Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave Airlie | 1438 | 50.92% | 5 | 4.31% |
Ville Syrjälä | 756 | 26.77% | 34 | 29.31% |
Chris Wilson | 212 | 7.51% | 5 | 4.31% |
Jani Nikula | 99 | 3.51% | 16 | 13.79% |
Maarten Lankhorst | 49 | 1.74% | 12 | 10.34% |
Jesse Barnes | 44 | 1.56% | 4 | 3.45% |
Daniel Vetter | 42 | 1.49% | 2 | 1.72% |
Wambui Karuga | 18 | 0.64% | 2 | 1.72% |
Pankaj Bharadiya | 17 | 0.60% | 2 | 1.72% |
Tarun | 16 | 0.57% | 3 | 2.59% |
Bing Niu | 15 | 0.53% | 1 | 0.86% |
Paulo Zanoni | 14 | 0.50% | 2 | 1.72% |
José Roberto de Souza | 14 | 0.50% | 2 | 1.72% |
Matt Roper | 13 | 0.46% | 3 | 2.59% |
Vandita Kulkarni | 12 | 0.42% | 2 | 1.72% |
Damien Lespiau | 10 | 0.35% | 2 | 1.72% |
Manasi D Navare | 8 | 0.28% | 2 | 1.72% |
Anshuman Gupta | 7 | 0.25% | 1 | 0.86% |
Lucas De Marchi | 6 | 0.21% | 1 | 0.86% |
Ben Widawsky | 5 | 0.18% | 1 | 0.86% |
Juha-Pekka Heikkila | 4 | 0.14% | 1 | 0.86% |
Wayne Boyer | 4 | 0.14% | 1 | 0.86% |
Shaohua Li | 3 | 0.11% | 1 | 0.86% |
Madhav Chauhan | 3 | 0.11% | 1 | 0.86% |
Chandra Konduru | 2 | 0.07% | 1 | 0.86% |
Fengguang Wu | 2 | 0.07% | 1 | 0.86% |
Tvrtko A. Ursulin | 2 | 0.07% | 2 | 1.72% |
Sam Ravnborg | 2 | 0.07% | 1 | 0.86% |
Karthik B S | 2 | 0.07% | 1 | 0.86% |
Ander Conselvan de Oliveira | 2 | 0.07% | 2 | 1.72% |
Imre Deak | 2 | 0.07% | 1 | 0.86% |
Swati Sharma | 1 | 0.04% | 1 | 0.86% |
Total | 2824 | 116 |
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/kernel.h> #include <linux/pm_qos.h> #include <linux/slab.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_plane.h> #include <drm/drm_vblank_work.h> #include "i915_irq.h" #include "i915_vgpu.h" #include "i9xx_plane.h" #include "icl_dsi.h" #include "intel_atomic.h" #include "intel_atomic_plane.h" #include "intel_color.h" #include "intel_crtc.h" #include "intel_cursor.h" #include "intel_display_debugfs.h" #include "intel_display_trace.h" #include "intel_display_types.h" #include "intel_drrs.h" #include "intel_dsi.h" #include "intel_pipe_crc.h" #include "intel_psr.h" #include "intel_sprite.h" #include "intel_vblank.h" #include "intel_vrr.h" #include "skl_universal_plane.h" static void assert_vblank_disabled(struct drm_crtc *crtc) { if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0)) drm_crtc_vblank_put(crtc); } struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915) { return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0)); } struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915, enum pipe pipe) { struct intel_crtc *crtc; for_each_intel_crtc(&i915->drm, crtc) { if (crtc->pipe == pipe) return crtc; } return NULL; } void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc) { drm_crtc_wait_one_vblank(&crtc->base); } void intel_wait_for_vblank_if_active(struct drm_i915_private *i915, enum pipe pipe) { struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe); if (crtc->active) intel_crtc_wait_for_next_vblank(crtc); } u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)]; if (!crtc->active) return 0; if (!vblank->max_vblank_count) return (u32)drm_crtc_accurate_vblank_count(&crtc->base); return crtc->base.funcs->get_vblank_counter(&crtc->base); } u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); /* * From Gen 11, In case of dsi cmd mode, frame counter wouldnt * have updated at the beginning of TE, if we want to use * the hw counter, then we would find it updated in only * the next TE, hence switching to sw counter. */ if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 | I915_MODE_FLAG_DSI_USE_TE1)) return 0; /* * On i965gm the hardware frame counter reads * zero when the TV encoder is enabled :( */ if (IS_I965GM(dev_priv) && (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT))) return 0; if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv)) return 0xffffffff; /* full 32 bit counter */ else if (DISPLAY_VER(dev_priv) >= 3) return 0xffffff; /* only 24 bits of frame count */ else