Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 10649 | 45.19% | 192 | 25.23% |
Jani Nikula | 6039 | 25.63% | 134 | 17.61% |
Manasi D Navare | 1095 | 4.65% | 31 | 4.07% |
Imre Deak | 801 | 3.40% | 49 | 6.44% |
Maarten Lankhorst | 525 | 2.23% | 17 | 2.23% |
Ankit Nautiyal | 329 | 1.40% | 13 | 1.71% |
Paulo Zanoni | 293 | 1.24% | 21 | 2.76% |
Dave Airlie | 279 | 1.18% | 9 | 1.18% |
Stanislav Lisovskiy | 252 | 1.07% | 4 | 0.53% |
Keith Packard | 240 | 1.02% | 14 | 1.84% |
José Roberto de Souza | 218 | 0.93% | 13 | 1.71% |
Chris Wilson | 207 | 0.88% | 28 | 3.68% |
Daniel Vetter | 198 | 0.84% | 28 | 3.68% |
Vandita Kulkarni | 162 | 0.69% | 6 | 0.79% |
Gwan-gyeong Mun | 155 | 0.66% | 11 | 1.45% |
Animesh Manna | 152 | 0.65% | 7 | 0.92% |
Jesse Barnes | 146 | 0.62% | 17 | 2.23% |
Rodrigo Vivi | 144 | 0.61% | 12 | 1.58% |
Vandana Kannan | 110 | 0.47% | 6 | 0.79% |
Stephen Chandler Paul | 99 | 0.42% | 7 | 0.92% |
Sean Paul | 89 | 0.38% | 4 | 0.53% |
Uma Shankar | 87 | 0.37% | 2 | 0.26% |
Hans de Goede | 84 | 0.36% | 1 | 0.13% |
Matt Roper | 84 | 0.36% | 9 | 1.18% |
Todd Previte | 80 | 0.34% | 3 | 0.39% |
Wambui Karuga | 78 | 0.33% | 4 | 0.53% |
Chon Ming Lee | 73 | 0.31% | 5 | 0.66% |
Pankaj Bharadiya | 71 | 0.30% | 4 | 0.53% |
Sonika Jindal | 60 | 0.25% | 4 | 0.53% |
Swati Sharma | 57 | 0.24% | 3 | 0.39% |
Vinod Govindapillai | 50 | 0.21% | 1 | 0.13% |
Mario Kleiner | 46 | 0.20% | 1 | 0.13% |
Lucas De Marchi | 45 | 0.19% | 7 | 0.92% |
Pradeep Bhat | 44 | 0.19% | 1 | 0.13% |
Dhinakaran Pandiyan | 39 | 0.17% | 9 | 1.18% |
Mika Kahola | 36 | 0.15% | 4 | 0.53% |
Ander Conselvan de Oliveira | 36 | 0.15% | 9 | 1.18% |
Clint Taylor | 35 | 0.15% | 2 | 0.26% |
Zhenyu Wang | 34 | 0.14% | 4 | 0.53% |
Anusha Srivatsa | 23 | 0.10% | 3 | 0.39% |
Shubhangi Shrivastava | 22 | 0.09% | 4 | 0.53% |
Gaurav K Singh | 21 | 0.09% | 2 | 0.26% |
Yakui Zhao | 20 | 0.08% | 3 | 0.39% |
Anshuman Gupta | 20 | 0.08% | 2 | 0.26% |
Khaled Almahallawy | 18 | 0.08% | 1 | 0.13% |
Anisse Astier | 16 | 0.07% | 1 | 0.13% |
Kai-Heng Feng | 16 | 0.07% | 2 | 0.26% |
Tvrtko A. Ursulin | 15 | 0.06% | 4 | 0.53% |
Hans Verkuil | 14 | 0.06% | 1 | 0.13% |
Ramalingam C | 12 | 0.05% | 4 | 0.53% |
Eric Anholt | 12 | 0.05% | 1 | 0.13% |
Adam Jackson | 11 | 0.05% | 2 | 0.26% |
Aditya Swarup | 10 | 0.04% | 1 | 0.13% |
Andrzej Hajda | 10 | 0.04% | 1 | 0.13% |
Wayne Boyer | 10 | 0.04% | 1 | 0.13% |
Eugeni Dodonov | 10 | 0.04% | 2 | 0.26% |
Damien Lespiau | 8 | 0.03% | 3 | 0.39% |
Matt Atwood | 7 | 0.03% | 2 | 0.26% |
Yuly Novikov | 7 | 0.03% | 1 | 0.13% |
Jim Bride | 7 | 0.03% | 1 | 0.13% |
Thomas Zimmermann | 7 | 0.03% | 3 | 0.39% |
Radhakrishna Sripada | 7 | 0.03% | 2 | 0.26% |
Ben Widawsky | 6 | 0.03% | 1 | 0.13% |
Kees Cook | 5 | 0.02% | 1 | 0.13% |
Abhay Kumar | 4 | 0.02% | 1 | 0.13% |
Daniele Ceraolo Spurio | 3 | 0.01% | 1 | 0.13% |
Gajanan Bhat | 3 | 0.01% | 1 | 0.13% |
Shashank Sharma | 3 | 0.01% | 1 | 0.13% |
Paul Gortmaker | 2 | 0.01% | 1 | 0.13% |
Matthew Garrett | 2 | 0.01% | 1 | 0.13% |
Thulasimani,Sivakumar | 2 | 0.01% | 2 | 0.26% |
Tejun Heo | 2 | 0.01% | 1 | 0.13% |
Kai Vehmanen | 2 | 0.01% | 2 | 0.26% |
Tejas Upadhyay | 1 | 0.00% | 1 | 0.13% |
Puthikorn Voravootivat | 1 | 0.00% | 1 | 0.13% |
Sudip Mukherjee | 1 | 0.00% | 1 | 0.13% |
Simon Ser | 1 | 0.00% | 1 | 0.13% |
Thomas Meyer | 1 | 0.00% | 1 | 0.13% |
Total | 23563 | 761 |
/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard <keithp@keithp.com> * */ #include <linux/export.h> #include <linux/i2c.h> #include <linux/notifier.h> #include <linux/slab.h> #include <linux/string_helpers.h> #include <linux/timekeeping.h> #include <linux/types.h> #include <asm/byteorder.h> #include <drm/display/drm_dp_helper.h> #include <drm/display/drm_dsc_helper.h> #include <drm/display/drm_hdmi_helper.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_edid.h> #include <drm/drm_probe_helper.h> #include "g4x_dp.h" #include "i915_debugfs.h" #include "i915_drv.h" #include "i915_reg.h" #include "intel_atomic.h" #include "intel_audio.h" #include "intel_backlight.h" #include "intel_combo_phy_regs.h" #include "intel_connector.h" #include "intel_crtc.h" #include "intel_ddi.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_aux.h" #include "intel_dp_hdcp.h" #include "intel_dp_link_training.h" #include "intel_dp_mst.h" #include "intel_dpio_phy.h" #include "intel_dpll.h" #include "intel_fifo_underrun.h" #include "intel_hdcp.h" #include "intel_hdmi.h" #include "intel_hotplug.h" #include "intel_lspcon.h" #include "intel_lvds.h" #include "intel_panel.h" #include "intel_pch_display.h" #include "intel_pps.h" #include "intel_psr.h" #include "intel_tc.h" #include "intel_vdsc.h" #include "intel_vrr.h" /* DP DSC throughput values used for slice count calculations KPixels/s */ #define DP_DSC_PEAK_PIXEL_RATE 2720000 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 /* DP DSC FEC Overhead factor = 1/(0.972261) */ #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 /* Compliance test status bits */ #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) /* Constants for DP DSC configurations */ static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; /* With Single pipe configuration, HW is capable of supporting maximum * of 4 slices per line. */ static const u8 valid_dsc_slicecount[] = {1, 2, 4}; /** * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. * * This function is not safe to use prior to encoder type being set. */ bool intel_dp_is_edp(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); return dig_port->base.type == INTEL_OUTPUT_EDP; } static void intel_dp_unset_edid(struct intel_dp *intel_dp); /* Is link rate UHBR and thus 128b/132b? */ bool intel_dp_is_uhbr(const struct intel_crtc_state *crtc_state) { return crtc_state->port_clock >= 1000000; } static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp) { intel_dp->sink_rates[0] = 162000; intel_dp->num_sink_rates = 1; } /* update sink rates from dpcd */ static void intel_dp_set_dpcd_sink_rates(struct intel_dp *intel_dp) { static const int dp_rates[] = { 162000, 270000, 540000, 810000 }; int i, max_rate; int max_lttpr_rate; if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ static const int quirk_rates[] = { 162000, 270000, 324000 }; memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); return; } /* * Sink rates for 8b/10b. */ max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps); if (max_lttpr_rate) max_rate = min(max_rate, max_lttpr_rate); for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { if (dp_rates[i] > max_rate) break; intel_dp->sink_rates[i] = dp_rates[i]; } /* * Sink rates for 128b/132b. If set, sink should support all 8b/10b * rates and 10 Gbps. */ if (intel_dp->dpcd[DP_MAIN_LINK_CHANNEL_CODING] & DP_CAP_ANSI_128B132B) { u8 uhbr_rates = 0; BUILD_BUG_ON(ARRAY_SIZE(intel_dp->sink_rates) < ARRAY_SIZE(dp_rates) + 3); drm_dp_dpcd_readb(&intel_dp->aux, DP_128B132B_SUPPORTED_LINK_RATES, &uhbr_rates); if (drm_dp_lttpr_count(intel_dp->lttpr_common_caps)) { /* We have a repeater */ if (intel_dp->lttpr_common_caps[0] >= 0x20 && intel_dp->lttpr_common_caps[DP_MAIN_LINK_CHANNEL_CODING_PHY_REPEATER - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] & DP_PHY_REPEATER_128B132B_SUPPORTED) { /* Repeater supports 128b/132b, valid UHBR rates */ uhbr_rates &= intel_dp->lttpr_common_caps[DP_PHY_REPEATER_128B132B_RATES - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV]; } else { /* Does not support 128b/132b */ uhbr_rates = 0; } } if (uhbr_rates & DP_UHBR10) intel_dp->sink_rates[i++] = 1000000; if (uhbr_rates & DP_UHBR13_5) intel_dp->sink_rates[i++] = 1350000; if (uhbr_rates & DP_UHBR20) intel_dp->sink_rates[i++] = 2000000; } intel_dp->num_sink_rates = i; } static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; intel_dp_set_dpcd_sink_rates(intel_dp); if (intel_dp->num_sink_rates) return; drm_err(&dp_to_i915(intel_dp)->drm, "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD with no link rates, using defaults\n", connector->base.base.id, connector->base.name, encoder->base.base.id, encoder->base.name); intel_dp_set_default_sink_rates(intel_dp); } static void intel_dp_set_default_max_sink_lane_count(struct intel_dp *intel_dp) { intel_dp->max_sink_lane_count = 1; } static void intel_dp_set_max_sink_lane_count(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; intel_dp->max_sink_lane_count = drm_dp_max_lane_count(intel_dp->dpcd); switch (intel_dp->max_sink_lane_count) { case 1: case 2: case 4: return; } drm_err(&dp_to_i915(intel_dp)->drm, "[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD max lane count (%d), using default\n", connector->base.base.id, connector->base.name, encoder->base.base.id, encoder->base.name, intel_dp->max_sink_lane_count); intel_dp_set_default_max_sink_lane_count(intel_dp); } /* Get length of rates array potentially limited by max_rate. */ static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) { int i; /* Limit results by potentially reduced max rate */ for (i = 0; i < len; i++) { if (rates[len - i - 1] <= max_rate) return len - i; } return 0; } /* Get length of common rates array potentially limited by max_rate. */ static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, int max_rate) { return intel_dp_rate_limit_len(intel_dp->common_rates, intel_dp->num_common_rates, max_rate); } static int intel_dp_common_rate(struct intel_dp *intel_dp, int index) { if (drm_WARN_ON(&dp_to_i915(intel_dp)->drm, index < 0 || index >= intel_dp->num_common_rates)) return 162000; return intel_dp->common_rates[index]; } /* Theoretical max between source and sink */ static int intel_dp_max_common_rate(struct intel_dp *intel_dp) { return intel_dp_common_rate(intel_dp, intel_dp->num_common_rates - 1); } static int intel_dp_max_source_lane_count(struct intel_digital_port *dig_port) { int vbt_max_lanes = intel_bios_dp_max_lane_count(&dig_port->base); int max_lanes = dig_port->max_lanes; if (vbt_max_lanes) max_lanes = min(max_lanes, vbt_max_lanes); return max_lanes; } /* Theoretical max between source and sink */ static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); int source_max = intel_dp_max_source_lane_count(dig_port); int sink_max = intel_dp->max_sink_lane_count; int fia_max = intel_tc_port_fia_max_lane_count(dig_port); int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps); if (lttpr_max) sink_max = min(sink_max, lttpr_max); return min3(source_max, sink_max, fia_max); } int intel_dp_max_lane_count(struct intel_dp *intel_dp) { switch (intel_dp->max_link_lane_count) { case 1: case 2: case 4: return intel_dp->max_link_lane_count; default: MISSING_CASE(intel_dp->max_link_lane_count); return 1; } } /* * The required data bandwidth for a mode with given pixel clock and bpp. This * is the required net bandwidth independent of the data bandwidth efficiency. */ int intel_dp_link_required(int pixel_clock, int bpp) { /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ return DIV_ROUND_UP(pixel_clock * bpp, 8); } /* * Given a link rate and lanes, get the data bandwidth. * * Data bandwidth is the actual payload rate, which depends on the data * bandwidth efficiency and the link rate. * * For 8b/10b channel encoding, SST and non-FEC, the data bandwidth efficiency * is 80%. For example, for a 1.62 Gbps link, 1.62*10^9 bps * 0.80 * (1/8) = * 162000 kBps. With 8-bit symbols, we have 162000 kHz symbol clock. Just by * coincidence, the port clock in kHz matches the data bandwidth in kBps, and * they equal the link bit rate in Gbps multiplied by 100000. (Note that this no * longer holds for data bandwidth as soon as FEC or MST is taken into account!) * * For 128b/132b channel encoding, the data bandwidth efficiency is 96.71%. For * example, for a 10 Gbps link, 10*10^9 bps * 0.9671 * (1/8) = 1208875 * kBps. With 32-bit symbols, we have 312500 kHz symbol clock. The value 1000000 * does not match the symbol clock, the port clock (not even if you think in * terms of a byte clock), nor the data bandwidth. It only matches the link bit * rate in units of 10000 bps. */ int intel_dp_max_data_rate(int max_link_rate, int max_lanes) { if (max_link_rate >= 1000000) { /* * UHBR rates always use 128b/132b channel encoding, and have * 97.71% data bandwidth efficiency. Consider max_link_rate the * link bit rate in units of 10000 bps. */ int max_link_rate_kbps = max_link_rate * 10; max_link_rate_kbps = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(max_link_rate_kbps, 9671), 10000); max_link_rate = max_link_rate_kbps / 8; } /* * Lower than UHBR rates always use 8b/10b channel encoding, and have * 80% data bandwidth efficiency for SST non-FEC. However, this turns * out to be a nop by coincidence, and can be skipped: * * int max_link_rate_kbps = max_link_rate * 10; * max_link_rate_kbps = DIV_ROUND_CLOSEST_ULL(max_link_rate_kbps * 8, 10); * max_link_rate = max_link_rate_kbps / 8; */ return max_link_rate * max_lanes; } bool intel_dp_can_bigjoiner(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); return DISPLAY_VER(dev_priv) >= 12 || (DISPLAY_VER(dev_priv) == 11 && encoder->port != PORT_A); } static int dg2_max_source_rate(struct intel_dp *intel_dp) { return intel_dp_is_edp(intel_dp) ? 810000 : 1350000; } static int icl_max_source_rate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); if (intel_phy_is_combo(dev_priv, phy) && !intel_dp_is_edp(intel_dp)) return 540000; return 810000; } static int ehl_max_source_rate(struct intel_dp *intel_dp) { if (intel_dp_is_edp(intel_dp)) return 540000; return 810000; } static int vbt_max_link_rate(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; int max_rate; max_rate = intel_bios_dp_max_link_rate(encoder); if (intel_dp_is_edp(intel_dp)) { struct intel_connector *connector = intel_dp->attached_connector; int edp_max_rate = connector->panel.vbt.edp.max_link_rate; if (max_rate && edp_max_rate) max_rate = min(max_rate, edp_max_rate); else if (edp_max_rate) max_rate = edp_max_rate; } return max_rate; } static void intel_dp_set_source_rates(struct intel_dp *intel_dp) { /* The values must be in increasing order */ static const int icl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000, 1000000, 1350000, }; static const int bxt_rates[] = { 162000, 216000, 243000, 270000, 324000, 432000, 540000 }; static const int skl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000 }; static const int hsw_rates[] = { 162000, 270000, 540000 }; static const int g4x_rates[] = { 162000, 270000 }; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const int *source_rates; int size, max_rate = 0, vbt_max_rate; /* This should only be done once */ drm_WARN_ON(&dev_priv->drm, intel_dp->source_rates || intel_dp->num_source_rates); if (DISPLAY_VER(dev_priv) >= 11) { source_rates = icl_rates; size = ARRAY_SIZE(icl_rates); if (IS_DG2(dev_priv)) max_rate = dg2_max_source_rate(intel_dp); else if (IS_ALDERLAKE_P(dev_priv) || IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) max_rate = 810000; else if (IS_JSL_EHL(dev_priv)) max_rate = ehl_max_source_rate(intel_dp); else max_rate = icl_max_source_rate(intel_dp); } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { source_rates = bxt_rates; size = ARRAY_SIZE(bxt_rates); } else if (DISPLAY_VER(dev_priv) == 9) { source_rates = skl_rates; size = ARRAY_SIZE(skl_rates); } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || IS_BROADWELL(dev_priv)) { source_rates = hsw_rates; size = ARRAY_SIZE(hsw_rates); } else { source_rates = g4x_rates; size = ARRAY_SIZE(g4x_rates); } vbt_max_rate = vbt_max_link_rate(intel_dp); if (max_rate && vbt_max_rate) max_rate = min(max_rate, vbt_max_rate); else if (vbt_max_rate) max_rate = vbt_max_rate; if (max_rate) size = intel_dp_rate_limit_len(source_rates, size, max_rate); intel_dp->source_rates = source_rates; intel_dp->num_source_rates = size; } static int intersect_rates(const int *source_rates, int source_len, const int *sink_rates, int sink_len, int *common_rates) { int i = 0, j = 0, k = 0; while (i < source_len && j < sink_len) { if (source_rates[i] == sink_rates[j]) { if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) return k; common_rates[k] = source_rates[i]; ++k; ++i; ++j; } else if (source_rates[i] < sink_rates[j]) { ++i; } else { ++j; } } return k; } /* return index of rate in rates array, or -1 if not found */ static int intel_dp_rate_index(const int *rates, int len, int rate) { int i; for (i = 0; i < len; i++) if (rate == rates[i]) return i; return -1; } static void intel_dp_set_common_rates(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); drm_WARN_ON(&i915->drm, !intel_dp->num_source_rates || !intel_dp->num_sink_rates); intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, intel_dp->num_source_rates, intel_dp->sink_rates, intel_dp->num_sink_rates, intel_dp->common_rates); /* Paranoia, there should always be something in common. */ if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) { intel_dp->common_rates[0] = 162000; intel_dp->num_common_rates = 1; } } static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { /* * FIXME: we need to synchronize the current link parameters with * hardware readout. Currently fast link training doesn't work on * boot-up. */ if (link_rate == 0 || link_rate > intel_dp->max_link_rate) return false; if (lane_count == 0 || lane_count > intel_dp_max_lane_count(intel_dp)) return false; return true; } static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { /* FIXME figure out what we actually want here */ const struct drm_display_mode *fixed_mode = intel_panel_preferred_fixed_mode(intel_dp->attached_connector); int mode_rate, max_rate; mode_rate = intel_dp_link_required(fixed_mode->clock, 18); max_rate = intel_dp_max_data_rate(link_rate, lane_count); if (mode_rate > max_rate) return false; return true; } int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int index; /* * TODO: Enable fallback on MST links once MST link compute can handle * the fallback params. */ if (intel_dp->is_mst) { drm_err(&i915->drm, "Link Training Unsuccessful\n"); return -1; } if (intel_dp_is_edp(intel_dp) && !intel_dp->use_max_params) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with max parameters\n"); intel_dp->use_max_params = true; return 0; } index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, link_rate); if (index > 0) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp_common_rate(intel_dp, index - 1), lane_count)) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp_common_rate(intel_dp, index - 1); intel_dp->max_link_lane_count = lane_count; } else if (lane_count > 1) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp_max_common_rate(intel_dp), lane_count >> 1)) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); intel_dp->max_link_lane_count = lane_count >> 1; } else { drm_err(&i915->drm, "Link Training Unsuccessful\n"); return -1; } return 0; } u32 intel_dp_mode_to_fec_clock(u32 mode_clock) { return div_u64(mul_u32_u32(mode_clock, 1000000U), DP_DSC_FEC_OVERHEAD_FACTOR); } static int small_joiner_ram_size_bits(struct drm_i915_private *i915) { if (DISPLAY_VER(i915) >= 13) return 17280 * 8; else if (DISPLAY_VER(i915) >= 11) return 7680 * 8; else return 6144 * 8; } u32 intel_dp_dsc_nearest_valid_bpp(struct drm_i915_private *i915, u32 bpp, u32 pipe_bpp) { u32 bits_per_pixel = bpp; int i; /* Error out if the max bpp is less than smallest allowed valid bpp */ if (bits_per_pixel < valid_dsc_bpp[0]) { drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", bits_per_pixel, valid_dsc_bpp[0]); return 0; } /* From XE_LPD onwards we support from bpc upto uncompressed bpp-1 BPPs */ if (DISPLAY_VER(i915) >= 13) { bits_per_pixel = min(bits_per_pixel, pipe_bpp - 1); } else { /* Find the nearest match in the array of known BPPs from VESA */ for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { if (bits_per_pixel < valid_dsc_bpp[i + 1]) break; } drm_dbg_kms(&i915->drm, "Set dsc bpp from %d to VESA %d\n", bits_per_pixel, valid_dsc_bpp[i]); bits_per_pixel = valid_dsc_bpp[i]; } return bits_per_pixel; } u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, u32 link_clock, u32 lane_count, u32 mode_clock, u32 mode_hdisplay, bool bigjoiner, u32 pipe_bpp, u32 timeslots) { u32 bits_per_pixel, max_bpp_small_joiner_ram; /* * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* * (LinkSymbolClock)* 8 * (TimeSlots / 64) * for SST -> TimeSlots is 64(i.e all TimeSlots that are available) * for MST -> TimeSlots has to be calculated, based on mode requirements */ bits_per_pixel = DIV_ROUND_UP((link_clock * lane_count) * timeslots, intel_dp_mode_to_fec_clock(mode_clock) * 8); drm_dbg_kms(&i915->drm, "Max link bpp is %u for %u timeslots " "total bw %u pixel clock %u\n", bits_per_pixel, timeslots, (link_clock * lane_count * 8), intel_dp_mode_to_fec_clock(mode_clock)); /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / mode_hdisplay; if (bigjoiner) max_bpp_small_joiner_ram *= 2; /* * Greatest allowed DSC BPP = MIN (output BPP from available Link BW * check, output bpp from small joiner RAM check) */ bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); if (bigjoiner) { u32 max_bpp_bigjoiner = i915->display.cdclk.max_cdclk_freq * 48 / intel_dp_mode_to_fec_clock(mode_clock); bits_per_pixel = min(bits_per_pixel, max_bpp_bigjoiner); } bits_per_pixel = intel_dp_dsc_nearest_valid_bpp(i915, bits_per_pixel, pipe_bpp); /* * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, * fractional part is 0 */ return bits_per_pixel << 4; } u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, int mode_clock, int mode_hdisplay, bool bigjoiner) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 min_slice_count, i; int max_slice_width; if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) min_slice_count = DIV_ROUND_UP(mode_clock, DP_DSC_MAX_ENC_THROUGHPUT_0); else min_slice_count = DIV_ROUND_UP(mode_clock, DP_DSC_MAX_ENC_THROUGHPUT_1); max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { drm_dbg_kms(&i915->drm, "Unsupported slice width %d by DP DSC Sink device\n", max_slice_width); return 0; } /* Also take into account max slice width */ min_slice_count = max_t(u8, min_slice_count, DIV_ROUND_UP(mode_hdisplay, max_slice_width)); /* Find the closest match to the valid slice count values */ for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { u8 test_slice_count = valid_dsc_slicecount[i] << bigjoiner; if (test_slice_count > drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, false)) break; /* big joiner needs small joiner to be enabled */ if (bigjoiner && test_slice_count < 4) continue; if (min_slice_count <= test_slice_count) return test_slice_count; } drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n", min_slice_count); return 0; } static enum intel_output_format intel_dp_output_format(struct intel_connector *connector, bool ycbcr_420_output) { struct intel_dp *intel_dp = intel_attached_dp(connector); if (!connector->base.ycbcr_420_allowed || !ycbcr_420_output) return INTEL_OUTPUT_FORMAT_RGB; if (intel_dp->dfp.rgb_to_ycbcr && intel_dp->dfp.ycbcr_444_to_420) return INTEL_OUTPUT_FORMAT_RGB; if (intel_dp->dfp.ycbcr_444_to_420) return INTEL_OUTPUT_FORMAT_YCBCR444; else return INTEL_OUTPUT_FORMAT_YCBCR420; } int intel_dp_min_bpp(enum intel_output_format output_format) { if (output_format == INTEL_OUTPUT_FORMAT_RGB) return 6 * 3; else return 8 * 3; } static int intel_dp_output_bpp(enum intel_output_format output_format, int bpp) { /* * bpp value was assumed to RGB format. And YCbCr 4:2:0 output * format of the number of bytes per pixel will be half the number * of bytes of RGB pixel. */ if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) bpp /= 2; return bpp; } static int intel_dp_mode_min_output_bpp(struct intel_connector *connector, const struct drm_display_mode *mode) { const struct drm_display_info *info = &connector->base.display_info; enum intel_output_format output_format = intel_dp_output_format(connector, drm_mode_is_420_only(info, mode)); return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format)); } static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, int hdisplay) { /* * Older platforms don't like hdisplay==4096 with DP. * * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline * and frame counter increment), but we don't get vblank interrupts, * and the pipe underruns immediately. The link also doesn't seem * to get trained properly. * * On CHV the vblank interrupts don't seem to disappear but * otherwise the symptoms are similar. * * TODO: confirm the behaviour on HSW+ */ return hdisplay == 4096 && !HAS_DDI(dev_priv); } static int intel_dp_max_tmds_clock(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; const struct drm_display_info *info = &connector->base.display_info; int max_tmds_clock = intel_dp->dfp.max_tmds_clock; /* Only consider the sink's max TMDS clock if we know this is a HDMI DFP */ if (max_tmds_clock && info->max_tmds_clock) max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock); return max_tmds_clock; } static enum drm_mode_status intel_dp_tmds_clock_valid(struct intel_dp *intel_dp, int clock, int bpc, bool ycbcr420_output, bool respect_downstream_limits) { int tmds_clock, min_tmds_clock, max_tmds_clock; if (!respect_downstream_limits) return MODE_OK; tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output); min_tmds_clock = intel_dp->dfp.min_tmds_clock; max_tmds_clock = intel_dp_max_tmds_clock(intel_dp); if (min_tmds_clock && tmds_clock < min_tmds_clock) return MODE_CLOCK_LOW; if (max_tmds_clock && tmds_clock > max_tmds_clock) return MODE_CLOCK_HIGH; return MODE_OK; } static enum drm_mode_status intel_dp_mode_valid_downstream(struct intel_connector *connector, const struct drm_display_mode *mode, int target_clock) { struct intel_dp *intel_dp = intel_attached_dp(connector); const struct drm_display_info *info = &connector->base.display_info; enum drm_mode_status status; bool ycbcr_420_only; /* If PCON supports FRL MODE, check FRL bandwidth constraints */ if (intel_dp->dfp.pcon_max_frl_bw) { int target_bw; int max_frl_bw; int bpp = intel_dp_mode_min_output_bpp(connector, mode); target_bw = bpp * target_clock; max_frl_bw = intel_dp->dfp.pcon_max_frl_bw; /* converting bw from Gbps to Kbps*/ max_frl_bw = max_frl_bw * 1000000; if (target_bw > max_frl_bw) return MODE_CLOCK_HIGH; return MODE_OK; } if (intel_dp->dfp.max_dotclock && target_clock > intel_dp->dfp.max_dotclock) return MODE_CLOCK_HIGH; ycbcr_420_only = drm_mode_is_420_only(info, mode); /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */ status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 8, ycbcr_420_only, true); if (status != MODE_OK) { if (ycbcr_420_only || !connector->base.ycbcr_420_allowed || !drm_mode_is_420_also(info, mode)) return status; status = intel_dp_tmds_clock_valid(intel_dp, target_clock, 8, true, true); if (status != MODE_OK) return status; } return MODE_OK; } bool intel_dp_need_bigjoiner(struct intel_dp *intel_dp, int hdisplay, int clock) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_can_bigjoiner(intel_dp)) return false; return clock > i915->max_dotclk_freq || hdisplay > 5120; } static enum drm_mode_status intel_dp_mode_valid(struct drm_connector *_connector, struct drm_display_mode *mode) { struct intel_connector *connector = to_intel_connector(_connector); struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_i915_private *dev_priv = to_i915(connector->base.dev); const struct drm_display_mode *fixed_mode; int target_clock = mode->clock; int max_rate, mode_rate, max_lanes, max_link_clock; int max_dotclk = dev_priv->max_dotclk_freq; u16 dsc_max_output_bpp = 0; u8 dsc_slice_count = 0; enum drm_mode_status status; bool dsc = false, bigjoiner = false; if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_H_ILLEGAL; fixed_mode = intel_panel_fixed_mode(connector, mode); if (intel_dp_is_edp(intel_dp) && fixed_mode) { status = intel_panel_mode_valid(connector, mode); if (status != MODE_OK) return status; target_clock = fixed_mode->clock; } if (mode->clock < 10000) return MODE_CLOCK_LOW; if (intel_dp_need_bigjoiner(intel_dp, mode->hdisplay, target_clock)) { bigjoiner = true; max_dotclk *= 2; } if (target_clock > max_dotclk) return MODE_CLOCK_HIGH; max_link_clock = intel_dp_max_link_rate(intel_dp); max_lanes = intel_dp_max_lane_count(intel_dp); max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); mode_rate = intel_dp_link_required(target_clock, intel_dp_mode_min_output_bpp(connector, mode)); if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) return MODE_H_ILLEGAL; /* * Output bpp is stored in 6.4 format so right shift by 4 to get the * integer value since we support only integer values of bpp. */ if (HAS_DSC(dev_priv) && drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { /* * TBD pass the connector BPC, * for now U8_MAX so that max BPC on that platform would be picked */ int pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, U8_MAX); if (intel_dp_is_edp(intel_dp)) { dsc_max_output_bpp = drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; dsc_slice_count = drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, true); } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { dsc_max_output_bpp = intel_dp_dsc_get_output_bpp(dev_priv, max_link_clock, max_lanes, target_clock, mode->hdisplay, bigjoiner, pipe_bpp, 64) >> 4; dsc_slice_count = intel_dp_dsc_get_slice_count(intel_dp, target_clock, mode->hdisplay, bigjoiner); } dsc = dsc_max_output_bpp && dsc_slice_count; } /* * Big joiner configuration needs DSC for TGL which is not true for * XE_LPD where uncompressed joiner is supported. */ if (DISPLAY_VER(dev_priv) < 13 && bigjoiner && !dsc) return MODE_CLOCK_HIGH; if (mode_rate > max_rate && !dsc) return MODE_CLOCK_HIGH; status = intel_dp_mode_valid_downstream(connector, mode, target_clock); if (status != MODE_OK) return status; return intel_mode_valid_max_plane_size(dev_priv, mode, bigjoiner); } bool intel_dp_source_supports_tps3(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 9 || IS_BROADWELL(i915) || IS_HASWELL(i915); } bool intel_dp_source_supports_tps4(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 10; } static void snprintf_int_array(char *str, size_t len, const int *array, int nelem) { int i; str[0] = '\0'; for (i = 0; i < nelem; i++) { int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); if (r >= len) return; str += r; len -= r; } } static void intel_dp_print_rates(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); char str[128]; /* FIXME: too big for stack? */ if (!drm_debug_enabled(DRM_UT_KMS)) return; snprintf_int_array(str, sizeof(str), intel_dp->source_rates, intel_dp->num_source_rates); drm_dbg_kms(&i915->drm, "source rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->sink_rates, intel_dp->num_sink_rates); drm_dbg_kms(&i915->drm, "sink rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->common_rates, intel_dp->num_common_rates); drm_dbg_kms(&i915->drm, "common rates: %s\n", str); } int intel_dp_max_link_rate(struct intel_dp *intel_dp) { int len; len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); return intel_dp_common_rate(intel_dp, len - 1); } int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int i = intel_dp_rate_index(intel_dp->sink_rates, intel_dp->num_sink_rates, rate); if (drm_WARN_ON(&i915->drm, i < 0)) i = 0; return i; } void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, u8 *link_bw, u8 *rate_select) { /* eDP 1.4 rate select method. */ if (intel_dp->use_rate_select) { *link_bw = 0; *rate_select = intel_dp_rate_select(intel_dp, port_clock); } else { *link_bw = drm_dp_link_rate_to_bw_code(port_clock); *rate_select = 0; } } static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); /* On TGL, FEC is supported on all Pipes */ if (DISPLAY_VER(dev_priv) >= 12) return true; if (DISPLAY_VER(dev_priv) == 11 && pipe_config->cpu_transcoder != TRANSCODER_A) return true; return false; } static bool intel_dp_supports_fec(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { return intel_dp_source_supports_fec(intel_dp, pipe_config) && drm_dp_sink_supports_fec(intel_dp->fec_capable); } static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && !crtc_state->fec_enable) return false; return intel_dsc_source_support(crtc_state) && drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); } static bool intel_dp_is_ycbcr420(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 && intel_dp->dfp.ycbcr_444_to_420); } static int intel_dp_hdmi_compute_bpc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, int bpc, bool respect_downstream_limits) { bool ycbcr420_output = intel_dp_is_ycbcr420(intel_dp, crtc_state); int clock = crtc_state->hw.adjusted_mode.crtc_clock; /* * Current bpc could already be below 8bpc due to * FDI bandwidth constraints or other limits. * HDMI minimum is 8bpc however. */ bpc = max(bpc, 8); /* * We will never exceed downstream TMDS clock limits while * attempting deep color. If the user insists on forcing an * out of spec mode they will have to be satisfied with 8bpc. */ if (!respect_downstream_limits) bpc = 8; for (; bpc >= 8; bpc -= 2) { if (intel_hdmi_bpc_possible(crtc_state, bpc, intel_dp->has_hdmi_sink, ycbcr420_output) && intel_dp_tmds_clock_valid(intel_dp, clock, bpc, ycbcr420_output, respect_downstream_limits) == MODE_OK) return bpc; } return -EINVAL; } static int intel_dp_max_bpp(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, bool respect_downstream_limits) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_connector *intel_connector = intel_dp->attached_connector; int bpp, bpc; bpc = crtc_state->pipe_bpp / 3; if (intel_dp->dfp.max_bpc) bpc = min_t(int, bpc, intel_dp->dfp.max_bpc); if (intel_dp->dfp.min_tmds_clock) { int max_hdmi_bpc; max_hdmi_bpc = intel_dp_hdmi_compute_bpc(intel_dp, crtc_state, bpc, respect_downstream_limits); if (max_hdmi_bpc < 0) return 0; bpc = min(bpc, max_hdmi_bpc); } bpp = bpc * 3; if (intel_dp_is_edp(intel_dp)) { /* Get bpp from vbt only for panels that dont have bpp in edid */ if (intel_connector->base.display_info.bpc == 0 && intel_connector->panel.vbt.edp.bpp && intel_connector->panel.vbt.edp.bpp < bpp) { drm_dbg_kms(&dev_priv->drm, "clamping bpp for eDP panel to BIOS-provided %i\n", intel_connector->panel.vbt.edp.bpp); bpp = intel_connector->panel.vbt.edp.bpp; } } return bpp; } /* Adjust link config limits based on compliance test requests. */ void intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct link_config_limits *limits) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* For DP Compliance we override the computed bpp for the pipe */ if (intel_dp->compliance.test_data.bpc != 0) { int bpp = 3 * intel_dp->compliance.test_data.bpc; limits->min_bpp = limits->max_bpp = bpp; pipe_config->dither_force_disable = bpp == 6 * 3; drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp); } /* Use values requested by Compliance Test Request */ if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { int index; /* Validate the compliance test data since max values * might have changed due to link train fallback. */ if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, intel_dp->compliance.test_lane_count)) { index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, intel_dp->compliance.test_link_rate); if (index >= 0) limits->min_rate = limits->max_rate = intel_dp->compliance.test_link_rate; limits->min_lane_count = limits->max_lane_count = intel_dp->compliance.test_lane_count; } } } static bool has_seamless_m_n(struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); /* * Seamless M/N reprogramming only implemented * for BDW+ double buffered M/N registers so far. */ return HAS_DOUBLE_BUFFERED_M_N(i915) && intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; } static int intel_dp_mode_clock(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_connector *connector = to_intel_connector(conn_state->connector); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* FIXME a bit of a mess wrt clock vs. crtc_clock */ if (has_seamless_m_n(connector)) return intel_panel_highest_mode(connector, adjusted_mode)->clock; else return adjusted_mode->crtc_clock; } /* Optimize link config in order: max bpp, min clock, min lanes */ static int intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state, const struct link_config_limits *limits) { int bpp, i, lane_count, clock = intel_dp_mode_clock(pipe_config, conn_state); int mode_rate, link_rate, link_avail; for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { int output_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp); mode_rate = intel_dp_link_required(clock, output_bpp); for (i = 0; i < intel_dp->num_common_rates; i++) { link_rate = intel_dp_common_rate(intel_dp, i); if (link_rate < limits->min_rate || link_rate > limits->max_rate) continue; for (lane_count = limits->min_lane_count; lane_count <= limits->max_lane_count; lane_count <<= 1) { link_avail = intel_dp_max_data_rate(link_rate, lane_count); if (mode_rate <= link_avail) { pipe_config->lane_count = lane_count; pipe_config->pipe_bpp = bpp; pipe_config->port_clock = link_rate; return 0; } } } } return -EINVAL; } int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 max_req_bpc) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int i, num_bpc; u8 dsc_bpc[3] = {0}; u8 dsc_max_bpc; /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ if (DISPLAY_VER(i915) >= 12) dsc_max_bpc = min_t(u8, 12, max_req_bpc); else dsc_max_bpc = min_t(u8, 10, max_req_bpc); num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, dsc_bpc); for (i = 0; i < num_bpc; i++) { if (dsc_max_bpc >= dsc_bpc[i]) return dsc_bpc[i] * 3; } return 0; } static int intel_dp_source_dsc_version_minor(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); return DISPLAY_VER(i915) >= 14 ? 