_state); /* * Program arming double buffered color management registers * during vblank evasion. The registers (and whatever other registers * they arm that were written by color_commit_noarm) should then latch * during the next vblank start, alongside any other double buffered * registers involved with the same commit. */ void (*color_commit_arm)(const struct intel_crtc_state *crtc_state); /* * Perform any extra tasks needed after all the * double buffered registers have been latched. */ void (*color_post_update)(const struct intel_crtc_state *crtc_state); /* * Load LUTs (and other single buffered color management * registers). Will (hopefully) be called during the vblank * following the latching of any double buffered registers * involved with the same commit. */ void (*load_luts)(const struct intel_crtc_state *crtc_state); /* * Read out the LUTs from the hardware into the software state. * Used by eg. the hardware state checker. */ void (*read_luts)(struct intel_crtc_state *crtc_state); /* * Compare the LUTs */ bool (*lut_equal)(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut); }; #define CTM_COEFF_SIGN (1ULL << 63) #define CTM_COEFF_1_0 (1ULL << 32) #define CTM_COEFF_2_0 (CTM_COEFF_1_0 << 1) #define CTM_COEFF_4_0 (CTM_COEFF_2_0 << 1) #define CTM_COEFF_8_0 (CTM_COEFF_4_0 << 1) #define CTM_COEFF_0_5 (CTM_COEFF_1_0 >> 1) #define CTM_COEFF_0_25 (CTM_COEFF_0_5 >> 1) #define CTM_COEFF_0_125 (CTM_COEFF_0_25 >> 1) #define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255) #define CTM_COEFF_NEGATIVE(coeff) (((coeff) & CTM_COEFF_SIGN) != 0) #define CTM_COEFF_ABS(coeff) ((coeff) & (CTM_COEFF_SIGN - 1)) #define LEGACY_LUT_LENGTH 256 /* * ILK+ csc matrix: * * |R/Cr| | c0 c1 c2 | ( |R/Cr| |preoff0| ) |postoff0| * |G/Y | = | c3 c4 c5 | x ( |G/Y | + |preoff1| ) + |postoff1| * |B/Cb| | c6 c7 c8 | ( |B/Cb| |preoff2| ) |postoff2| * * ILK/SNB don't have explicit post offsets, and instead * CSC_MODE_YUV_TO_RGB and CSC_BLACK_SCREEN_OFFSET are used: * CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=0 -> 1/2, 0, 1/2 * CSC_MODE_YUV_TO_RGB=0 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/2, 1/16, 1/2 * CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=0 -> 0, 0, 0 * CSC_MODE_YUV_TO_RGB=1 + CSC_BLACK_SCREEN_OFFSET=1 -> 1/16, 1/16, 1/16 */ /* * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point * format). This macro takes the coefficient we want transformed and the * number of fractional bits. * * We only have a 9 bits precision window which slides depending on the value * of the CTM coefficient and we write the value from bit 3. We also round the * value. */ #define ILK_CSC_COEFF_FP(coeff, fbits) \ (clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8) #define ILK_CSC_COEFF_LIMITED_RANGE 0x0dc0 #define ILK_CSC_COEFF_1_0 0x7800 #define ILK_CSC_POSTOFF_LIMITED_RANGE (16 * (1 << 12) / 255) /* Nop pre/post offsets */ static const u16 ilk_csc_off_zero[3] = {}; /* Identity matrix */ static const u16 ilk_csc_coeff_identity[9] = { ILK_CSC_COEFF_1_0, 0, 0, 0, ILK_CSC_COEFF_1_0, 0, 0, 0, ILK_CSC_COEFF_1_0, }; /* Limited range RGB post offsets */ static const u16 ilk_csc_postoff_limited_range[3] = { ILK_CSC_POSTOFF_LIMITED_RANGE, ILK_CSC_POSTOFF_LIMITED_RANGE, ILK_CSC_POSTOFF_LIMITED_RANGE, }; /* Full range RGB -> limited range RGB matrix */ static const u16 ilk_csc_coeff_limited_range[9] = { ILK_CSC_COEFF_LIMITED_RANGE, 0, 0, 0, ILK_CSC_COEFF_LIMITED_RANGE, 0, 0, 0, ILK_CSC_COEFF_LIMITED_RANGE, }; /* BT.709 full range RGB -> limited range YCbCr matrix */ static const u16 ilk_csc_coeff_rgb_to_ycbcr[9] = { 0x1e08, 0x9cc0, 0xb528, 0x2ba8, 0x09d8, 0x37e8, 0xbce8, 0x9ad8, 0x1e08, }; /* Limited range YCbCr post offsets */ static const u16 ilk_csc_postoff_rgb_to_ycbcr[3] = { 0x0800, 0x0100, 0x0800, }; static bool lut_is_legacy(const struct drm_property_blob *lut) { return lut && drm_color_lut_size(lut) == LEGACY_LUT_LENGTH; } /* * When using limited range, multiply the matrix given by userspace by * the matrix that we would use for the limited range. */ static u64 *ctm_mult_by_limited(u64 *result, const u64 *input) { int i; for (i = 0; i < 9; i++) { u64 user_coeff = input[i]; u32 limited_coeff = CTM_COEFF_LIMITED_RANGE; u32 abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff), 0, CTM_COEFF_4_0 - 1) >> 2; /* * By scaling every co-efficient with limited range (16-235) * vs full range (0-255) the final o/p will be scaled down to * fit in the limited range supported by the panel. */ result[i] = mul_u32_u32(limited_coeff, abs_coeff) >> 30; result[i] |= user_coeff & CTM_COEFF_SIGN; } return result; } static void ilk_update_pipe_csc(struct intel_crtc *crtc, const u16 preoff[3], const u16 coeff[9], const u16 postoff[3]) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; intel_de_write_fw(i915, PIPE_CSC_PREOFF_HI(pipe), preoff[0]); intel_de_write_fw(i915, PIPE_CSC_PREOFF_ME(pipe), preoff[1]); intel_de_write_fw(i915, PIPE_CSC_PREOFF_LO(pipe), preoff[2]); intel_de_write_fw(i915, PIPE_CSC_COEFF_RY_GY(pipe), coeff[0] << 16 | coeff[1]); intel_de_write_fw(i915, PIPE_CSC_COEFF_BY(pipe), coeff[2] << 16); intel_de_write_fw(i915, PIPE_CSC_COEFF_RU_GU(pipe), coeff[3] << 16 | coeff[4]); intel_de_write_fw(i915, PIPE_CSC_COEFF_BU(pipe), coeff[5] << 16); intel_de_write_fw(i915, PIPE_CSC_COEFF_RV_GV(pipe), coeff[6] << 16 | coeff[7]); intel_de_write_fw(i915, PIPE_CSC_COEFF_BV(pipe), coeff[8] << 16); if (DISPLAY_VER(i915) >= 7) { intel_de_write_fw(i915, PIPE_CSC_POSTOFF_HI(pipe), postoff[0]); intel_de_write_fw(i915, PIPE_CSC_POSTOFF_ME(pipe), postoff[1]); intel_de_write_fw(i915, PIPE_CSC_POSTOFF_LO(pipe), postoff[2]); } } static void icl_update_output_csc(struct intel_crtc *crtc, const u16 preoff[3], const u16 coeff[9], const u16 postoff[3]) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; intel_de_write_fw(i915, PIPE_CSC_OUTPUT_PREOFF_HI(pipe), preoff[0]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_PREOFF_ME(pipe), preoff[1]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_PREOFF_LO(pipe), preoff[2]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_COEFF_RY_GY(pipe), coeff[0] << 16 | coeff[1]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_COEFF_BY(pipe), coeff[2] << 16); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_COEFF_RU_GU(pipe), coeff[3] << 16 | coeff[4]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_COEFF_BU(pipe), coeff[5] << 16); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_COEFF_RV_GV(pipe), coeff[6] << 16 | coeff[7]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_COEFF_BV(pipe), coeff[8] << 16); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_POSTOFF_HI(pipe), postoff[0]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_POSTOFF_ME(pipe), postoff[1]); intel_de_write_fw(i915, PIPE_CSC_OUTPUT_POSTOFF_LO(pipe), postoff[2]); } static bool ilk_limited_range(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); /* icl+ have dedicated output CSC */ if (DISPLAY_VER(i915) >= 11) return false; /* pre-hsw have PIPECONF_COLOR_RANGE_SELECT */ if (DISPLAY_VER(i915) < 7 || IS_IVYBRIDGE(i915)) return false; return crtc_state->limited_color_range; } static bool ilk_lut_limited_range(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (!ilk_limited_range(crtc_state)) return false; if (crtc_state->c8_planes) return false; if (DISPLAY_VER(i915) == 10) return crtc_state->hw.gamma_lut; else return crtc_state->hw.gamma_lut && (crtc_state->hw.degamma_lut || crtc_state->hw.ctm); } static bool ilk_csc_limited_range(const struct intel_crtc_state *crtc_state) { if (!ilk_limited_range(crtc_state)) return false; return !ilk_lut_limited_range(crtc_state); } static void ilk_csc_convert_ctm(const struct intel_crtc_state *crtc_state, u16 coeffs[9], bool limited_color_range) { const struct drm_color_ctm *ctm = crtc_state->hw.ctm->data; const u64 *input; u64 temp[9]; int i; if (limited_color_range) input = ctm_mult_by_limited(temp, ctm->matrix); else input = ctm->matrix; /* * Convert fixed point S31.32 input to format supported by the * hardware. */ for (i = 0; i < 9; i++) { u64 abs_coeff = ((1ULL << 63) - 1) & input[i]; /* * Clamp input value to min/max supported by * hardware. */ abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1); coeffs[i] = 0; /* sign bit */ if (CTM_COEFF_NEGATIVE(input[i])) coeffs[i] |= 1 << 15; if (abs_coeff < CTM_COEFF_0_125) coeffs[i] |= (3 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 12); else if (abs_coeff < CTM_COEFF_0_25) coeffs[i] |= (2 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 11); else if (abs_coeff < CTM_COEFF_0_5) coeffs[i] |= (1 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 10); else if (abs_coeff < CTM_COEFF_1_0) coeffs[i] |= ILK_CSC_COEFF_FP(abs_coeff, 9); else if (abs_coeff < CTM_COEFF_2_0) coeffs[i] |= (7 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 8); else coeffs[i] |= (6 << 12) | ILK_CSC_COEFF_FP(abs_coeff, 7); } } static void ilk_load_csc_matrix(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); bool limited_color_range = ilk_csc_limited_range(crtc_state); if (crtc_state->hw.ctm) { u16 coeff[9]; ilk_csc_convert_ctm(crtc_state, coeff, limited_color_range); ilk_update_pipe_csc(crtc, ilk_csc_off_zero, coeff, limited_color_range ? ilk_csc_postoff_limited_range : ilk_csc_off_zero); } else if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) { ilk_update_pipe_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_rgb_to_ycbcr, ilk_csc_postoff_rgb_to_ycbcr); } else if (limited_color_range) { ilk_update_pipe_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_limited_range, ilk_csc_postoff_limited_range); } else if (crtc_state->csc_enable) { /* * On GLK both pipe CSC and degamma LUT are controlled * by csc_enable. Hence for the cases where the degama * LUT is needed but CSC is not we need to load an * identity matrix. */ drm_WARN_ON(&i915->drm, !IS_GEMINILAKE(i915)); ilk_update_pipe_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_identity, ilk_csc_off_zero); } } static void icl_load_csc_matrix(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (crtc_state->hw.ctm) { u16 coeff[9]; ilk_csc_convert_ctm(crtc_state, coeff, false); ilk_update_pipe_csc(crtc, ilk_csc_off_zero, coeff, ilk_csc_off_zero); } if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) { icl_update_output_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_rgb_to_ycbcr, ilk_csc_postoff_rgb_to_ycbcr); } else if (crtc_state->limited_color_range) { icl_update_output_csc(crtc, ilk_csc_off_zero, ilk_csc_coeff_limited_range, ilk_csc_postoff_limited_range); } } static void chv_load_cgm_csc(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct drm_color_ctm *ctm = blob->data; enum pipe pipe = crtc->pipe; u16 coeffs[9]; int i; for (i = 0; i < ARRAY_SIZE(coeffs); i++) { u64 abs_coeff = ((1ULL << 63) - 1) & ctm->matrix[i]; /* Round coefficient. */ abs_coeff += 1 << (32 - 13); /* Clamp to hardware limits. */ abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1); coeffs[i] = 0; /* Write coefficients in S3.12 format. */ if (ctm->matrix[i] & (1ULL << 63)) coeffs[i] |= 1 << 15; coeffs[i] |= ((abs_coeff >> 32) & 7) << 12; coeffs[i] |= (abs_coeff >> 20) & 0xfff; } intel_de_write_fw(i915, CGM_PIPE_CSC_COEFF01(pipe), coeffs[1] << 16 | coeffs[0]); intel_de_write_fw(i915, CGM_PIPE_CSC_COEFF23(pipe), coeffs[3] << 16 | coeffs[2]); intel_de_write_fw(i915, CGM_PIPE_CSC_COEFF45(pipe), coeffs[5] << 16 | coeffs[4]); intel_de_write_fw(i915, CGM_PIPE_CSC_COEFF67(pipe), coeffs[7] << 16 | coeffs[6]); intel_de_write_fw(i915, CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]); } /* convert hw value with given bit_precision to lut property val */ static u32 intel_color_lut_pack(u32 val, int bit_precision) { u32 max = 0xffff >> (16 - bit_precision); val = clamp_val(val, 0, max); if (bit_precision < 16) val <<= 16 - bit_precision; return val; } static u32 i9xx_lut_8(const struct drm_color_lut *color) { return REG_FIELD_PREP(PALETTE_RED_MASK, drm_color_lut_extract(color->red, 8)) | REG_FIELD_PREP(PALETTE_GREEN_MASK, drm_color_lut_extract(color->green, 8)) | REG_FIELD_PREP(PALETTE_BLUE_MASK, drm_color_lut_extract(color->blue, 8)); } static void i9xx_lut_8_pack(struct drm_color_lut *entry, u32 val) { entry->red = intel_color_lut_pack(REG_FIELD_GET(PALETTE_RED_MASK, val), 8); entry->green = intel_color_lut_pack(REG_FIELD_GET(PALETTE_GREEN_MASK, val), 8); entry->blue = intel_color_lut_pack(REG_FIELD_GET(PALETTE_BLUE_MASK, val), 8); } /* i8xx/i9xx+ 10bit slope format "even DW" (low 8 bits) */ static u32 _i9xx_lut_10_ldw(u16 a) { return drm_color_lut_extract(a, 10) & 0xff; } static u32 i9xx_lut_10_ldw(const struct drm_color_lut *color) { return REG_FIELD_PREP(PALETTE_RED_MASK, _i9xx_lut_10_ldw(color[0].red)) | REG_FIELD_PREP(PALETTE_GREEN_MASK, _i9xx_lut_10_ldw(color[0].green)) | REG_FIELD_PREP(PALETTE_BLUE_MASK, _i9xx_lut_10_ldw(color[0].blue)); } /* i8xx/i9xx+ 10bit slope format "odd DW" (high 2 bits + slope) */ static u32 _i9xx_lut_10_udw(u16 a, u16 b) { unsigned int mantissa, exponent; a = drm_color_lut_extract(a, 10); b = drm_color_lut_extract(b, 10); /* b = a + 8 * m * 2 ^ -e */ mantissa = clamp(b - a, 0, 0x7f); exponent = 3; while (mantissa > 0xf) { mantissa >>= 1; exponent--; } return (exponent << 6) | (mantissa << 2) | (a >> 8); } static u32 i9xx_lut_10_udw(const struct drm_color_lut *color) { return REG_FIELD_PREP(PALETTE_RED_MASK, _i9xx_lut_10_udw(color[0].red, color[1].red)) | REG_FIELD_PREP(PALETTE_GREEN_MASK, _i9xx_lut_10_udw(color[0].green, color[1].green)) | REG_FIELD_PREP(PALETTE_BLUE_MASK, _i9xx_lut_10_udw(color[0].blue, color[1].blue)); } static void i9xx_lut_10_pack(struct drm_color_lut *color, u32 ldw, u32 udw) { u16 red = REG_FIELD_GET(PALETTE_10BIT_RED_LDW_MASK, ldw) | REG_FIELD_GET(PALETTE_10BIT_RED_UDW_MASK, udw) << 8; u16 green = REG_FIELD_GET(PALETTE_10BIT_GREEN_LDW_MASK, ldw) | REG_FIELD_GET(PALETTE_10BIT_GREEN_UDW_MASK, udw) << 8; u16 blue = REG_FIELD_GET(PALETTE_10BIT_BLUE_LDW_MASK, ldw) | REG_FIELD_GET(PALETTE_10BIT_BLUE_UDW_MASK, udw) << 8; color->red = intel_color_lut_pack(red, 10); color->green = intel_color_lut_pack(green, 10); color->blue = intel_color_lut_pack(blue, 10); } static void i9xx_lut_10_pack_slope(struct drm_color_lut *color, u32 ldw, u32 udw) { int r_exp = REG_FIELD_GET(PALETTE_10BIT_RED_EXP_MASK, udw); int r_mant = REG_FIELD_GET(PALETTE_10BIT_RED_MANT_MASK, udw); int g_exp = REG_FIELD_GET(PALETTE_10BIT_GREEN_EXP_MASK, udw); int g_mant = REG_FIELD_GET(PALETTE_10BIT_GREEN_MANT_MASK, udw); int b_exp = REG_FIELD_GET(PALETTE_10BIT_BLUE_EXP_MASK, udw); int b_mant = REG_FIELD_GET(PALETTE_10BIT_BLUE_MANT_MASK, udw); i9xx_lut_10_pack(color, ldw, udw); color->red += r_mant << (3 - r_exp); color->green += g_mant << (3 - g_exp); color->blue += b_mant << (3 - b_exp); } /* i965+ "10.6" bit interpolated format "even DW" (low 8 bits) */ static u32 i965_lut_10p6_ldw(const struct drm_color_lut *color) { return REG_FIELD_PREP(PALETTE_RED_MASK, color->red & 0xff) | REG_FIELD_PREP(PALETTE_GREEN_MASK, color->green & 0xff) | REG_FIELD_PREP(PALETTE_BLUE_MASK, color->blue & 0xff); } /* i965+ "10.6" interpolated format "odd DW" (high 8 bits) */ static u32 i965_lut_10p6_udw(const struct drm_color_lut *color) { return REG_FIELD_PREP(PALETTE_RED_MASK, color->red >> 8) | REG_FIELD_PREP(PALETTE_GREEN_MASK, color->green >> 8) | REG_FIELD_PREP(PALETTE_BLUE_MASK, color->blue >> 8); } static void i965_lut_10p6_pack(struct drm_color_lut *entry, u32 ldw, u32 udw) { entry->red = REG_FIELD_GET(PALETTE_RED_MASK, udw) << 8 | REG_FIELD_GET(PALETTE_RED_MASK, ldw); entry->green = REG_FIELD_GET(PALETTE_GREEN_MASK, udw) << 8 | REG_FIELD_GET(PALETTE_GREEN_MASK, ldw); entry->blue = REG_FIELD_GET(PALETTE_BLUE_MASK, udw) << 8 | REG_FIELD_GET(PALETTE_BLUE_MASK, ldw); } static u16 i965_lut_11p6_max_pack(u32 val) { /* PIPEGCMAX is 11.6, clamp to 10.6 */ return clamp_val(val, 0, 0xffff); } static u32 ilk_lut_10(const struct drm_color_lut *color) { return REG_FIELD_PREP(PREC_PALETTE_10_RED_MASK, drm_color_lut_extract(color->red, 10)) | REG_FIELD_PREP(PREC_PALETTE_10_GREEN_MASK, drm_color_lut_extract(color->green, 10)) | REG_FIELD_PREP(PREC_PALETTE_10_BLUE_MASK, drm_color_lut_extract(color->blue, 10)); } static void ilk_lut_10_pack(struct drm_color_lut *entry, u32 val) { entry->red = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_10_RED_MASK, val), 10); entry->green = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_10_GREEN_MASK, val), 10); entry->blue = intel_color_lut_pack(REG_FIELD_GET(PREC_PALETTE_10_BLUE_MASK, val), 10); } /* ilk+ "12.4" interpolated format (low 6 bits) */ static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color) { return REG_FIELD_PREP(PREC_PALETTE_12P4_RED_LDW_MASK, color->red & 0x3f) | REG_FIELD_PREP(PREC_PALETTE_12P4_GREEN_LDW_MASK, color->green & 0x3f) | REG_FIELD_PREP(PREC_PALETTE_12P4_BLUE_LDW_MASK, color->blue & 0x3f); } /* ilk+ "12.4" interpolated format (high 10 bits) */ static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color) { return REG_FIELD_PREP(PREC_PALETTE_12P4_RED_UDW_MASK, color->red >> 6) | REG_FIELD_PREP(PREC_PALETTE_12P4_GREEN_UDW_MASK, color->green >> 6) | REG_FIELD_PREP(PREC_PALETTE_12P4_BLUE_UDW_MASK, color->blue >> 6); } static void ilk_lut_12p4_pack(struct drm_color_lut *entry, u32 ldw, u32 udw) { entry->red = REG_FIELD_GET(PREC_PALETTE_12P4_RED_UDW_MASK, udw) << 6 | REG_FIELD_GET(PREC_PALETTE_12P4_RED_LDW_MASK, ldw); entry->green = REG_FIELD_GET(PREC_PALETTE_12P4_GREEN_UDW_MASK, udw) << 6 | REG_FIELD_GET(PREC_PALETTE_12P4_GREEN_LDW_MASK, ldw); entry->blue = REG_FIELD_GET(PREC_PALETTE_12P4_BLUE_UDW_MASK, udw) << 6 | REG_FIELD_GET(PREC_PALETTE_12P4_BLUE_LDW_MASK, ldw); } static void icl_color_commit_noarm(const struct intel_crtc_state *crtc_state) { /* * Despite Wa_1406463849, ICL no longer suffers from the SKL * DC5/PSR CSC black screen issue (see skl_color_commit_noarm()). * Possibly due to the extra sticky CSC arming * (see icl_color_post_update()). * * On TGL+ all CSC arming issues have been properly fixed. */ icl_load_csc_matrix(crtc_state); } static void skl_color_commit_noarm(const struct intel_crtc_state *crtc_state) { /* * Possibly related to display WA #1184, SKL CSC loses the latched * CSC coeff/offset register values if the CSC registers are disarmed * between DC5 exit and PSR exit. This will cause the plane(s) to * output all black (until CSC_MODE is rearmed and properly latched). * Once PSR exit (and proper register latching) has occurred the * danger is over. Thus when PSR is enabled the CSC coeff/offset * register programming will be peformed from skl_color_commit_arm() * which is called after PSR exit. */ if (!crtc_state->has_psr) ilk_load_csc_matrix(crtc_state); } static void ilk_color_commit_noarm(const struct intel_crtc_state *crtc_state) { ilk_load_csc_matrix(crtc_state); } static void i9xx_color_commit_arm(const struct intel_crtc_state *crtc_state) { /* update PIPECONF GAMMA_MODE */ i9xx_set_pipeconf(crtc_state); } static void ilk_color_commit_arm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); /* update PIPECONF GAMMA_MODE */ ilk_set_pipeconf(crtc_state); intel_de_write_fw(i915, PIPE_CSC_MODE(crtc->pipe), crtc_state->csc_mode); } static void hsw_color_commit_arm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); intel_de_write(i915, GAMMA_MODE(crtc->pipe), crtc_state->gamma_mode); intel_de_write_fw(i915, PIPE_CSC_MODE(crtc->pipe), crtc_state->csc_mode); } static void skl_color_commit_arm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val = 0; if (crtc_state->has_psr) ilk_load_csc_matrix(crtc_state); /* * We don't (yet) allow userspace to control the pipe background color, * so force it to black, but apply pipe