return 0; /* Gen2 doesn't have a hardware frame counter */ } void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); assert_vblank_disabled(&crtc->base); drm_crtc_set_max_vblank_count(&crtc->base, intel_crtc_max_vblank_count(crtc_state)); drm_crtc_vblank_on(&crtc->base); /* * Should really happen exactly when we enable the pipe * but we want the frame counters in the trace, and that * requires vblank support on some platforms/outputs. */ trace_intel_pipe_enable(crtc); } void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); /* * Should really happen exactly when we disable the pipe * but we want the frame counters in the trace, and that * requires vblank support on some platforms/outputs. */ trace_intel_pipe_disable(crtc); drm_crtc_vblank_off(&crtc->base); assert_vblank_disabled(&crtc->base); } struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state; crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL); if (crtc_state) intel_crtc_state_reset(crtc_state, crtc); return crtc_state; } void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, struct intel_crtc *crtc) { memset(crtc_state, 0, sizeof(*crtc_state)); __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base); crtc_state->cpu_transcoder = INVALID_TRANSCODER; crtc_state->master_transcoder = INVALID_TRANSCODER; crtc_state->hsw_workaround_pipe = INVALID_PIPE; crtc_state->scaler_state.scaler_id = -1; crtc_state->mst_master_transcoder = INVALID_TRANSCODER; } static struct intel_crtc *intel_crtc_alloc(void) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; crtc = kzalloc(sizeof(*crtc), GFP_KERNEL); if (!crtc) return ERR_PTR(-ENOMEM); crtc_state = intel_crtc_state_alloc(crtc); if (!crtc_state) { kfree(crtc); return ERR_PTR(-ENOMEM); } crtc->base.state = &crtc_state->uapi; crtc->config = crtc_state; return crtc; } static void intel_crtc_free(struct intel_crtc *crtc) { intel_crtc_destroy_state(&crtc->base, crtc->base.state); kfree(crtc); } static void intel_crtc_destroy(struct drm_crtc *_crtc) { struct intel_crtc *crtc = to_intel_crtc(_crtc); cpu_latency_qos_remove_request(&crtc->vblank_pm_qos); drm_crtc_cleanup(&crtc->base); kfree(crtc); } static int intel_crtc_late_register(struct drm_crtc *crtc) { intel_crtc_debugfs_add(crtc); return 0; } #define INTEL_CRTC_FUNCS \ .set_config = drm_atomic_helper_set_config, \ .destroy = intel_crtc_destroy, \ .page_flip = drm_atomic_helper_page_flip, \ .atomic_duplicate_state = intel_crtc_duplicate_state, \ .atomic_destroy_state = intel_crtc_destroy_state, \ .set_crc_source = intel_crtc_set_crc_source, \ .verify_crc_source = intel_crtc_verify_crc_source, \ .get_crc_sources = intel_crtc_get_crc_sources, \ .late_register = intel_crtc_late_register static const struct drm_crtc_funcs bdw_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = g4x_get_vblank_counter, .enable_vblank = bdw_enable_vblank, .disable_vblank = bdw_disable_vblank, .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, }; static const struct drm_crtc_funcs ilk_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = g4x_get_vblank_counter, .enable_vblank = ilk_enable_vblank, .disable_vblank = ilk_disable_vblank, .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, }; static const struct drm_crtc_funcs g4x_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = g4x_get_vblank_counter, .enable_vblank = i965_enable_vblank, .disable_vblank = i965_disable_vblank, .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, }; static const struct drm_crtc_funcs i965_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = i915_get_vblank_counter, .enable_vblank = i965_enable_vblank, .disable_vblank = i965_disable_vblank, .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, }; static const struct drm_crtc_funcs i915gm_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = i915_get_vblank_counter, .enable_vblank = i915gm_enable_vblank, .disable_vblank = i915gm_disable_vblank, .