2 : 1; } static int intel_dp_sink_dsc_version_minor(struct intel_dp *intel_dp) { return (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT; } static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; u8 line_buf_depth; int ret; /* * RC_MODEL_SIZE is currently a constant across all configurations. * * FIXME: Look into using sink defined DPCD DP_DSC_RC_BUF_BLK_SIZE and * DP_DSC_RC_BUF_SIZE for this. */ vdsc_cfg->rc_model_size = DSC_RC_MODEL_SIZE_CONST; vdsc_cfg->pic_height = crtc_state->hw.adjusted_mode.crtc_vdisplay; /* * Slice Height of 8 works for all currently available panels. So start * with that if pic_height is an integral multiple of 8. Eventually add * logic to try multiple slice heights. */ if (vdsc_cfg->pic_height % 8 == 0) vdsc_cfg->slice_height = 8; else if (vdsc_cfg->pic_height % 4 == 0) vdsc_cfg->slice_height = 4; else vdsc_cfg->slice_height = 2; ret = intel_dsc_compute_params(crtc_state); if (ret) return ret; vdsc_cfg->dsc_version_major = (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; vdsc_cfg->dsc_version_minor = min(intel_dp_source_dsc_version_minor(intel_dp), intel_dp_sink_dsc_version_minor(intel_dp)); vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & DP_DSC_RGB; line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); if (!line_buf_depth) { drm_dbg_kms(&i915->drm, "DSC Sink Line Buffer Depth invalid\n"); return -EINVAL; } if (vdsc_cfg->dsc_version_minor == 2) vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; else vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; vdsc_cfg->block_pred_enable = intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & DP_DSC_BLK_PREDICTION_IS_SUPPORTED; return drm_dsc_compute_rc_parameters(vdsc_cfg); } int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state, struct link_config_limits *limits, int timeslots, bool compute_pipe_bpp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; int pipe_bpp; int ret; pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && intel_dp_supports_fec(intel_dp, pipe_config); if (!intel_dp_supports_dsc(intel_dp, pipe_config)) return -EINVAL; if (compute_pipe_bpp) pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, conn_state->max_requested_bpc); else pipe_bpp = pipe_config->pipe_bpp; if (intel_dp->force_dsc_bpc) { pipe_bpp = intel_dp->force_dsc_bpc * 3; drm_dbg_kms(&dev_priv->drm, "Input DSC BPP forced to %d", pipe_bpp); } /* Min Input BPC for ICL+ is 8 */ if (pipe_bpp < 8 * 3) { drm_dbg_kms(&dev_priv->drm, "No DSC support for less than 8bpc\n"); return -EINVAL; } /* * For now enable DSC for max bpp, max link rate, max lane count. * Optimize this later for the minimum possible link rate/lane count * with DSC enabled for the requested mode. */ pipe_config->pipe_bpp = pipe_bpp; pipe_config->port_clock = limits->max_rate; pipe_config->lane_count = limits->max_lane_count; if (intel_dp_is_edp(intel_dp)) { pipe_config->dsc.compressed_bpp = min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, pipe_config->pipe_bpp); pipe_config->dsc.slice_count = drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, true); } else { u16 dsc_max_output_bpp = 0; u8 dsc_dp_slice_count; if (compute_pipe_bpp) { dsc_max_output_bpp = intel_dp_dsc_get_output_bpp(dev_priv, pipe_config->port_clock, pipe_config->lane_count, adjusted_mode->crtc_clock, adjusted_mode->crtc_hdisplay, pipe_config->bigjoiner_pipes, pipe_bpp, timeslots); if (!dsc_max_output_bpp) { drm_dbg_kms(&dev_priv->drm, "Compressed BPP not supported\n"); return -EINVAL; } } dsc_dp_slice_count = intel_dp_dsc_get_slice_count(intel_dp, adjusted_mode->crtc_clock, adjusted_mode->crtc_hdisplay, pipe_config->bigjoiner_pipes); if (!dsc_dp_slice_count) { drm_dbg_kms(&dev_priv->drm, "Compressed Slice Count not supported\n"); return -EINVAL; } /* * compute pipe bpp is set to false for DP MST DSC case * and compressed_bpp is calculated same time once * vpci timeslots are allocated, because overall bpp * calculation procedure is bit different for MST case. */ if (compute_pipe_bpp) { pipe_config->dsc.compressed_bpp = min_t(u16, dsc_max_output_bpp >> 4, pipe_config->pipe_bpp); } pipe_config->dsc.slice_count = dsc_dp_slice_count; drm_dbg_kms(&dev_priv->drm, "DSC: compressed bpp %d slice count %d\n", pipe_config->dsc.compressed_bpp, pipe_config->dsc.slice_count); } /* * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate * is greater than the maximum Cdclock and if slice count is even * then we need to use 2 VDSC instances. */ if (adjusted_mode->crtc_clock > dev_priv->display.cdclk.max_cdclk_freq || pipe_config->bigjoiner_pipes) { if (pipe_config->dsc.slice_count > 1) { pipe_config->dsc.dsc_split = true; } else { drm_dbg_kms(&dev_priv->drm, "Cannot split stream to use 2 VDSC instances\n"); return -EINVAL; } } ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); if (ret < 0) { drm_dbg_kms(&dev_priv->drm, "Cannot compute valid DSC parameters for Input Bpp = %d " "Compressed BPP = %d\n", pipe_config->pipe_bpp, pipe_config->dsc.compressed_bpp); return ret; } pipe_config->dsc.compression_enable = true; drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " "Compressed Bpp = %d Slice Count = %d\n", pipe_config->pipe_bpp, pipe_config->dsc.compressed_bpp, pipe_config->dsc.slice_count); return 0; } static int intel_dp_compute_link_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state, bool respect_downstream_limits) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct link_config_limits limits; bool joiner_needs_dsc = false; int ret; limits.min_rate = intel_dp_common_rate(intel_dp, 0); limits.max_rate = intel_dp_max_link_rate(intel_dp); limits.min_lane_count = 1; limits.max_lane_count = intel_dp_max_lane_count(intel_dp); limits.min_bpp = intel_dp_min_bpp(pipe_config->output_format); limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config, respect_downstream_limits); if (intel_dp->use_max_params) { /* * Use the maximum clock and number of lanes the eDP panel * advertizes being capable of in case the initial fast * optimal params failed us. The panels are generally * designed to support only a single clock and lane * configuration, and typically on older panels these * values correspond to the native resolution of the panel. */ limits.min_lane_count = limits.max_lane_count; limits.min_rate = limits.max_rate; } intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i " "max rate %d max bpp %d pixel clock %iKHz\n", limits.max_lane_count, limits.max_rate, limits.max_bpp, adjusted_mode->crtc_clock); if (intel_dp_need_bigjoiner(intel_dp, adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_clock)) pipe_config->bigjoiner_pipes = GENMASK(crtc->pipe + 1, crtc->pipe); /* * Pipe joiner needs compression up to display 12 due to bandwidth * limitation. DG2 onwards pipe joiner can be enabled without * compression. */ joiner_needs_dsc = DISPLAY_VER(i915) < 13 && pipe_config->bigjoiner_pipes; /* * Optimize for slow and wide for everything, because there are some * eDP 1.3 and 1.4 panels don't work well with fast and narrow. */ ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, conn_state, &limits); if (ret || joiner_needs_dsc || intel_dp->force_dsc_en) { drm_dbg_kms(&i915->drm, "Try DSC (fallback=%s, joiner=%s, force=%s)\n", str_yes_no(ret), str_yes_no(joiner_needs_dsc), str_yes_no(intel_dp->force_dsc_en)); ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, conn_state, &limits, 64, true); if (ret < 0) return ret; } if (pipe_config->dsc.compression_enable) { drm_dbg_kms(&i915->drm, "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", pipe_config->lane_count, pipe_config->port_clock, pipe_config->pipe_bpp, pipe_config->dsc.compressed_bpp); drm_dbg_kms(&i915->drm, "DP link rate required %i available %i\n", intel_dp_link_required(adjusted_mode->crtc_clock, pipe_config->dsc.compressed_bpp), intel_dp_max_data_rate(pipe_config->port_clock, pipe_config->lane_count)); } else { drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n", pipe_config->lane_count, pipe_config->port_clock, pipe_config->pipe_bpp); drm_dbg_kms(&i915->drm, "DP link rate required %i available %i\n", intel_dp_link_required(adjusted_mode->crtc_clock, pipe_config->pipe_bpp), intel_dp_max_data_rate(pipe_config->port_clock, pipe_config->lane_count)); } return 0; } bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { const struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* * Our YCbCr output is always limited range. * crtc_state->limited_color_range only applies to RGB, * and it must never be set for YCbCr or we risk setting * some conflicting bits in PIPECONF which will mess up * the colors on the monitor. */ if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) return false; if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* * See: * CEA-861-E - 5.1 Default Encoding Parameters * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry */ return crtc_state->pipe_bpp != 18 && drm_default_rgb_quant_range(adjusted_mode) == HDMI_QUANTIZATION_RANGE_LIMITED; } else { return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; } } static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, enum port port) { if (IS_G4X(dev_priv)) return false; if (DISPLAY_VER(dev_priv) < 12 && port == PORT_A) return false; return true; } static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state, struct drm_dp_vsc_sdp *vsc) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ * Colorimetry Format indication. */ vsc->revision = 0x5; vsc->length = 0x13; /* DP 1.4a spec, Table 2-120 */ switch (crtc_state->output_format) { case INTEL_OUTPUT_FORMAT_YCBCR444: vsc->pixelformat = DP_PIXELFORMAT_YUV444; break; case INTEL_OUTPUT_FORMAT_YCBCR420: vsc->pixelformat = DP_PIXELFORMAT_YUV420; break; case INTEL_OUTPUT_FORMAT_RGB: default: vsc->pixelformat = DP_PIXELFORMAT_RGB; } switch (conn_state->colorspace) { case DRM_MODE_COLORIMETRY_BT709_YCC: vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; break; case DRM_MODE_COLORIMETRY_XVYCC_601: vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; break; case DRM_MODE_COLORIMETRY_XVYCC_709: vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; break; case DRM_MODE_COLORIMETRY_SYCC_601: vsc->colorimetry = DP_COLORIMETRY_SYCC_601; break; case DRM_MODE_COLORIMETRY_OPYCC_601: vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; break; case DRM_MODE_COLORIMETRY_BT2020_CYCC: vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; break; case DRM_MODE_COLORIMETRY_BT2020_RGB: vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; break; case DRM_MODE_COLORIMETRY_BT2020_YCC: vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; break; case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; break; default: /* * RGB->YCBCR color conversion uses the BT.709 * color space. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; else vsc->colorimetry = DP_COLORIMETRY_DEFAULT; break; } vsc->bpc = crtc_state->pipe_bpp / 3; /* only RGB pixelformat supports 6 bpc */ drm_WARN_ON(&dev_priv->drm, vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); /* all YCbCr are always limited range */ vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; } static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc; /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */ if (crtc_state->has_psr) return; if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) return; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); vsc->sdp_type = DP_SDP_VSC; intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, &crtc_state->infoframes.vsc); } void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state, struct drm_dp_vsc_sdp *vsc) { vsc->sdp_type = DP_SDP_VSC; if (crtc_state->has_psr2) { if (intel_dp->psr.colorimetry_support && intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { /* [PSR2, +Colorimetry] */ intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, vsc); } else { /* * [PSR2, -Colorimetry] * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 * 3D stereo + PSR/PSR2 + Y-coordinate. */ vsc->revision = 0x4; vsc->length = 0xe; } } else { /* * [PSR1] * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or * higher). */ vsc->revision = 0x2; vsc->length = 0x8; } } static void intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { int ret; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; if (!conn_state->hdr_output_metadata) return; ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); if (ret) { drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n"); return; } crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); } static bool cpu_transcoder_has_drrs(struct drm_i915_private *i915, enum transcoder cpu_transcoder) { if (HAS_DOUBLE_BUFFERED_M_N(i915)) return true; return intel_cpu_transcoder_has_m2_n2(i915, cpu_transcoder); } static bool can_enable_drrs(struct intel_connector *connector, const struct intel_crtc_state *pipe_config, const struct drm_display_mode *downclock_mode) { struct drm_i915_private *i915 = to_i915(connector->base.dev); if (pipe_config->vrr.enable) return false; /* * DRRS and PSR can't be enable together, so giving preference to PSR * as it allows more power-savings by complete shutting down display, * so to guarantee this, intel_drrs_compute_config() must be called * after intel_psr_compute_config(). */ if (pipe_config->has_psr) return false; /* FIXME missing FDI M2/N2 etc. */ if (pipe_config->has_pch_encoder) return false; if (!cpu_transcoder_has_drrs(i915, pipe_config->cpu_transcoder)) return false; return downclock_mode && intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS; } static void intel_dp_drrs_compute_config(struct intel_connector *connector, struct intel_crtc_state *pipe_config, int output_bpp) { struct drm_i915_private *i915 = to_i915(connector->base.dev); const struct drm_display_mode *downclock_mode = intel_panel_downclock_mode(connector, &pipe_config->hw.adjusted_mode); int pixel_clock; if (has_seamless_m_n(connector)) pipe_config->seamless_m_n = true; if (!can_enable_drrs(connector, pipe_config, downclock_mode)) { if (intel_cpu_transcoder_has_m2_n2(i915, pipe_config->cpu_transcoder)) intel_zero_m_n(&pipe_config->dp_m2_n2); return; } if (IS_IRONLAKE(i915) || IS_SANDYBRIDGE(i915) || IS_IVYBRIDGE(i915)) pipe_config->msa_timing_delay = connector->panel.vbt.edp.drrs_msa_timing_delay; pipe_config->has_drrs = true; pixel_clock = downclock_mode->clock; if (pipe_config->splitter.enable) pixel_clock /= pipe_config->splitter.link_count; intel_link_compute_m_n(output_bpp, pipe_config->lane_count, pixel_clock, pipe_config->port_clock, &pipe_config->dp_m2_n2, pipe_config->fec_enable); /* FIXME: abstract this better */ if (pipe_config->splitter.enable) pipe_config->dp_m2_n2.data_m *= pipe_config->splitter.link_count; } static bool intel_dp_has_audio(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); const struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); if (!intel_dp_port_has_audio(i915, encoder->port)) return false; if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) return intel_dp->has_audio; else return intel_conn_state->force_audio == HDMI_AUDIO_ON; } static int intel_dp_compute_output_format(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state, bool respect_downstream_limits) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_connector *connector = intel_dp->attached_connector; const struct drm_display_info *info = &connector->base.display_info; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; bool ycbcr_420_only; int ret; ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); crtc_state->output_format = intel_dp_output_format(connector, ycbcr_420_only); if (ycbcr_420_only && !intel_dp_is_ycbcr420(intel_dp, crtc_state)) { drm_dbg_kms(&i915->drm, "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB; } ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, respect_downstream_limits); if (ret) { if (intel_dp_is_ycbcr420(intel_dp, crtc_state) || !connector->base.ycbcr_420_allowed || !drm_mode_is_420_also(info, adjusted_mode)) return ret; crtc_state->output_format = intel_dp_output_format(connector, true); ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state, respect_downstream_limits); } return ret; } static void intel_dp_audio_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct drm_connector *connector = conn_state->connector; pipe_config->sdp_split_enable = intel_dp_has_audio(encoder, pipe_config, conn_state) && intel_dp_is_uhbr(pipe_config); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] SDP split enable: %s\n", connector->base.id, connector->name, str_yes_no(pipe_config->sdp_split_enable)); } int intel_dp_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); const struct drm_display_mode *fixed_mode; struct intel_connector *connector = intel_dp->attached_connector; int ret = 0, output_bpp; if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && encoder->port != PORT_A) pipe_config->has_pch_encoder = true; pipe_config->has_audio = intel_dp_has_audio(encoder, pipe_config, conn_state) && intel_audio_compute_config(encoder, pipe_config, conn_state); fixed_mode = intel_panel_fixed_mode(connector, adjusted_mode); if (intel_dp_is_edp(intel_dp) && fixed_mode) { ret = intel_panel_compute_config(connector, adjusted_mode); if (ret) return ret; } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; if (!connector->base.interlace_allowed && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) return -EINVAL; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) return -EINVAL; if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) return -EINVAL; /* * Try to respect downstream TMDS clock limits first, if * that fails assume the user might know something we don't. */ ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, true); if (ret) ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, false); if (ret) return ret; if ((intel_dp_is_edp(intel_dp) && fixed_mode) || pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { ret = intel_panel_fitting(pipe_config, conn_state); if (ret) return ret; } pipe_config->limited_color_range = intel_dp_limited_color_range(pipe_config, conn_state); if (pipe_config->dsc.compression_enable) output_bpp = pipe_config->dsc.compressed_bpp; else output_bpp = intel_dp_output_bpp(pipe_config->output_format, pipe_config->pipe_bpp); if (intel_dp->mso_link_count) { int n = intel_dp->mso_link_count; int overlap = intel_dp->mso_pixel_overlap; pipe_config->splitter.enable = true; pipe_config->splitter.link_count = n; pipe_config->splitter.pixel_overlap = overlap; drm_dbg_kms(&dev_priv->drm, "MSO link count %d, pixel overlap %d\n", n, overlap); adjusted_mode->crtc_hdisplay = adjusted_mode->crtc_hdisplay / n + overlap; adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hblank_start / n + overlap; adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_hblank_end / n + overlap; adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hsync_start / n + overlap; adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_end / n + overlap; adjusted_mode->crtc_htotal = adjusted_mode->crtc_htotal / n + overlap; adjusted_mode->crtc_clock /= n; } intel_dp_audio_compute_config(encoder, pipe_config, conn_state); intel_link_compute_m_n(output_bpp, pipe_config->lane_count, adjusted_mode->crtc_clock, pipe_config->port_clock, &pipe_config->dp_m_n, pipe_config->fec_enable); /* FIXME: abstract this better */ if (pipe_config->splitter.enable) pipe_config->dp_m_n.data_m *= pipe_config->splitter.link_count; if (!HAS_DDI(dev_priv)) g4x_dp_set_clock(encoder, pipe_config); intel_vrr_compute_config(pipe_config, conn_state); intel_psr_compute_config(intel_dp, pipe_config, conn_state); intel_dp_drrs_compute_config(connector, pipe_config, output_bpp); intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); return 0; } void intel_dp_set_link_params(struct intel_dp *intel_dp, int link_rate, int lane_count) { memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); intel_dp->link_trained = false; intel_dp->link_rate = link_rate; intel_dp->lane_count = lane_count; } static void intel_dp_reset_max_link_params(struct intel_dp *intel_dp) { intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); } /* Enable backlight PWM and backlight PP control. */ void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&i915->drm, "\n"); intel_backlight_enable(crtc_state, conn_state); intel_pps_backlight_on(intel_dp); } /* Disable