gamma and CSC appropriately * so that its handling will match how we program our planes. */ if (crtc_state->gamma_enable) val |= SKL_BOTTOM_COLOR_GAMMA_ENABLE; if (crtc_state->csc_enable) val |= SKL_BOTTOM_COLOR_CSC_ENABLE; intel_de_write(i915, SKL_BOTTOM_COLOR(pipe), val); intel_de_write(i915, GAMMA_MODE(crtc->pipe), crtc_state->gamma_mode); intel_de_write_fw(i915, PIPE_CSC_MODE(crtc->pipe), crtc_state->csc_mode); } static void icl_color_commit_arm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* * We don't (yet) allow userspace to control the pipe background color, * so force it to black. */ intel_de_write(i915, SKL_BOTTOM_COLOR(pipe), 0); intel_de_write(i915, GAMMA_MODE(crtc->pipe), crtc_state->gamma_mode); intel_de_write_fw(i915, PIPE_CSC_MODE(crtc->pipe), crtc_state->csc_mode); } static void icl_color_post_update(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); /* * Despite Wa_1406463849, ICL CSC is no longer disarmed by * coeff/offset register *writes*. Instead, once CSC_MODE * is armed it stays armed, even after it has been latched. * Afterwards the coeff/offset registers become effectively * self-arming. That self-arming must be disabled before the * next icl_color_commit_noarm() tries to write the next set * of coeff/offset registers. Fortunately register *reads* * do still disarm the CSC. Naturally this must not be done * until the previously written CSC registers have actually * been latched. * * TGL+ no longer need this workaround. */ intel_de_read_fw(i915, PIPE_CSC_PREOFF_HI(crtc->pipe)); } static struct drm_property_blob * create_linear_lut(struct drm_i915_private *i915, int lut_size) { struct drm_property_blob *blob; struct drm_color_lut *lut; int i; blob = drm_property_create_blob(&i915->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return blob; lut = blob->data; for (i = 0; i < lut_size; i++) { u16 val = 0xffff * i / (lut_size - 1); lut[i].red = val; lut[i].green = val; lut[i].blue = val; } return blob; } static u16 lut_limited_range(unsigned int value) { unsigned int min = 16 << 8; unsigned int max = 235 << 8; return value * (max - min) / 0xffff + min; } static struct drm_property_blob * create_resized_lut(struct drm_i915_private *i915, const struct drm_property_blob *blob_in, int lut_out_size, bool limited_color_range) { int i, lut_in_size = drm_color_lut_size(blob_in); struct drm_property_blob *blob_out; const struct drm_color_lut *lut_in; struct drm_color_lut *lut_out; blob_out = drm_property_create_blob(&i915->drm, sizeof(lut_out[0]) * lut_out_size, NULL); if (IS_ERR(blob_out)) return blob_out; lut_in = blob_in->data; lut_out = blob_out->data; for (i = 0; i < lut_out_size; i++) { const struct drm_color_lut *entry = &lut_in[i * (lut_in_size - 1) / (lut_out_size - 1)]; if (limited_color_range) { lut_out[i].red = lut_limited_range(entry->red); lut_out[i].green = lut_limited_range(entry->green); lut_out[i].blue = lut_limited_range(entry->blue); } else { lut_out[i] = *entry; } } return blob_out; } static void i9xx_load_lut_8(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut; enum pipe pipe = crtc->pipe; int i; if (!blob) return; lut = blob->data; for (i = 0; i < 256; i++) intel_de_write_fw(dev_priv, PALETTE(pipe, i), i9xx_lut_8(&lut[i])); } static void i9xx_load_lut_10(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size - 1; i++) { intel_de_write_fw(dev_priv, PALETTE(pipe, 2 * i + 0), i9xx_lut_10_ldw(&lut[i])); intel_de_write_fw(dev_priv, PALETTE(pipe, 2 * i + 1), i9xx_lut_10_udw(&lut[i])); } } static void i9xx_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: i9xx_load_lut_8(crtc, post_csc_lut); break; case GAMMA_MODE_MODE_10BIT: i9xx_load_lut_10(crtc, post_csc_lut); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static void i965_load_lut_10p6(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size - 1; i++) { intel_de_write_fw(dev_priv, PALETTE(pipe, 2 * i + 0), i965_lut_10p6_ldw(&lut[i])); intel_de_write_fw(dev_priv, PALETTE(pipe, 2 * i + 1), i965_lut_10p6_udw(&lut[i])); } intel_de_write_fw(dev_priv, PIPEGCMAX(pipe, 0), lut[i].red); intel_de_write_fw(dev_priv, PIPEGCMAX(pipe, 1), lut[i].green); intel_de_write_fw(dev_priv, PIPEGCMAX(pipe, 2), lut[i].blue); } static void i965_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: i9xx_load_lut_8(crtc, post_csc_lut); break; case GAMMA_MODE_MODE_10BIT: i965_load_lut_10p6(crtc, post_csc_lut); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static void ilk_lut_write(const struct intel_crtc_state *crtc_state, i915_reg_t reg, u32 val) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (crtc_state->dsb) intel_dsb_reg_write(crtc_state->dsb, reg, val); else intel_de_write_fw(i915, reg, val); } static void ilk_load_lut_8(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_color_lut *lut; enum pipe pipe = crtc->pipe; int i; if (!blob) return; lut = blob->data; for (i = 0; i < 256; i++) ilk_lut_write(crtc_state, LGC_PALETTE(pipe, i), i9xx_lut_8(&lut[i])); } static void ilk_load_lut_10(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size; i++) ilk_lut_write(crtc_state, PREC_PALETTE(pipe, i), ilk_lut_10(&lut[i])); } static void ilk_load_luts(const struct intel_crtc_state *crtc_state) { const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; const struct drm_property_blob *pre_csc_lut = crtc_state->pre_csc_lut; const struct drm_property_blob *blob = post_csc_lut ?: pre_csc_lut; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: ilk_load_lut_8(crtc_state, blob); break; case GAMMA_MODE_MODE_10BIT: ilk_load_lut_10(crtc_state, blob); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static int ivb_lut_10_size(u32 prec_index) { if (prec_index & PAL_PREC_SPLIT_MODE) return 512; else return 1024; } /* * IVB/HSW Bspec / PAL_PREC_INDEX: * "Restriction : Index auto increment mode is not * supported and must not be enabled." */ static void ivb_load_lut_10(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob, u32 prec_index) { const struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size; i++) { ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), prec_index + i); ilk_lut_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_10(&lut[i])); } /* * Reset the index, otherwise it prevents the legacy palette to be * written properly. */ ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), PAL_PREC_INDEX_VALUE(0)); } /* On BDW+ the index auto increment mode actually works */ static void bdw_load_lut_10(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob, u32 prec_index) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), prec_index); ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT | prec_index); for (i = 0; i < lut_size; i++) ilk_lut_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_10(&lut[i])); /* * Reset the index, otherwise it prevents the legacy palette to be * written properly. */ ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), PAL_PREC_INDEX_VALUE(0)); } static void ivb_load_lut_ext_max(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; /* Program the max register to clamp values > 1.0. */ ilk_lut_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 0), 1 << 16); ilk_lut_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 1), 1 << 16); ilk_lut_write(crtc_state, PREC_PAL_EXT_GC_MAX(pipe, 2), 1 << 16); } static void glk_load_lut_ext2_max(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; /* Program the max register to clamp values > 1.0. */ ilk_lut_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 0), 1 << 16); ilk_lut_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 1), 1 << 16); ilk_lut_write(crtc_state, PREC_PAL_EXT2_GC_MAX(pipe, 2), 1 << 16); } static void ivb_load_luts(const struct intel_crtc_state *crtc_state) { const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; const struct drm_property_blob *pre_csc_lut = crtc_state->pre_csc_lut; const struct drm_property_blob *blob = post_csc_lut ?: pre_csc_lut; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: ilk_load_lut_8(crtc_state, blob); break; case GAMMA_MODE_MODE_SPLIT: ivb_load_lut_10(crtc_state, pre_csc_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); ivb_load_lut_10(crtc_state, post_csc_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(512)); break; case GAMMA_MODE_MODE_10BIT: ivb_load_lut_10(crtc_state, blob, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static void bdw_load_luts(const struct intel_crtc_state *crtc_state) { const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; const struct drm_property_blob *pre_csc_lut = crtc_state->pre_csc_lut; const struct drm_property_blob *blob = post_csc_lut ?: pre_csc_lut; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: ilk_load_lut_8(crtc_state, blob); break; case GAMMA_MODE_MODE_SPLIT: bdw_load_lut_10(crtc_state, pre_csc_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); bdw_load_lut_10(crtc_state, post_csc_lut, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(512)); break; case GAMMA_MODE_MODE_10BIT: bdw_load_lut_10(crtc_state, blob, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static int glk_degamma_lut_size(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 13) return 131; else return 35; } static void glk_load_degamma_lut(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; /* * When setting the auto-increment bit, the hardware seems to * ignore the index bits, so we need to reset it to index 0 * separately. */ ilk_lut_write(crtc_state, PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_INDEX_VALUE(0)); ilk_lut_write(crtc_state, PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT | PRE_CSC_GAMC_INDEX_VALUE(0)); for (i = 0; i < lut_size; i++) { /* * First lut_size entries represent range from 0 to 1.0 * 3 additional lut entries will represent extended range * inputs 3.0 and 7.0 respectively, currently