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, }; static const struct drm_crtc_funcs i915_crtc_funcs = { INTEL_CRTC_FUNCS, .get_vblank_counter = i915_get_vblank_counter, .enable_vblank = i8xx_enable_vblank, .disable_vblank = i8xx_disable_vblank, .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, }; static const struct drm_crtc_funcs i8xx_crtc_funcs = { INTEL_CRTC_FUNCS, /* no hw vblank counter */ .enable_vblank = i8xx_enable_vblank, .disable_vblank = i8xx_disable_vblank, .get_vblank_timestamp = intel_crtc_get_vblank_timestamp, }; int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_plane *primary, *cursor; const struct drm_crtc_funcs *funcs; struct intel_crtc *crtc; int sprite, ret; crtc = intel_crtc_alloc(); if (IS_ERR(crtc)) return PTR_ERR(crtc); crtc->pipe = pipe; crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe]; if (DISPLAY_VER(dev_priv) >= 9) primary = skl_universal_plane_create(dev_priv, pipe, PLANE_PRIMARY); else primary = intel_primary_plane_create(dev_priv, pipe); if (IS_ERR(primary)) { ret = PTR_ERR(primary); goto fail; } crtc->plane_ids_mask |= BIT(primary->id); for_each_sprite(dev_priv, pipe, sprite) { struct intel_plane *plane; if (DISPLAY_VER(dev_priv) >= 9) plane = skl_universal_plane_create(dev_priv, pipe, PLANE_SPRITE0 + sprite); else plane = intel_sprite_plane_create(dev_priv, pipe, sprite); if (IS_ERR(plane)) { ret = PTR_ERR(plane); goto fail; } crtc->plane_ids_mask |= BIT(plane->id); } cursor = intel_cursor_plane_create(dev_priv, pipe); if (IS_ERR(cursor)) { ret = PTR_ERR(cursor); goto fail; } crtc->plane_ids_mask |= BIT(cursor->id); if (HAS_GMCH(dev_priv)) { if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv)) funcs = &g4x_crtc_funcs; else if (DISPLAY_VER(dev_priv) == 4) funcs = &i965_crtc_funcs; else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv)) funcs = &i915gm_crtc_funcs; else if (DISPLAY_VER(dev_priv) == 3) funcs = &i915_crtc_funcs; else funcs = &i8xx_crtc_funcs; } else { if (DISPLAY_VER(dev_priv) >= 8) funcs = &bdw_crtc_funcs; else funcs = &ilk_crtc_funcs; } ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base, &primary->base, &cursor->base, funcs, "pipe %c", pipe_name(pipe)); if (ret) goto fail; if (DISPLAY_VER(dev_priv) >= 11) drm_crtc_create_scaling_filter_property(&crtc->base, BIT(DRM_SCALING_FILTER_DEFAULT) | BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR)); intel_color_crtc_init(crtc); intel_drrs_crtc_init(crtc); intel_crtc_crc_init(crtc); cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE); drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe); return 0; fail: intel_crtc_free(crtc); return ret; } static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state) { return crtc_state->hw.active && !intel_crtc_needs_modeset(crtc_state) && !crtc_state->preload_luts && intel_crtc_needs_color_update(crtc_state); } static void intel_crtc_vblank_work(struct kthread_work *base) { struct drm_vblank_work *work = to_drm_vblank_work(base); struct intel_crtc_state *crtc_state = container_of(work, typeof(*crtc_state), vblank_work); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); trace_intel_crtc_vblank_work_start(crtc); intel_color_load_luts(crtc_state); if (crtc_state->uapi.event) { spin_lock_irq(&crtc->base.dev->event_lock); drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event); crtc_state->uapi.event = NULL; spin_unlock_irq(&crtc->base.dev->event_lock); } trace_intel_crtc_vblank_work_end(crtc); } static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base, intel_crtc_vblank_work); /* * Interrupt latency is critical for getting the vblank * work executed as early as possible during the vblank. */ cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0); } void intel_wait_for_vblank_workers(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (!intel_crtc_needs_vblank_work(crtc_state)) continue; drm_vblank_work_flush(&crtc_state->vblank_work); cpu_latency_qos_update_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE); } } int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode, int