backlight PP control and backlight PWM. */ void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&i915->drm, "\n"); intel_pps_backlight_off(intel_dp); intel_backlight_disable(old_conn_state); } static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) { /* * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus * be capable of signalling downstream hpd with a long pulse. * Whether or not that means D3 is safe to use is not clear, * but let's assume so until proven otherwise. * * FIXME should really check all downstream ports... */ return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && drm_dp_is_branch(intel_dp->dpcd) && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; } void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, bool enable) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int ret; if (!crtc_state->dsc.compression_enable) return; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, enable ? DP_DECOMPRESSION_EN : 0); if (ret < 0) drm_dbg_kms(&i915->drm, "Failed to %s sink decompression state\n", str_enable_disable(enable)); } static void intel_edp_init_source_oui(struct intel_dp *intel_dp, bool careful) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 oui[] = { 0x00, 0xaa, 0x01 }; u8 buf[3] = { 0 }; /* * During driver init, we want to be careful and avoid changing the source OUI if it's * already set to what we want, so as to avoid clearing any state by accident */ if (careful) { if (drm_dp_dpcd_read(&intel_dp->aux, DP_SOURCE_OUI, buf, sizeof(buf)) < 0) drm_err(&i915->drm, "Failed to read source OUI\n"); if (memcmp(oui, buf, sizeof(oui)) == 0) return; } if (drm_dp_dpcd_write(&intel_dp->aux, DP_SOURCE_OUI, oui, sizeof(oui)) < 0) drm_err(&i915->drm, "Failed to write source OUI\n"); intel_dp->last_oui_write = jiffies; } void intel_dp_wait_source_oui(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); drm_dbg_kms(&i915->drm, "Performing OUI wait\n"); wait_remaining_ms_from_jiffies(intel_dp->last_oui_write, 30); } /* If the device supports it, try to set the power state appropriately */ void intel_dp_set_power(struct intel_dp *intel_dp, u8 mode) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *i915 = to_i915(encoder->base.dev); int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DP_SET_POWER_D0) { if (downstream_hpd_needs_d0(intel_dp)) return; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); } else { struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); lspcon_resume(dp_to_dig_port(intel_dp)); /* Write the source OUI as early as possible */ if (intel_dp_is_edp(intel_dp)) intel_edp_init_source_oui(intel_dp, false); /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, mode); if (ret == 1) break; msleep(1); } if (ret == 1 && lspcon->active) lspcon_wait_pcon_mode(lspcon); } if (ret != 1) drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Set power to %s failed\n", encoder->base.base.id, encoder->base.name, mode == DP_SET_POWER_D0 ? "D0" : "D3"); } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp); /** * intel_dp_sync_state - sync the encoder state during init/resume * @encoder: intel encoder to sync * @crtc_state: state for the CRTC connected to the encoder * * Sync any state stored in the encoder wrt. HW state during driver init * and system resume. */ void intel_dp_sync_state(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (!crtc_state) return; /* * Don't clobber DPCD if it's been already read out during output * setup (eDP) or detect. */ if (intel_dp->dpcd[DP_DPCD_REV] == 0) intel_dp_get_dpcd(intel_dp); intel_dp_reset_max_link_params(intel_dp); } bool intel_dp_initial_fastset_check(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); bool fastset = true; /* * If BIOS has set an unsupported or non-standard link rate for some * reason force an encoder recompute and full modeset. */ if (intel_dp_rate_index(intel_dp->source_rates, intel_dp->num_source_rates, crtc_state->port_clock) < 0) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset due to unsupported link rate\n", encoder->base.base.id, encoder->base.name); crtc_state->uapi.connectors_changed = true; fastset = false; } /* * FIXME hack to force full modeset when DSC is being used. * * As long as we do not have full state readout and config comparison * of crtc_state->dsc, we have no way to ensure reliable fastset. * Remove once we have readout for DSC. */ if (crtc_state->dsc.compression_enable) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset due to DSC being enabled\n", encoder->base.base.id, encoder->base.name); crtc_state->uapi.mode_changed = true; fastset = false; } if (CAN_PSR(intel_dp)) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Forcing full modeset to compute PSR state\n", encoder->base.base.id, encoder->base.name); crtc_state->uapi.mode_changed = true; fastset = false; } return fastset; } static void intel_dp_get_pcon_dsc_cap(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* Clear the cached register set to avoid using stale values */ memset(intel_dp->pcon_dsc_dpcd, 0, sizeof(intel_dp->pcon_dsc_dpcd)); if (drm_dp_dpcd_read(&intel_dp->aux, DP_PCON_DSC_ENCODER, intel_dp->pcon_dsc_dpcd, sizeof(intel_dp->pcon_dsc_dpcd)) < 0) drm_err(&i915->drm, "Failed to read DPCD register 0x%x\n", DP_PCON_DSC_ENCODER); drm_dbg_kms(&i915->drm, "PCON ENCODER DSC DPCD: %*ph\n", (int)sizeof(intel_dp->pcon_dsc_dpcd), intel_dp->pcon_dsc_dpcd); } static int intel_dp_pcon_get_frl_mask(u8 frl_bw_mask) { int bw_gbps[] = {9, 18, 24, 32, 40, 48}; int i; for (i = ARRAY_SIZE(bw_gbps) - 1; i >= 0; i--) { if (frl_bw_mask & (1 << i)) return bw_gbps[i]; } return 0; } static int intel_dp_pcon_set_frl_mask(int max_frl) { switch (max_frl) { case 48: return DP_PCON_FRL_BW_MASK_48GBPS; case 40: return DP_PCON_FRL_BW_MASK_40GBPS; case 32: return DP_PCON_FRL_BW_MASK_32GBPS; case 24: return DP_PCON_FRL_BW_MASK_24GBPS; case 18: return DP_PCON_FRL_BW_MASK_18GBPS; case 9: return DP_PCON_FRL_BW_MASK_9GBPS; } return 0; } static int intel_dp_hdmi_sink_max_frl(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; int max_frl_rate; int max_lanes, rate_per_lane; int max_dsc_lanes, dsc_rate_per_lane; max_lanes = connector->display_info.hdmi.max_lanes; rate_per_lane = connector->display_info.hdmi.max_frl_rate_per_lane; max_frl_rate = max_lanes * rate_per_lane; if (connector->display_info.hdmi.dsc_cap.v_1p2) { max_dsc_lanes = connector->display_info.hdmi.dsc_cap.max_lanes; dsc_rate_per_lane = connector->display_info.hdmi.dsc_cap.max_frl_rate_per_lane; if (max_dsc_lanes && dsc_rate_per_lane) max_frl_rate = min(max_frl_rate, max_dsc_lanes * dsc_rate_per_lane); } return max_frl_rate; } static bool intel_dp_pcon_is_frl_trained(struct intel_dp *intel_dp, u8 max_frl_bw_mask, u8 *frl_trained_mask) { if (drm_dp_pcon_hdmi_link_active(&intel_dp->aux) && drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, frl_trained_mask) == DP_PCON_HDMI_MODE_FRL && *frl_trained_mask >= max_frl_bw_mask) return true; return false; } static int intel_dp_pcon_start_frl_training(struct intel_dp *intel_dp) { #define TIMEOUT_FRL_READY_MS 500 #define TIMEOUT_HDMI_LINK_ACTIVE_MS 1000 struct drm_i915_private *i915 = dp_to_i915(intel_dp); int max_frl_bw, max_pcon_frl_bw, max_edid_frl_bw, ret; u8 max_frl_bw_mask = 0, frl_trained_mask; bool is_active; max_pcon_frl_bw = intel_dp->dfp.pcon_max_frl_bw; drm_dbg(&i915->drm, "PCON max rate = %d Gbps\n", max_pcon_frl_bw); max_edid_frl_bw = intel_dp_hdmi_sink_max_frl(intel_dp); drm_dbg(&i915->drm, "Sink max rate from EDID = %d Gbps\n", max_edid_frl_bw); max_frl_bw = min(max_edid_frl_bw, max_pcon_frl_bw); if (max_frl_bw <= 0) return -EINVAL; max_frl_bw_mask = intel_dp_pcon_set_frl_mask(max_frl_bw); drm_dbg(&i915->drm, "MAX_FRL_BW_MASK = %u\n", max_frl_bw_mask); if (intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask)) goto frl_trained; ret = drm_dp_pcon_frl_prepare(&intel_dp->aux, false); if (ret < 0) return ret; /* Wait for PCON to be FRL Ready */ wait_for(is_active = drm_dp_pcon_is_frl_ready(&intel_dp->aux) == true, TIMEOUT_FRL_READY_MS); if (!is_active) return -ETIMEDOUT; ret = drm_dp_pcon_frl_configure_1(&intel_dp->aux, max_frl_bw, DP_PCON_ENABLE_SEQUENTIAL_LINK); if (ret < 0) return ret; ret = drm_dp_pcon_frl_configure_2(&intel_dp->aux, max_frl_bw_mask, DP_PCON_FRL_LINK_TRAIN_NORMAL); if (ret < 0) return ret; ret = drm_dp_pcon_frl_enable(&intel_dp->aux); if (ret < 0) return ret; /* * Wait for FRL to be completed * Check if the HDMI Link is up and active. */ wait_for(is_active = intel_dp_pcon_is_frl_trained(intel_dp, max_frl_bw_mask, &frl_trained_mask), TIMEOUT_HDMI_LINK_ACTIVE_MS); if (!is_active) return -ETIMEDOUT; frl_trained: drm_dbg(&i915->drm, "FRL_TRAINED_MASK = %u\n", frl_trained_mask); intel_dp->frl.trained_rate_gbps = intel_dp_pcon_get_frl_mask(frl_trained_mask); intel_dp->frl.is_trained = true; drm_dbg(&i915->drm, "FRL trained with : %d Gbps\n", intel_dp->frl.trained_rate_gbps); return 0; } static bool intel_dp_is_hdmi_2_1_sink(struct intel_dp *intel_dp) { if (drm_dp_is_branch(intel_dp->dpcd) && intel_dp->has_hdmi_sink && intel_dp_hdmi_sink_max_frl(intel_dp) > 0) return true; return false; } static int intel_dp_pcon_set_tmds_mode(struct intel_dp *intel_dp) { int ret; u8 buf = 0; /* Set PCON source control mode */ buf |= DP_PCON_ENABLE_SOURCE_CTL_MODE; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); if (ret < 0) return ret; /* Set HDMI LINK ENABLE */ buf |= DP_PCON_ENABLE_HDMI_LINK; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf); if (ret < 0) return ret; return 0; } void intel_dp_check_frl_training(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); /* * Always go for FRL training if: * -PCON supports SRC_CTL_MODE (VESA DP2.0-HDMI2.1 PCON Spec Draft-1 Sec-7) * -sink is HDMI2.1 */ if (!