clamped * at 1.0. Since the precision is 16bit, the user * value can be directly filled to register. * The pipe degamma table in GLK+ onwards doesn't * support different values per channel, so this just * programs green value which will be equal to Red and * Blue into the lut registers. * ToDo: Extend to max 7.0. Enable 32 bit input value * as compared to just 16 to achieve this. */ ilk_lut_write(crtc_state, PRE_CSC_GAMC_DATA(pipe), lut[i].green); } /* Clamp values > 1.0. */ while (i++ < glk_degamma_lut_size(i915)) ilk_lut_write(crtc_state, PRE_CSC_GAMC_DATA(pipe), 1 << 16); ilk_lut_write(crtc_state, PRE_CSC_GAMC_INDEX(pipe), 0); } static void glk_load_luts(const struct intel_crtc_state *crtc_state) { const struct drm_property_blob *pre_csc_lut = crtc_state->pre_csc_lut; const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; if (pre_csc_lut) glk_load_degamma_lut(crtc_state, pre_csc_lut); switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: ilk_load_lut_8(crtc_state, post_csc_lut); break; case GAMMA_MODE_MODE_10BIT: bdw_load_lut_10(crtc_state, post_csc_lut, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); glk_load_lut_ext2_max(crtc_state); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static void ivb_load_lut_max(const struct intel_crtc_state *crtc_state, const struct drm_color_lut *color) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; /* FIXME LUT entries are 16 bit only, so we can prog 0xFFFF max */ ilk_lut_write(crtc_state, PREC_PAL_GC_MAX(pipe, 0), color->red); ilk_lut_write(crtc_state, PREC_PAL_GC_MAX(pipe, 1), color->green); ilk_lut_write(crtc_state, PREC_PAL_GC_MAX(pipe, 2), color->blue); } static void icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *blob = crtc_state->post_csc_lut; const struct drm_color_lut *lut = blob->data; enum pipe pipe = crtc->pipe; int i; /* * Program Super Fine segment (let's call it seg1)... * * Super Fine segment's step is 1/(8 * 128 * 256) and it has * 9 entries, corresponding to values 0, 1/(8 * 128 * 256), * 2/(8 * 128 * 256) ... 8/(8 * 128 * 256). */ ilk_lut_write(crtc_state, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_MULTI_SEG_INDEX_VALUE(0)); ilk_lut_write(crtc_state, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_AUTO_INCREMENT | PAL_PREC_MULTI_SEG_INDEX_VALUE(0)); for (i = 0; i < 9; i++) { const struct drm_color_lut *entry = &lut[i]; ilk_lut_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe), ilk_lut_12p4_ldw(entry)); ilk_lut_write(crtc_state, PREC_PAL_MULTI_SEG_DATA(pipe), ilk_lut_12p4_udw(entry)); } ilk_lut_write(crtc_state, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_MULTI_SEG_INDEX_VALUE(0)); } static void icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_property_blob *blob = crtc_state->post_csc_lut; const struct drm_color_lut *lut = blob->data; const struct drm_color_lut *entry; enum pipe pipe = crtc->pipe; int i; /* * Program Fine segment (let's call it seg2)... * * Fine segment's step is 1/(128 * 256) i.e. 1/(128 * 256), 2/(128 * 256) * ... 256/(128 * 256). So in order to program fine segment of LUT we * need to pick every 8th entry in the LUT, and program 256 indexes. * * PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1], * seg2[0] being unused by the hardware. */ ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), PAL_PREC_INDEX_VALUE(0)); ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT | PAL_PREC_INDEX_VALUE(0)); for (i = 1; i < 257; i++) { entry = &lut[i * 8]; ilk_lut_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry)); ilk_lut_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry)); } /* * Program Coarse segment (let's call it seg3)... * * Coarse segment starts from index 0 and it's step is 1/256 ie 0, * 1/256, 2/256 ... 256/256. As per the description of each entry in LUT * above, we need to pick every (8 * 128)th entry in LUT, and * program 256 of those. * * Spec is not very clear about if entries seg3[0] and seg3[1] are * being used or not, but we still need to program these to advance * the index. */ for (i = 0; i < 256; i++) { entry = &lut[i * 8 * 128]; ilk_lut_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry)); ilk_lut_write(crtc_state, PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry)); } ilk_lut_write(crtc_state, PREC_PAL_INDEX(pipe), PAL_PREC_INDEX_VALUE(0)); /* The last entry in the LUT is to be programmed in GCMAX */ entry = &lut[256 * 8 * 128]; ivb_load_lut_max(crtc_state, entry); } static void icl_load_luts(const struct intel_crtc_state *crtc_state) { const struct drm_property_blob *pre_csc_lut = crtc_state->pre_csc_lut; const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; if (pre_csc_lut) glk_load_degamma_lut(crtc_state, pre_csc_lut); switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) { case GAMMA_MODE_MODE_8BIT: ilk_load_lut_8(crtc_state, post_csc_lut); break; case GAMMA_MODE_MODE_12BIT_MULTI_SEG: icl_program_gamma_superfine_segment(crtc_state); icl_program_gamma_multi_segment(crtc_state); ivb_load_lut_ext_max(crtc_state); glk_load_lut_ext2_max(crtc_state); break; case GAMMA_MODE_MODE_10BIT: bdw_load_lut_10(crtc_state, post_csc_lut, PAL_PREC_INDEX_VALUE(0)); ivb_load_lut_ext_max(crtc_state); glk_load_lut_ext2_max(crtc_state); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } if (crtc_state->dsb) intel_dsb_commit(crtc_state->dsb); } static u32 chv_cgm_degamma_ldw(const struct drm_color_lut *color) { return REG_FIELD_PREP(CGM_PIPE_DEGAMMA_GREEN_LDW_MASK, drm_color_lut_extract(color->green, 14)) | REG_FIELD_PREP(CGM_PIPE_DEGAMMA_BLUE_LDW_MASK, drm_color_lut_extract(color->blue, 14)); } static u32 chv_cgm_degamma_udw(const struct drm_color_lut *color) { return REG_FIELD_PREP(CGM_PIPE_DEGAMMA_RED_UDW_MASK, drm_color_lut_extract(color->red, 14)); } static void chv_cgm_degamma_pack(struct drm_color_lut *entry, u32 ldw, u32 udw) { entry->green = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_DEGAMMA_GREEN_LDW_MASK, ldw), 14); entry->blue = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_DEGAMMA_BLUE_LDW_MASK, ldw), 14); entry->red = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_DEGAMMA_RED_UDW_MASK, udw), 14); } static void chv_load_cgm_degamma(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size; i++) { intel_de_write_fw(i915, CGM_PIPE_DEGAMMA(pipe, i, 0), chv_cgm_degamma_ldw(&lut[i])); intel_de_write_fw(i915, CGM_PIPE_DEGAMMA(pipe, i, 1), chv_cgm_degamma_udw(&lut[i])); } } static u32 chv_cgm_gamma_ldw(const struct drm_color_lut *color) { return REG_FIELD_PREP(CGM_PIPE_GAMMA_GREEN_LDW_MASK, drm_color_lut_extract(color->green, 10)) | REG_FIELD_PREP(CGM_PIPE_GAMMA_BLUE_LDW_MASK, drm_color_lut_extract(color->blue, 10)); } static u32 chv_cgm_gamma_udw(const struct drm_color_lut *color) { return REG_FIELD_PREP(CGM_PIPE_GAMMA_RED_UDW_MASK, drm_color_lut_extract(color->red, 10)); } static void chv_cgm_gamma_pack(struct drm_color_lut *entry, u32 ldw, u32 udw) { entry->green = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_GREEN_LDW_MASK, ldw), 10); entry->blue = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_BLUE_LDW_MASK, ldw), 10); entry->red = intel_color_lut_pack(REG_FIELD_GET(CGM_PIPE_GAMMA_RED_UDW_MASK, udw), 10); } static void chv_load_cgm_gamma(struct intel_crtc *crtc, const struct drm_property_blob *blob) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct drm_color_lut *lut = blob->data; int i, lut_size = drm_color_lut_size(blob); enum pipe pipe = crtc->pipe; for (i = 0; i < lut_size; i++) { intel_de_write_fw(i915, CGM_PIPE_GAMMA(pipe, i, 0), chv_cgm_gamma_ldw(&lut[i])); intel_de_write_fw(i915, CGM_PIPE_GAMMA(pipe, i, 1), chv_cgm_gamma_udw(&lut[i])); } } static void chv_load_luts(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct drm_property_blob *pre_csc_lut = crtc_state->pre_csc_lut; const struct drm_property_blob *post_csc_lut = crtc_state->post_csc_lut; const struct drm_property_blob *ctm = crtc_state->hw.ctm; if (crtc_state->cgm_mode & CGM_PIPE_MODE_CSC) chv_load_cgm_csc(crtc, ctm); if (crtc_state->cgm_mode & CGM_PIPE_MODE_DEGAMMA) chv_load_cgm_degamma(crtc, pre_csc_lut); if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA) chv_load_cgm_gamma(crtc, post_csc_lut); else i965_load_luts(crtc_state); intel_de_write_fw(i915, CGM_PIPE_MODE(crtc->pipe), crtc_state->cgm_mode); } void intel_color_load_luts(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); i915->display.funcs.color->load_luts(crtc_state); } void intel_color_commit_noarm(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (i915->display.funcs.color->color_commit_noarm) i915->display.funcs.color->color_commit_noarm(crtc_state); } void intel_color_commit_arm(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); i915->display.funcs.color->color_commit_arm(crtc_state); } void intel_color_post_update(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (i915->display.funcs.color->color_post_update) i915->display.funcs.color->color_post_update(crtc_state); } void intel_color_prepare_commit(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); /* FIXME DSB has issues loading LUTs, disable it for now */ return; crtc_state->dsb = intel_dsb_prepare(crtc, 1024); } void intel_color_cleanup_commit(struct intel_crtc_state *crtc_state) { if (!crtc_state->dsb) return; intel_dsb_cleanup(crtc_state->dsb); crtc_state->dsb = NULL; } static bool intel_can_preload_luts(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); return !old_crtc_state->post_csc_lut && !old_crtc_state->pre_csc_lut; } static bool chv_can_preload_luts(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); /* * CGM_PIPE_MODE is itself single buffered. We'd have to * somehow split it out from chv_load_luts() if we wanted * the ability to preload the CGM LUTs/CSC without tearing. */ if (old_crtc_state->cgm_mode || new_crtc_state->cgm_mode) return false; return !old_crtc_state->post_csc_lut; } int intel_color_check(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); return i915->display.funcs.color->color_check(crtc_state); } void intel_color_get_config(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); i915->display.funcs.color->read_luts(crtc_state); } bool intel_color_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); /* * FIXME c8_planes readout missing thus * .read_luts() doesn't read out post_csc_lut. */ if (!is_pre_csc_lut && crtc_state->c8_planes) return true; return i915->display.funcs.color->lut_equal(crtc_state, blob1, blob2, is_pre_csc_lut); } static bool need_plane_update(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(plane->base.dev); /* * On pre-SKL the pipe gamma enable and pipe csc enable for * the pipe bottom color are configured via the primary plane. * We have to reconfigure that even if the plane is inactive. */ return crtc_state->active_planes & BIT(plane->id) || (DISPLAY_VER(i915) < 9 && plane->id == PLANE_PRIMARY); } static int intel_color_add_affected_planes(struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_plane *plane; if (!new_crtc_state->hw.active || intel_crtc_needs_modeset(new_crtc_state)) return 0; if (new_crtc_state->gamma_enable == old_crtc_state->gamma_enable && new_crtc_state->csc_enable == old_crtc_state->csc_enable) return 0; for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { struct intel_plane_state *plane_state; if (!need_plane_update(plane, new_crtc_state)) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); new_crtc_state->update_planes |= BIT(plane->id); /* plane control register changes blocked by CxSR */ if (HAS_GMCH(i915)) new_crtc_state->disable_cxsr = true; } return 0; } static u32 intel_gamma_lut_tests(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; if (lut_is_legacy(gamma_lut)) return 0; return INTEL_INFO(i915)->display.color.gamma_lut_tests; } static u32 intel_degamma_lut_tests(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); return INTEL_INFO(i915)->display.color.degamma_lut_tests; } static int intel_gamma_lut_size(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; if (lut_is_legacy(gamma_lut)) return LEGACY_LUT_LENGTH; return INTEL_INFO(i915)->display.color.gamma_lut_size; } static u32 intel_degamma_lut_size(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); return INTEL_INFO(i915)->display.color.degamma_lut_size; } static int check_lut_size(const struct drm_property_blob *lut, int expected) { int len; if (!lut) return 0; len = drm_color_lut_size(lut); if (len != expected) { DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n", len, expected); return -EINVAL; } return 0; } static int _check_luts(const struct intel_crtc_state *crtc_state, u32 degamma_tests, u32 gamma_tests) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct drm_property_blob *gamma_lut = crtc_state->hw.gamma_lut; const struct drm_property_blob *degamma_lut = crtc_state->hw.degamma_lut; int gamma_length, degamma_length; /* C8 relies on its palette being stored in the legacy LUT */ if (crtc_state->c8_planes && !lut_is_legacy(crtc_state->hw.gamma_lut)) { drm_dbg_kms(&i915->drm, "C8 pixelformat requires the legacy LUT\n"); return -EINVAL; } degamma_length = intel_degamma_lut_size(crtc_state); gamma_length = intel_gamma_lut_size(crtc_state); if (check_lut_size(degamma_lut, degamma_length) || check_lut_size(gamma_lut, gamma_length)) return -EINVAL; if (drm_color_lut_check(degamma_lut, degamma_tests) || drm_color_lut_check(gamma_lut, gamma_tests)) return -EINVAL; return 0; } static int check_luts(const struct intel_crtc_state *crtc_state) { return _check_luts(crtc_state, intel_degamma_lut_tests(crtc_state), intel_gamma_lut_tests(crtc_state)); } static u32 i9xx_gamma_mode(struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable || lut_is_legacy(crtc_state->hw.gamma_lut)) return GAMMA_MODE_MODE_8BIT; else return GAMMA_MODE_MODE_10BIT; } static int i9xx_lut_10_diff(u16 a, u16 b) { return drm_color_lut_extract(a, 10) - drm_color_lut_extract(b, 10); } static int i9xx_check_lut_10(struct drm_i915_private *dev_priv, const struct drm_property_blob *blob) { const struct drm_color_lut *lut = blob->data; int lut_size = drm_color_lut_size(blob); const struct drm_color_lut *a = &lut[lut_size - 2]; const struct drm_color_lut *b = &lut[lut_size - 1]; if (i9xx_lut_10_diff(b->red, a->red) > 0x7f || i9xx_lut_10_diff(b->green, a->green) > 0x7f || i9xx_lut_10_diff(b->blue, a->blue) > 0x7f) { drm_dbg_kms(&dev_priv->drm, "Last gamma LUT entry exceeds max slope\n"); return -EINVAL; } return 0; } void intel_color_assert_luts(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); /* make sure {pre,post}_csc_lut were correctly assigned */ if (DISPLAY_VER(i915) >= 11 || HAS_GMCH(i915)) { drm_WARN_ON(&i915->drm, crtc_state->pre_csc_lut != crtc_state->hw.degamma_lut); drm_WARN_ON(&i915->drm, crtc_state->post_csc_lut != crtc_state->hw.gamma_lut); } else if (DISPLAY_VER(i915) == 10) { drm_WARN_ON(&i915->drm, crtc_state->post_csc_lut == crtc_state->hw.gamma_lut && crtc_state->pre_csc_lut != crtc_state->hw.degamma_lut && crtc_state->pre_csc_lut != i915->display.color.glk_linear_degamma_lut); drm_WARN_ON(&i915->drm, !ilk_lut_limited_range(crtc_state) && crtc_state->post_csc_lut != NULL && crtc_state->post_csc_lut != crtc_state->hw.gamma_lut); } else if (crtc_state->gamma_mode != GAMMA_MODE_MODE_SPLIT) { drm_WARN_ON(&i915->drm, crtc_state->pre_csc_lut != crtc_state->hw.degamma_lut && crtc_state->pre_csc_lut != crtc_state->hw.gamma_lut); drm_WARN_ON(&i915->drm, !ilk_lut_limited_range(crtc_state) && crtc_state->post_csc_lut != crtc_state->hw.degamma_lut && crtc_state->post_csc_lut != crtc_state->hw.gamma_lut); } } static void intel_assign_luts(struct intel_crtc_state *crtc_state) { drm_property_replace_blob(&crtc_state->pre_csc_lut, crtc_state->hw.degamma_lut); drm_property_replace_blob(&crtc_state->post_csc_lut, crtc_state->hw.gamma_lut); } static int i9xx_color_check(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int ret; ret = check_luts(crtc_state); if (ret) return ret; crtc_state->gamma_enable = crtc_state->hw.gamma_lut && !crtc_state->c8_planes; crtc_state->gamma_mode = i9xx_gamma_mode(crtc_state); if (DISPLAY_VER(i915) < 4 && crtc_state->gamma_mode == GAMMA_MODE_MODE_10BIT) { ret = i9xx_check_lut_10(i915, crtc_state->hw.gamma_lut); if (ret) return ret; } ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; intel_assign_luts(crtc_state); crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static u32 chv_cgm_mode(const struct intel_crtc_state *crtc_state) { u32 cgm_mode = 0; if (crtc_state->hw.degamma_lut) cgm_mode |= CGM_PIPE_MODE_DEGAMMA; if (crtc_state->hw.ctm) cgm_mode |= CGM_PIPE_MODE_CSC; if (crtc_state->hw.gamma_lut && !lut_is_legacy(crtc_state->hw.gamma_lut)) cgm_mode |= CGM_PIPE_MODE_GAMMA; return cgm_mode; } /* * CHV color pipeline: * u0.10 -> CGM degamma -> u0.14 -> CGM csc -> u0.14 -> CGM gamma -> * u0.10 -> WGC csc -> u0.10 -> pipe gamma -> u0.10 * * We always bypass the WGC csc and use the CGM csc * instead since it has degamma and better precision. */ static int chv_color_check(struct intel_crtc_state *crtc_state) { int ret; ret = check_luts(crtc_state); if (ret) return ret; /* * Pipe gamma will be used only for the legacy LUT. * Otherwise we bypass it and use the CGM gamma instead. */ crtc_state->gamma_enable = lut_is_legacy(crtc_state->hw.gamma_lut) && !crtc_state->c8_planes; crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT; crtc_state->cgm_mode = chv_cgm_mode(crtc_state); ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; intel_assign_luts(crtc_state); crtc_state->preload_luts = chv_can_preload_luts(crtc_state); return 0; } static bool ilk_gamma_enable(const struct intel_crtc_state *crtc_state) { return (crtc_state->hw.gamma_lut || crtc_state->hw.degamma_lut) && !crtc_state->c8_planes; } static bool ilk_csc_enable(const struct intel_crtc_state *crtc_state) { return crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || ilk_csc_limited_range(crtc_state) || crtc_state->hw.ctm; } static u32 ilk_gamma_mode(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable || lut_is_legacy(crtc_state->hw.gamma_lut)) return GAMMA_MODE_MODE_8BIT; else return GAMMA_MODE_MODE_10BIT; } static u32 ilk_csc_mode(const struct intel_crtc_state *crtc_state) { /* * CSC comes after the LUT in RGB->YCbCr mode. * RGB->YCbCr needs the limited range offsets added to * the output. RGB limited range output is handled by * the hw automagically elsewhere. */ if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) return CSC_BLACK_SCREEN_OFFSET; if (crtc_state->hw.degamma_lut) return CSC_MODE_YUV_TO_RGB; return CSC_MODE_YUV_TO_RGB | CSC_POSITION_BEFORE_GAMMA; } static int ilk_assign_luts(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (ilk_lut_limited_range(crtc_state)) { struct drm_property_blob *gamma_lut; gamma_lut = create_resized_lut(i915, crtc_state->hw.gamma_lut, drm_color_lut_size(crtc_state->hw.gamma_lut), true); if (IS_ERR(gamma_lut)) return PTR_ERR(gamma_lut); drm_property_replace_blob(&crtc_state->post_csc_lut, gamma_lut); drm_property_blob_put(gamma_lut); drm_property_replace_blob(&crtc_state->pre_csc_lut, crtc_state->hw.degamma_lut); return 0; } if (crtc_state->hw.degamma_lut || crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) { drm_property_replace_blob(&crtc_state->pre_csc_lut, crtc_state->hw.degamma_lut); drm_property_replace_blob(&crtc_state->post_csc_lut, crtc_state->hw.gamma_lut); } else { drm_property_replace_blob(&crtc_state->pre_csc_lut, crtc_state->hw.gamma_lut); drm_property_replace_blob(&crtc_state->post_csc_lut, NULL); } return 0; } static int ilk_color_check(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int ret; ret = check_luts(crtc_state); if (ret) return ret; if (crtc_state->hw.degamma_lut && crtc_state->hw.gamma_lut) { drm_dbg_kms(&i915->drm, "Degamma and gamma together are not possible\n"); return -EINVAL; } if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB && crtc_state->hw.ctm) { drm_dbg_kms(&i915->drm, "YCbCr and CTM together are not possible\n"); return -EINVAL; } crtc_state->gamma_enable = ilk_gamma_enable(crtc_state); crtc_state->csc_enable = ilk_csc_enable(crtc_state); crtc_state->gamma_mode = ilk_gamma_mode(crtc_state); crtc_state->csc_mode = ilk_csc_mode(crtc_state); ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; ret = ilk_assign_luts(crtc_state); if (ret) return ret; crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static u32 ivb_gamma_mode(const struct intel_crtc_state *crtc_state) { if (crtc_state->hw.degamma_lut && crtc_state->hw.gamma_lut) return GAMMA_MODE_MODE_SPLIT; return ilk_gamma_mode(crtc_state); } static u32 ivb_csc_mode(const struct intel_crtc_state *crtc_state) { bool limited_color_range = ilk_csc_limited_range(crtc_state); /* * CSC comes after the LUT in degamma, RGB->YCbCr, * and RGB full->limited range mode. */ if (crtc_state->hw.degamma_lut || crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || limited_color_range) return 0; return CSC_POSITION_BEFORE_GAMMA; } static int ivb_assign_luts(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); struct drm_property_blob *degamma_lut, *gamma_lut; if (crtc_state->gamma_mode != GAMMA_MODE_MODE_SPLIT) return ilk_assign_luts(crtc_state); drm_WARN_ON(&i915->drm, drm_color_lut_size(crtc_state->hw.degamma_lut) != 1024); drm_WARN_ON(&i915->drm, drm_color_lut_size(crtc_state->hw.gamma_lut) != 1024); degamma_lut = create_resized_lut(i915, crtc_state->hw.degamma_lut, 512, false); if (IS_ERR(degamma_lut)) return PTR_ERR(degamma_lut); gamma_lut = create_resized_lut(i915, crtc_state->hw.gamma_lut, 512, ilk_lut_limited_range(crtc_state)); if (IS_ERR(gamma_lut)) { drm_property_blob_put(degamma_lut); return PTR_ERR(gamma_lut); } drm_property_replace_blob(&crtc_state->pre_csc_lut, degamma_lut); drm_property_replace_blob(&crtc_state->post_csc_lut, gamma_lut); drm_property_blob_put(degamma_lut); drm_property_blob_put(gamma_lut); return 0; } static int ivb_color_check(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int ret; ret = check_luts(crtc_state); if (ret) return ret; if (crtc_state->c8_planes && crtc_state->hw.degamma_lut) { drm_dbg_kms(&i915->drm, "C8 pixelformat and degamma together are not possible\n"); return -EINVAL; } if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB && crtc_state->hw.ctm) { drm_dbg_kms(&i915->drm, "YCbCr and CTM together are not possible\n"); return -EINVAL; } if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB && crtc_state->hw.degamma_lut && crtc_state->hw.gamma_lut) { drm_dbg_kms(&i915->drm, "YCbCr and degamma+gamma together are not possible\n"); return -EINVAL; } crtc_state->gamma_enable = ilk_gamma_enable(crtc_state); crtc_state->csc_enable = ilk_csc_enable(crtc_state); crtc_state->gamma_mode = ivb_gamma_mode(crtc_state); crtc_state->csc_mode = ivb_csc_mode(crtc_state); ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; ret = ivb_assign_luts(crtc_state); if (ret) return ret; crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static u32 glk_gamma_mode(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable || lut_is_legacy(crtc_state->hw.gamma_lut)) return GAMMA_MODE_MODE_8BIT; else return GAMMA_MODE_MODE_10BIT; } static bool glk_use_pre_csc_lut_for_gamma(const struct intel_crtc_state *crtc_state) { return crtc_state->hw.gamma_lut && !crtc_state->c8_planes && crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB; } static int glk_assign_luts(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (glk_use_pre_csc_lut_for_gamma(crtc_state)) { struct drm_property_blob *gamma_lut; gamma_lut = create_resized_lut(i915, crtc_state->hw.gamma_lut, INTEL_INFO(i915)->display.color.degamma_lut_size, false); if (IS_ERR(gamma_lut)) return PTR_ERR(gamma_lut); drm_property_replace_blob(&crtc_state->pre_csc_lut, gamma_lut); drm_property_replace_blob(&crtc_state->post_csc_lut, NULL); drm_property_blob_put(gamma_lut); return 0; } if (ilk_lut_limited_range(crtc_state)) { struct drm_property_blob *gamma_lut; gamma_lut = create_resized_lut(i915, crtc_state->hw.gamma_lut, drm_color_lut_size(crtc_state->hw.gamma_lut), true); if (IS_ERR(gamma_lut)) return PTR_ERR(gamma_lut); drm_property_replace_blob(&crtc_state->post_csc_lut, gamma_lut); drm_property_blob_put(gamma_lut); } else { drm_property_replace_blob(&crtc_state->post_csc_lut, crtc_state->hw.gamma_lut); } drm_property_replace_blob(&crtc_state->pre_csc_lut, crtc_state->hw.degamma_lut); /* * On GLK+ both pipe CSC and degamma LUT are controlled * by csc_enable. Hence for the cases where the CSC is * needed but degamma LUT is not we need to load a * linear degamma LUT. */ if (crtc_state->csc_enable && !crtc_state->pre_csc_lut) drm_property_replace_blob(&crtc_state->pre_csc_lut, i915->display.color.glk_linear_degamma_lut); return 0; } static int glk_check_luts(const struct intel_crtc_state *crtc_state) { u32 degamma_tests = intel_degamma_lut_tests(crtc_state); u32 gamma_tests = intel_gamma_lut_tests(crtc_state); if (glk_use_pre_csc_lut_for_gamma(crtc_state)) gamma_tests |= degamma_tests; return _check_luts(crtc_state, degamma_tests, gamma_tests); } static int glk_color_check(struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); int ret; ret = glk_check_luts(crtc_state); if (ret) return ret; if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB && crtc_state->hw.ctm) { drm_dbg_kms(&i915->drm, "YCbCr and CTM together are not possible\n"); return -EINVAL; } if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB && crtc_state->hw.degamma_lut && crtc_state->hw.gamma_lut) { drm_dbg_kms(&i915->drm, "YCbCr and degamma+gamma together are not possible\n"); return -EINVAL; } crtc_state->gamma_enable = !glk_use_pre_csc_lut_for_gamma(crtc_state) && crtc_state->hw.gamma_lut && !crtc_state->c8_planes; /* On GLK+ degamma LUT is controlled by csc_enable */ crtc_state->csc_enable = glk_use_pre_csc_lut_for_gamma(crtc_state) || crtc_state->hw.degamma_lut || crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || crtc_state->hw.ctm || ilk_csc_limited_range(crtc_state); crtc_state->gamma_mode = glk_gamma_mode(crtc_state); crtc_state->csc_mode = 0; ret = intel_color_add_affected_planes(crtc_state); if (ret) return ret; ret = glk_assign_luts(crtc_state); if (ret) return ret; crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); u32 gamma_mode = 0; if (crtc_state->hw.degamma_lut) gamma_mode |= PRE_CSC_GAMMA_ENABLE; if (crtc_state->hw.gamma_lut && !crtc_state->c8_planes) gamma_mode |= POST_CSC_GAMMA_ENABLE; if (!crtc_state->hw.gamma_lut || lut_is_legacy(crtc_state->hw.gamma_lut)) gamma_mode |= GAMMA_MODE_MODE_8BIT; /* * Enable 10bit gamma for D13 * ToDo: Extend to Logarithmic Gamma once the new UAPI * is accepted and implemented by a userspace consumer */ else if (DISPLAY_VER(i915) >= 13) gamma_mode |= GAMMA_MODE_MODE_10BIT; else gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEG; return gamma_mode; } static u32 icl_csc_mode(const struct intel_crtc_state *crtc_state) { u32 csc_mode = 0; if (crtc_state->hw.ctm) csc_mode |= ICL_CSC_ENABLE; if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB || crtc_state->limited_color_range) csc_mode |= ICL_OUTPUT_CSC_ENABLE; return csc_mode; } static int icl_color_check(struct intel_crtc_state *crtc_state) { int ret; ret = check_luts(crtc_state); if (ret) return ret; crtc_state->gamma_mode = icl_gamma_mode(crtc_state); crtc_state->csc_mode = icl_csc_mode(crtc_state); intel_assign_luts(crtc_state); crtc_state->preload_luts = intel_can_preload_luts(crtc_state); return 0; } static int i9xx_post_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return 0; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 10; default: MISSING_CASE(crtc_state->gamma_mode); return 0; } } static int i9xx_pre_csc_lut_precision(const struct intel_crtc_state *crtc_state) { return 0; } static int i965_post_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return 0; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 16; default: MISSING_CASE(crtc_state->gamma_mode); return 0; } } static int ilk_gamma_mode_precision(u32 gamma_mode) { switch (gamma_mode) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 10; default: MISSING_CASE(gamma_mode); return 0; } } static bool ilk_has_post_csc_lut(const struct intel_crtc_state *crtc_state) { if (crtc_state->c8_planes) return true; return crtc_state->gamma_enable && (crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) != 0; } static bool ilk_has_pre_csc_lut(const struct intel_crtc_state *crtc_state) { return crtc_state->gamma_enable && (crtc_state->csc_mode & CSC_POSITION_BEFORE_GAMMA) == 0; } static int ilk_post_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!ilk_has_post_csc_lut(crtc_state)) return 0; return ilk_gamma_mode_precision(crtc_state->gamma_mode); } static int ilk_pre_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!ilk_has_pre_csc_lut(crtc_state)) return 0; return ilk_gamma_mode_precision(crtc_state->gamma_mode); } static int ivb_post_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (crtc_state->gamma_enable && crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) return 10; return ilk_post_csc_lut_precision(crtc_state); } static int ivb_pre_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (crtc_state->gamma_enable && crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT) return 10; return ilk_pre_csc_lut_precision(crtc_state); } static int chv_post_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA) return 10; return i965_post_csc_lut_precision(crtc_state); } static int chv_pre_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (crtc_state->cgm_mode & CGM_PIPE_MODE_DEGAMMA) return 14; return 0; } static int glk_post_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return 0; return ilk_gamma_mode_precision(crtc_state->gamma_mode); } static int glk_pre_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!crtc_state->csc_enable) return 0; return 16; } static bool icl_has_post_csc_lut(const struct intel_crtc_state *crtc_state) { if (crtc_state->c8_planes) return true; return crtc_state->gamma_mode & POST_CSC_GAMMA_ENABLE; } static bool icl_has_pre_csc_lut(const struct intel_crtc_state *crtc_state) { return crtc_state->gamma_mode & PRE_CSC_GAMMA_ENABLE; } static int icl_post_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!icl_has_post_csc_lut(crtc_state)) return 0; switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) { case GAMMA_MODE_MODE_8BIT: return 8; case GAMMA_MODE_MODE_10BIT: return 10; case GAMMA_MODE_MODE_12BIT_MULTI_SEG: return 16; default: MISSING_CASE(crtc_state->gamma_mode); return 0; } } static int icl_pre_csc_lut_precision(const struct intel_crtc_state *crtc_state) { if (!icl_has_pre_csc_lut(crtc_state)) return 0; return 16; } static bool err_check(struct drm_color_lut *lut1, struct drm_color_lut *lut2, u32 err) { return ((abs((long)lut2->red - lut1->red)) <= err) && ((abs((long)lut2->blue - lut1->blue)) <= err) && ((abs((long)lut2->green - lut1->green)) <= err); } static bool intel_lut_entries_equal(struct drm_color_lut *lut1, struct drm_color_lut *lut2, int lut_size, u32 err) { int i; for (i = 0; i < lut_size; i++) { if (!err_check(&lut1[i], &lut2[i], err)) return false; } return true; } static bool intel_lut_equal(const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, int check_size, int precision) { struct drm_color_lut *lut1, *lut2; int lut_size1, lut_size2; u32 err; if (!blob1 != !blob2) return false; if (!blob1 != !precision) return false; if (!blob1) return true; lut_size1 = drm_color_lut_size(blob1); lut_size2 = drm_color_lut_size(blob2); if (lut_size1 != lut_size2) return false; if (check_size > lut_size1) return false; lut1 = blob1->data; lut2 = blob2->data; err = 0xffff >> precision; if (!check_size) check_size = lut_size1; return intel_lut_entries_equal(lut1, lut2, check_size, err); } static bool i9xx_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { int check_size = 0; if (is_pre_csc_lut) return intel_lut_equal(blob1, blob2, 0, i9xx_pre_csc_lut_precision(crtc_state)); /* 10bit mode last entry is implicit, just skip it */ if (crtc_state->gamma_mode == GAMMA_MODE_MODE_10BIT) check_size = 128; return intel_lut_equal(blob1, blob2, check_size, i9xx_post_csc_lut_precision(crtc_state)); } static bool i965_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { if (is_pre_csc_lut) return intel_lut_equal(blob1, blob2, 0, i9xx_pre_csc_lut_precision(crtc_state)); else return intel_lut_equal(blob1, blob2, 0, i965_post_csc_lut_precision(crtc_state)); } static bool chv_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { if (is_pre_csc_lut) return intel_lut_equal(blob1, blob2, 0, chv_pre_csc_lut_precision(crtc_state)); else return intel_lut_equal(blob1, blob2, 0, chv_post_csc_lut_precision(crtc_state)); } static bool ilk_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { if (is_pre_csc_lut) return intel_lut_equal(blob1, blob2, 0, ilk_pre_csc_lut_precision(crtc_state)); else return intel_lut_equal(blob1, blob2, 0, ilk_post_csc_lut_precision(crtc_state)); } static bool ivb_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { if (is_pre_csc_lut) return intel_lut_equal(blob1, blob2, 0, ivb_pre_csc_lut_precision(crtc_state)); else return intel_lut_equal(blob1, blob2, 0, ivb_post_csc_lut_precision(crtc_state)); } static bool glk_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { if (is_pre_csc_lut) return intel_lut_equal(blob1, blob2, 0, glk_pre_csc_lut_precision(crtc_state)); else return intel_lut_equal(blob1, blob2, 0, glk_post_csc_lut_precision(crtc_state)); } static bool icl_lut_equal(const struct intel_crtc_state *crtc_state, const struct drm_property_blob *blob1, const struct drm_property_blob *blob2, bool is_pre_csc_lut) { int check_size = 0; if (is_pre_csc_lut) return intel_lut_equal(blob1, blob2, 0, icl_pre_csc_lut_precision(crtc_state)); /* hw readout broken except for the super fine segment :( */ if ((crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) == GAMMA_MODE_MODE_12BIT_MULTI_SEG) check_size = 9; return intel_lut_equal(blob1, blob2, check_size, icl_post_csc_lut_precision(crtc_state)); } static struct drm_property_blob *i9xx_read_lut_8(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; int i; blob = drm_property_create_blob(&dev_priv->drm, sizeof(lut[0]) * LEGACY_LUT_LENGTH, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < LEGACY_LUT_LENGTH; i++) { u32 val = intel_de_read_fw(dev_priv, PALETTE(pipe, i)); i9xx_lut_8_pack(&lut[i], val); } return blob; } static struct drm_property_blob *i9xx_read_lut_10(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 lut_size = INTEL_INFO(dev_priv)->display.color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; u32 ldw, udw; int i; blob = drm_property_create_blob(&dev_priv->drm, lut_size * sizeof(lut[0]), NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size - 1; i++) { ldw = intel_de_read_fw(dev_priv, PALETTE(pipe, 2 * i + 0)); udw = intel_de_read_fw(dev_priv, PALETTE(pipe, 2 * i + 1)); i9xx_lut_10_pack(&lut[i], ldw, udw); } i9xx_lut_10_pack_slope(&lut[i], ldw, udw); return blob; } static void i9xx_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: crtc_state->post_csc_lut = i9xx_read_lut_8(crtc); break; case GAMMA_MODE_MODE_10BIT: crtc_state->post_csc_lut = i9xx_read_lut_10(crtc); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static struct drm_property_blob *i965_read_lut_10p6(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(dev_priv)->display.color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size - 1; i++) { u32 ldw = intel_de_read_fw(dev_priv, PALETTE(pipe, 2 * i + 0)); u32 udw = intel_de_read_fw(dev_priv, PALETTE(pipe, 2 * i + 1)); i965_lut_10p6_pack(&lut[i], ldw, udw); } lut[i].red = i965_lut_11p6_max_pack(intel_de_read_fw(dev_priv, PIPEGCMAX(pipe, 0))); lut[i].green = i965_lut_11p6_max_pack(intel_de_read_fw(dev_priv, PIPEGCMAX(pipe, 1))); lut[i].blue = i965_lut_11p6_max_pack(intel_de_read_fw(dev_priv, PIPEGCMAX(pipe, 2))); return blob; } static void i965_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: crtc_state->post_csc_lut = i9xx_read_lut_8(crtc); break; case GAMMA_MODE_MODE_10BIT: crtc_state->post_csc_lut = i965_read_lut_10p6(crtc); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static struct drm_property_blob *chv_read_cgm_degamma(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(dev_priv)->display.color.degamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size; i++) { u32 ldw = intel_de_read_fw(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 0)); u32 udw = intel_de_read_fw(dev_priv, CGM_PIPE_DEGAMMA(pipe, i, 1)); chv_cgm_degamma_pack(&lut[i], ldw, udw); } return blob; } static struct drm_property_blob *chv_read_cgm_gamma(struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(i915)->display.color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&i915->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size; i++) { u32 ldw = intel_de_read_fw(i915, CGM_PIPE_GAMMA(pipe, i, 0)); u32 udw = intel_de_read_fw(i915, CGM_PIPE_GAMMA(pipe, i, 1)); chv_cgm_gamma_pack(&lut[i], ldw, udw); } return blob; } static void chv_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (crtc_state->cgm_mode & CGM_PIPE_MODE_DEGAMMA) crtc_state->pre_csc_lut = chv_read_cgm_degamma(crtc); if (crtc_state->cgm_mode & CGM_PIPE_MODE_GAMMA) crtc_state->post_csc_lut = chv_read_cgm_gamma(crtc); else i965_read_luts(crtc_state); } static struct drm_property_blob *ilk_read_lut_8(struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; int i; blob = drm_property_create_blob(&i915->drm, sizeof(lut[0]) * LEGACY_LUT_LENGTH, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < LEGACY_LUT_LENGTH; i++) { u32 val = intel_de_read_fw(i915, LGC_PALETTE(pipe, i)); i9xx_lut_8_pack(&lut[i], val); } return blob; } static struct drm_property_blob *ilk_read_lut_10(struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(i915)->display.color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&i915->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size; i++) { u32 val = intel_de_read_fw(i915, PREC_PALETTE(pipe, i)); ilk_lut_10_pack(&lut[i], val); } return blob; } static void ilk_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_property_blob **blob = ilk_has_post_csc_lut(crtc_state) ? &crtc_state->post_csc_lut : &crtc_state->pre_csc_lut; if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: *blob = ilk_read_lut_8(crtc); break; case GAMMA_MODE_MODE_10BIT: *blob = ilk_read_lut_10(crtc); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } /* * IVB/HSW Bspec / PAL_PREC_INDEX: * "Restriction : Index auto increment mode is not * supported and must not be enabled." */ static struct drm_property_blob *ivb_read_lut_10(struct intel_crtc *crtc, u32 prec_index) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = ivb_lut_10_size(prec_index); enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; for (i = 0; i < lut_size; i++) { u32 val; intel_de_write_fw(dev_priv, PREC_PAL_INDEX(pipe), prec_index + i); val = intel_de_read_fw(dev_priv, PREC_PAL_DATA(pipe)); ilk_lut_10_pack(&lut[i], val); } intel_de_write_fw(dev_priv, PREC_PAL_INDEX(pipe), PAL_PREC_INDEX_VALUE(0)); return blob; } static void ivb_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_property_blob **blob = ilk_has_post_csc_lut(crtc_state) ? &crtc_state->post_csc_lut : &crtc_state->pre_csc_lut; if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: *blob = ilk_read_lut_8(crtc); break; case