usecs) { /* paranoia */ if (!adjusted_mode->crtc_htotal) return 1; return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock, 1000 * adjusted_mode->crtc_htotal); } static int intel_mode_vblank_start(const struct drm_display_mode *mode) { int vblank_start = mode->crtc_vblank_start; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vblank_start = DIV_ROUND_UP(vblank_start, 2); return vblank_start; } /** * intel_pipe_update_start() - start update of a set of display registers * @new_crtc_state: the new crtc state * * Mark the start of an update to pipe registers that should be updated * atomically regarding vblank. If the next vblank will happens within * the next 100 us, this function waits until the vblank passes. * * After a successful call to this function, interrupts will be disabled * until a subsequent call to intel_pipe_update_end(). That is done to * avoid random delays. */ void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode; long timeout = msecs_to_jiffies_timeout(1); int scanline, min, max, vblank_start; wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base); bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI); DEFINE_WAIT(wait); intel_psr_lock(new_crtc_state); if (new_crtc_state->do_async_flip) return; if (intel_crtc_needs_vblank_work(new_crtc_state)) intel_crtc_vblank_work_init(new_crtc_state); if (new_crtc_state->vrr.enable) { if (intel_vrr_is_push_sent(new_crtc_state)) vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state); else vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state); } else { vblank_start = intel_mode_vblank_start(adjusted_mode); } /* FIXME needs to be calibrated sensibly */ min = vblank_start - intel_usecs_to_scanlines(adjusted_mode, VBLANK_EVASION_TIME_US); max = vblank_start - 1; if (min <= 0 || max <= 0) goto irq_disable; if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base))) goto irq_disable; /* * Wait for psr to idle out after enabling the VBL interrupts * VBL interrupts will start the PSR exit and prevent a PSR * re-entry as well. */ intel_psr_wait_for_idle_locked(new_crtc_state); local_irq_disable(); crtc->debug.min_vbl = min; crtc->debug.max_vbl = max; trace_intel_pipe_update_start(crtc); for (;;) { /* * prepare_to_wait() has a memory barrier, which guarantees * other CPUs can see the task state update by the time we * read the scanline. */ prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); scanline = intel_get_crtc_scanline(crtc); if (scanline < min || scanline > max) break; if (!timeout) { drm_err(&dev_priv->drm, "Potential atomic update failure on pipe %c\n", pipe_name(crtc->pipe)); break; } local_irq_enable(); timeout = schedule_timeout(timeout); local_irq_disable(); } finish_wait(wq, &wait); drm_crtc_vblank_put(&crtc->base); /* * On VLV/CHV DSI the scanline counter would appear to * increment approx. 1/3 of a scanline before start of vblank. * The registers still get latched at start of vblank however. * This means we must not write any registers on the first * line of vblank (since not the whole line is actually in * vblank). And unfortunately we can't use the interrupt to * wait here since it will fire too soon. We could use the * frame start interrupt instead since it will fire after the * critical scanline, but that would require more changes * in the interrupt code. So for now we'll just do the nasty * thing and poll for the bad scanline to pass us by. * * FIXME figure out if BXT+ DSI suffers from this as well */ while (need_vlv_dsi_wa && scanline == vblank_start) scanline = intel_get_crtc_scanline(crtc); crtc->debug.scanline_start = scanline; crtc->debug.start_vbl_time = ktime_get(); crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc); trace_intel_pipe_update_vblank_evaded(crtc); return; irq_disable: local_irq_disable(); } #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE) static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) { u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time)); unsigned int h; h = ilog2(delta >> 9); if (h >= ARRAY_SIZE(crtc->debug.vbl.times)) h = ARRAY_SIZE(crtc->debug.vbl.times) - 1; crtc->debug.vbl.times[h]++; crtc->debug.vbl.sum += delta; if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min) crtc->debug.vbl.min = delta; if (delta > crtc->debug.vbl.max) crtc->debug.vbl.max = delta; if (delta > 1000 * VBLANK_EVASION_TIME_US) { drm_dbg_kms(crtc->base.dev, "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n", pipe_name(crtc->pipe), div_u64(delta, 1000), VBLANK_EVASION_TIME_US); crtc->debug.vbl.over++; } } #else static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {} #endif /** * intel_pipe_update_end() - end update of a set of display registers * @new_crtc_state: the new crtc state * * Mark the end of an update started with intel_pipe_update_start(). This * re-enables interrupts and verifies the update was actually completed * before a vblank. */ void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; int scanline_end = intel_get_crtc_scanline(crtc); u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc); ktime_t end_vbl_time = ktime_get(); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); intel_psr_unlock(new_crtc_state); if (new_crtc_state->do_async_flip) return; trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end); /* * Incase of mipi dsi command mode, we need to set frame update * request for every commit. */ if (DISPLAY_VER(dev_priv) >= 11 && intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) icl_dsi_frame_update(new_crtc_state); /* We're still in the vblank-evade critical section, this can't race. * Would be slightly nice to just grab the vblank count and arm the * event outside of the critical section - the spinlock might spin for a * while ... */ if (intel_crtc_needs_vblank_work(new_crtc_state)) { drm_vblank_work_schedule(&new_crtc_state->vblank_work, drm_crtc_accurate_vblank_count(&crtc->base) + 1, false); } else if (new_crtc_state->uapi.event) { drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base) != 0); spin_lock(&crtc->base.dev->event_lock); drm_crtc_arm_vblank_event(&crtc->base, new_crtc_state->uapi.event); spin_unlock(&crtc->base.dev->event_lock); new_crtc_state->uapi.event = NULL; } /* * Send VRR Push to terminate Vblank. If we are already in vblank * this has to be done _after_ sampling the frame counter, as * otherwise the push would immediately terminate the vblank and * the sampled frame counter would correspond to the next frame * instead of the current frame. * * There is a tiny race here (iff vblank evasion failed us) where * we might sample the frame counter just before vmax vblank start * but the push would be sent just after it. That would cause the * push to affect the next frame instead of the current frame, * which would cause the next frame to terminate already at vmin * vblank start instead of vmax vblank start. */ intel_vrr_send_push(new_crtc_state); /* * Seamless M/N update may need to update frame timings. * * FIXME Should be synchronized with the start of vblank somehow... */ if (new_crtc_state->seamless_m_n && intel_crtc_needs_fastset(new_crtc_state)) intel_crtc_update_active_timings(new_crtc_state); local_irq_enable(); if (intel_vgpu_active(dev_priv)) return; if (crtc->debug.start_vbl_count && crtc->debug.start_vbl_count != end_vbl_count) { drm_err(&dev_priv->drm, "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n", pipe_name(pipe), crtc->debug.start_vbl_count, end_vbl_count, ktime_us_delta(end_vbl_time, crtc->debug.start_vbl_time), crtc->debug.min_vbl, crtc->debug.max_vbl, crtc->debug.scanline_start, scanline_end); } dbg_vblank_evade(crtc, end_vbl_time); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1