GAMMA_MODE_MODE_SPLIT: crtc_state->pre_csc_lut = ivb_read_lut_10(crtc, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(0)); crtc_state->post_csc_lut = ivb_read_lut_10(crtc, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(512)); break; case GAMMA_MODE_MODE_10BIT: *blob = ivb_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0)); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } /* On BDW+ the index auto increment mode actually works */ static struct drm_property_blob *bdw_read_lut_10(struct intel_crtc *crtc, u32 prec_index) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); int i, lut_size = ivb_lut_10_size(prec_index); enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&i915->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; intel_de_write_fw(i915, PREC_PAL_INDEX(pipe), prec_index); intel_de_write_fw(i915, PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT | prec_index); for (i = 0; i < lut_size; i++) { u32 val = intel_de_read_fw(i915, PREC_PAL_DATA(pipe)); ilk_lut_10_pack(&lut[i], val); } intel_de_write_fw(i915, PREC_PAL_INDEX(pipe), PAL_PREC_INDEX_VALUE(0)); return blob; } static void bdw_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_property_blob **blob = ilk_has_post_csc_lut(crtc_state) ? &crtc_state->post_csc_lut : &crtc_state->pre_csc_lut; if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: *blob = ilk_read_lut_8(crtc); break; case GAMMA_MODE_MODE_SPLIT: crtc_state->pre_csc_lut = bdw_read_lut_10(crtc, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(0)); crtc_state->post_csc_lut = bdw_read_lut_10(crtc, PAL_PREC_SPLIT_MODE | PAL_PREC_INDEX_VALUE(512)); break; case GAMMA_MODE_MODE_10BIT: *blob = bdw_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0)); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static struct drm_property_blob *glk_read_degamma_lut(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(dev_priv)->display.color.degamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&dev_priv->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; /* * When setting the auto-increment bit, the hardware seems to * ignore the index bits, so we need to reset it to index 0 * separately. */ intel_de_write_fw(dev_priv, PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_INDEX_VALUE(0)); intel_de_write_fw(dev_priv, PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT | PRE_CSC_GAMC_INDEX_VALUE(0)); for (i = 0; i < lut_size; i++) { u32 val = intel_de_read_fw(dev_priv, PRE_CSC_GAMC_DATA(pipe)); lut[i].red = val; lut[i].green = val; lut[i].blue = val; } intel_de_write_fw(dev_priv, PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_INDEX_VALUE(0)); return blob; } static void glk_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (crtc_state->csc_enable) crtc_state->pre_csc_lut = glk_read_degamma_lut(crtc); if (!crtc_state->gamma_enable && !crtc_state->c8_planes) return; switch (crtc_state->gamma_mode) { case GAMMA_MODE_MODE_8BIT: crtc_state->post_csc_lut = ilk_read_lut_8(crtc); break; case GAMMA_MODE_MODE_10BIT: crtc_state->post_csc_lut = bdw_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0)); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static struct drm_property_blob * icl_read_lut_multi_segment(struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); int i, lut_size = INTEL_INFO(i915)->display.color.gamma_lut_size; enum pipe pipe = crtc->pipe; struct drm_property_blob *blob; struct drm_color_lut *lut; blob = drm_property_create_blob(&i915->drm, sizeof(lut[0]) * lut_size, NULL); if (IS_ERR(blob)) return NULL; lut = blob->data; intel_de_write_fw(i915, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_MULTI_SEG_INDEX_VALUE(0)); intel_de_write_fw(i915, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_MULTI_SEG_AUTO_INCREMENT | PAL_PREC_MULTI_SEG_INDEX_VALUE(0)); for (i = 0; i < 9; i++) { u32 ldw = intel_de_read_fw(i915, PREC_PAL_MULTI_SEG_DATA(pipe)); u32 udw = intel_de_read_fw(i915, PREC_PAL_MULTI_SEG_DATA(pipe)); ilk_lut_12p4_pack(&lut[i], ldw, udw); } intel_de_write_fw(i915, PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_MULTI_SEG_INDEX_VALUE(0)); /* * FIXME readouts from PAL_PREC_DATA register aren't giving * correct values in the case of fine and coarse segments. * Restricting readouts only for super fine segment as of now. */ return blob; } static void icl_read_luts(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (icl_has_pre_csc_lut(crtc_state)) crtc_state->pre_csc_lut = glk_read_degamma_lut(crtc); if (!icl_has_post_csc_lut(crtc_state)) return; switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) { case GAMMA_MODE_MODE_8BIT: crtc_state->post_csc_lut = ilk_read_lut_8(crtc); break; case GAMMA_MODE_MODE_10BIT: crtc_state->post_csc_lut = bdw_read_lut_10(crtc, PAL_PREC_INDEX_VALUE(0)); break; case GAMMA_MODE_MODE_12BIT_MULTI_SEG: crtc_state->post_csc_lut = icl_read_lut_multi_segment(crtc); break; default: MISSING_CASE(crtc_state->gamma_mode); break; } } static const struct intel_color_funcs chv_color_funcs = { .color_check = chv_color_check, .color_commit_arm = i9xx_color_commit_arm, .load_luts = chv_load_luts, .read_luts = chv_read_luts, .lut_equal = chv_lut_equal, }; static const struct intel_color_funcs i965_color_funcs = { .color_check = i9xx_color_check, .color_commit_arm = i9xx_color_commit_arm, .load_luts = i965_load_luts, .read_luts = i965_read_luts, .lut_equal = i965_lut_equal, }; static const struct intel_color_funcs i9xx_color_funcs = { .color_check = i9xx_color_check, .color_commit_arm = i9xx_color_commit_arm, .load_luts = i9xx_load_luts, .read_luts = i9xx_read_luts, .lut_equal = i9xx_lut_equal, }; static const struct intel_color_funcs tgl_color_funcs = { .color_check = icl_color_check, .color_commit_noarm = icl_color_commit_noarm, .color_commit_arm = icl_color_commit_arm, .load_luts = icl_load_luts, .read_luts = icl_read_luts, .lut_equal = icl_lut_equal, }; static const struct intel_color_funcs icl_color_funcs = { .color_check = icl_color_check, .color_commit_noarm = icl_color_commit_noarm, .color_commit_arm = icl_color_commit_arm, .color_post_update = icl_color_post_update, .load_luts = icl_load_luts, .read_luts = icl_read_luts, .lut_equal = icl_lut_equal, }; static const struct intel_color_funcs glk_color_funcs = { .color_check = glk_color_check, .color_commit_noarm = skl_color_commit_noarm, .color_commit_arm = skl_color_commit_arm, .load_luts = glk_load_luts, .read_luts = glk_read_luts, .lut_equal = glk_lut_equal, }; static const struct intel_color_funcs skl_color_funcs = { .color_check = ivb_color_check, .color_commit_noarm = skl_color_commit_noarm, .color_commit_arm = skl_color_commit_arm, .load_luts = bdw_load_luts, .read_luts = bdw_read_luts, .lut_equal = ivb_lut_equal, }; static const struct intel_color_funcs bdw_color_funcs = { .color_check = ivb_color_check, .color_commit_noarm = ilk_color_commit_noarm, .color_commit_arm = hsw_color_commit_arm, .load_luts = bdw_load_luts, .read_luts = bdw_read_luts, .lut_equal = ivb_lut_equal, }; static const struct intel_color_funcs hsw_color_funcs = { .color_check = ivb_color_check, .color_commit_noarm = ilk_color_commit_noarm, .color_commit_arm = hsw_color_commit_arm, .load_luts = ivb_load_luts, .read_luts = ivb_read_luts, .lut_equal = ivb_lut_equal, }; static const struct intel_color_funcs ivb_color_funcs = { .color_check = ivb_color_check, .color_commit_noarm = ilk_color_commit_noarm, .color_commit_arm = ilk_color_commit_arm, .load_luts = ivb_load_luts, .read_luts = ivb_read_luts, .lut_equal = ivb_lut_equal, }; static const struct intel_color_funcs ilk_color_funcs = { .color_check = ilk_color_check, .color_commit_noarm = ilk_color_commit_noarm, .color_commit_arm = ilk_color_commit_arm, .load_luts = ilk_load_luts, .read_luts = ilk_read_luts, .lut_equal = ilk_lut_equal, }; void intel_color_crtc_init(struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); int degamma_lut_size, gamma_lut_size; bool has_ctm; drm_mode_crtc_set_gamma_size(&crtc->base, 256); gamma_lut_size = INTEL_INFO(i915)->display.color.gamma_lut_size; degamma_lut_size = INTEL_INFO(i915)->display.color.degamma_lut_size; has_ctm = degamma_lut_size != 0; /* * "DPALETTE_A: NOTE: The 8-bit (non-10-bit) mode is the * only mode supported by Alviso and Grantsdale." * * Actually looks like this affects all of gen3. * Confirmed on alv,cst,pnv. Mobile gen2 parts (alm,mgm) * are confirmed not to suffer from this restriction. */ if (DISPLAY_VER(i915) == 3 && crtc->pipe == PIPE_A) gamma_lut_size = 256; drm_crtc_enable_color_mgmt(&crtc->base, degamma_lut_size, has_ctm, gamma_lut_size); } int intel_color_init(struct drm_i915_private *i915) { struct drm_property_blob *blob; if (DISPLAY_VER(i915) != 10) return 0; blob = create_linear_lut(i915, INTEL_INFO(i915)->display.color.degamma_lut_size); if (IS_ERR(blob)) return PTR_ERR(blob); i915->display.color.glk_linear_degamma_lut = blob; return 0; } void intel_color_init_hooks(struct drm_i915_private *i915) { if (HAS_GMCH(i915)) { if (IS_CHERRYVIEW(i915)) i915->display.funcs.color = &chv_color_funcs; else if (DISPLAY_VER(i915) >= 4) i915->display.funcs.color = &i965_color_funcs; else i915->display.funcs.color = &i9xx_color_funcs; } else { if (DISPLAY_VER(i915) >= 12) i915->display.funcs.color = &tgl_color_funcs; else if (DISPLAY_VER(i915) == 11) i915->display.funcs.color = &icl_color_funcs; else if (DISPLAY_VER(i915) == 10) i915->display.funcs.color = &glk_color_funcs; else if (DISPLAY_VER(i915) == 9) i915->display.funcs.color = &skl_color_funcs; else if (DISPLAY_VER(i915) == 8) i915->display.funcs.color = &bdw_color_funcs; else if (IS_HASWELL(i915)) i915->display.funcs.color = &hsw_color_funcs; else if (DISPLAY_VER(i915) == 7) i915->display.funcs.color = &ivb_color_funcs; else i915->display.funcs.color = &ilk_color_funcs; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1