(intel_dp->downstream_ports[2] & DP_PCON_SOURCE_CTL_MODE) || !intel_dp_is_hdmi_2_1_sink(intel_dp) || intel_dp->frl.is_trained) return; if (intel_dp_pcon_start_frl_training(intel_dp) < 0) { int ret, mode; drm_dbg(&dev_priv->drm, "Couldn't set FRL mode, continuing with TMDS mode\n"); ret = intel_dp_pcon_set_tmds_mode(intel_dp); mode = drm_dp_pcon_hdmi_link_mode(&intel_dp->aux, NULL); if (ret < 0 || mode != DP_PCON_HDMI_MODE_TMDS) drm_dbg(&dev_priv->drm, "Issue with PCON, cannot set TMDS mode\n"); } else { drm_dbg(&dev_priv->drm, "FRL training Completed\n"); } } static int intel_dp_pcon_dsc_enc_slice_height(const struct intel_crtc_state *crtc_state) { int vactive = crtc_state->hw.adjusted_mode.vdisplay; return intel_hdmi_dsc_get_slice_height(vactive); } static int intel_dp_pcon_dsc_enc_slices(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; int hdmi_throughput = connector->display_info.hdmi.dsc_cap.clk_per_slice; int hdmi_max_slices = connector->display_info.hdmi.dsc_cap.max_slices; int pcon_max_slices = drm_dp_pcon_dsc_max_slices(intel_dp->pcon_dsc_dpcd); int pcon_max_slice_width = drm_dp_pcon_dsc_max_slice_width(intel_dp->pcon_dsc_dpcd); return intel_hdmi_dsc_get_num_slices(crtc_state, pcon_max_slices, pcon_max_slice_width, hdmi_max_slices, hdmi_throughput); } static int intel_dp_pcon_dsc_enc_bpp(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, int num_slices, int slice_width) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; int output_format = crtc_state->output_format; bool hdmi_all_bpp = connector->display_info.hdmi.dsc_cap.all_bpp; int pcon_fractional_bpp = drm_dp_pcon_dsc_bpp_incr(intel_dp->pcon_dsc_dpcd); int hdmi_max_chunk_bytes = connector->display_info.hdmi.dsc_cap.total_chunk_kbytes * 1024; return intel_hdmi_dsc_get_bpp(pcon_fractional_bpp, slice_width, num_slices, output_format, hdmi_all_bpp, hdmi_max_chunk_bytes); } void intel_dp_pcon_dsc_configure(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { u8 pps_param[6]; int slice_height; int slice_width; int num_slices; int bits_per_pixel; int ret; struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_connector *connector; bool hdmi_is_dsc_1_2; if (!intel_dp_is_hdmi_2_1_sink(intel_dp)) return; if (!intel_connector) return; connector = &intel_connector->base; hdmi_is_dsc_1_2 = connector->display_info.hdmi.dsc_cap.v_1p2; if (!drm_dp_pcon_enc_is_dsc_1_2(intel_dp->pcon_dsc_dpcd) || !hdmi_is_dsc_1_2) return; slice_height = intel_dp_pcon_dsc_enc_slice_height(crtc_state); if (!slice_height) return; num_slices = intel_dp_pcon_dsc_enc_slices(intel_dp, crtc_state); if (!num_slices) return; slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, num_slices); bits_per_pixel = intel_dp_pcon_dsc_enc_bpp(intel_dp, crtc_state, num_slices, slice_width); if (!bits_per_pixel) return; pps_param[0] = slice_height & 0xFF; pps_param[1] = slice_height >> 8; pps_param[2] = slice_width & 0xFF; pps_param[3] = slice_width >> 8; pps_param[4] = bits_per_pixel & 0xFF; pps_param[5] = (bits_per_pixel >> 8) & 0x3; ret = drm_dp_pcon_pps_override_param(&intel_dp->aux, pps_param); if (ret < 0) drm_dbg_kms(&i915->drm, "Failed to set pcon DSC\n"); } void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 tmp; if (intel_dp->dpcd[DP_DPCD_REV] < 0x13) return; if (!drm_dp_is_branch(intel_dp->dpcd)) return; tmp = intel_dp->has_hdmi_sink ? DP_HDMI_DVI_OUTPUT_CONFIG : 0; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1) drm_dbg_kms(&i915->drm, "Failed to %s protocol converter HDMI mode\n", str_enable_disable(intel_dp->has_hdmi_sink)); tmp = crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 && intel_dp->dfp.ycbcr_444_to_420 ? DP_CONVERSION_TO_YCBCR420_ENABLE : 0; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1) drm_dbg_kms(&i915->drm, "Failed to %s protocol converter YCbCr 4:2:0 conversion mode\n", str_enable_disable(intel_dp->dfp.ycbcr_444_to_420)); tmp = intel_dp->dfp.rgb_to_ycbcr ? DP_CONVERSION_BT709_RGB_YCBCR_ENABLE : 0; if (drm_dp_pcon_convert_rgb_to_ycbcr(&intel_dp->aux, tmp) < 0) drm_dbg_kms(&i915->drm, "Failed to %s protocol converter RGB->YCbCr conversion mode\n", str_enable_disable(tmp)); } bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) { u8 dprx = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &dprx) != 1) return false; return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; } static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* * Clear the cached register set to avoid using stale values * for the sinks that do not support DSC. */ memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); /* Clear fec_capable to avoid using stale values */ intel_dp->fec_capable = 0; /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || intel_dp->edp_dpcd[0] >= DP_EDP_14) { if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, intel_dp->dsc_dpcd, sizeof(intel_dp->dsc_dpcd)) < 0) drm_err(&i915->drm, "Failed to read DPCD register 0x%x\n", DP_DSC_SUPPORT); drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n", (int)sizeof(intel_dp->dsc_dpcd), intel_dp->dsc_dpcd); /* FEC is supported only on DP 1.4 */ if (!intel_dp_is_edp(intel_dp) && drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, &intel_dp->fec_capable) < 0) drm_err(&i915->drm, "Failed to read FEC DPCD register\n"); drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n", intel_dp->fec_capable); } } static void intel_edp_mso_mode_fixup(struct intel_connector *connector, struct drm_display_mode *mode) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); int n = intel_dp->mso_link_count; int overlap = intel_dp->mso_pixel_overlap; if (!mode || !n) return; mode->hdisplay = (mode->hdisplay - overlap) * n; mode->hsync_start = (mode->hsync_start - overlap) * n; mode->hsync_end = (mode->hsync_end - overlap) * n; mode->htotal = (mode->htotal - overlap) * n; mode->clock *= n; drm_mode_set_name(mode); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] using generated MSO mode: " DRM_MODE_FMT "\n", connector->base.base.id, connector->base.name, DRM_MODE_ARG(mode)); } void intel_edp_fixup_vbt_bpp(struct intel_encoder *encoder, int pipe_bpp) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_connector *connector = intel_dp->attached_connector; if (connector->panel.vbt.edp.bpp && pipe_bpp > connector->panel.vbt.edp.bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ drm_dbg_kms(&dev_priv->drm, "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_bpp, connector->panel.vbt.edp.bpp); connector->panel.vbt.edp.bpp = pipe_bpp; } } static void intel_edp_mso_init(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; struct drm_display_info *info = &connector->base.display_info; u8 mso; if (intel_dp->edp_dpcd[0] < DP_EDP_14) return; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_EDP_MSO_LINK_CAPABILITIES, &mso) != 1) { drm_err(&i915->drm, "Failed to read MSO cap\n"); return; } /* Valid configurations are SST or MSO 2x1, 2x2, 4x1 */ mso &= DP_EDP_MSO_NUMBER_OF_LINKS_MASK; if (mso % 2 || mso > drm_dp_max_lane_count(intel_dp->dpcd)) { drm_err(&i915->drm, "Invalid MSO link count cap %u\n", mso); mso = 0; } if (mso) { drm_dbg_kms(&i915->drm, "Sink MSO %ux%u configuration, pixel overlap %u\n", mso, drm_dp_max_lane_count(intel_dp->dpcd) / mso, info->mso_pixel_overlap); if (!HAS_MSO(i915)) { drm_err(&i915->drm, "No source MSO support, disabling\n"); mso = 0; } } intel_dp->mso_link_count = mso; intel_dp->mso_pixel_overlap = mso ? info->mso_pixel_overlap : 0; } static bool intel_edp_init_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); /* this function is meant to be called only once */ drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0) return false; drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); /* * Read the eDP display control registers. * * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it * set, but require eDP 1.4+ detection (e.g. for supported link rates * method). The display control registers should read zero if they're * not supported anyway. */ if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == sizeof(intel_dp->edp_dpcd)) { drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", (int)sizeof(intel_dp->edp_dpcd), intel_dp->edp_dpcd); intel_dp->use_max_params = intel_dp->edp_dpcd[0] < DP_EDP_14; } /* * This has to be called after intel_dp->edp_dpcd is filled, PSR checks * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] */ intel_psr_init_dpcd(intel_dp); /* Clear the default sink rates */ intel_dp->num_sink_rates = 0; /* Read the eDP 1.4+ supported link rates. */ if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; int i; drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, sink_rates, sizeof(sink_rates)); for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { int val = le16_to_cpu(sink_rates[i]); if (val == 0) break; /* Value read multiplied by 200kHz gives the per-lane * link rate in kHz. The source rates are, however, * stored in terms of LS_Clk kHz. The full conversion * back to symbols is * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) */ intel_dp->sink_rates[i] = (val * 200) / 10; } intel_dp->num_sink_rates = i; } /* * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. */ if (intel_dp->num_sink_rates) intel_dp->use_rate_select = true; else intel_dp_set_sink_rates(intel_dp); intel_dp_set_max_sink_lane_count(intel_dp); /* Read the eDP DSC DPCD registers */ if (HAS_DSC(dev_priv)) intel_dp_get_dsc_sink_cap(intel_dp); /* * If needed, program our source OUI so we can make various Intel-specific AUX services * available (such as HDR backlight controls) */ intel_edp_init_source_oui(intel_dp, true); return true; } static bool intel_dp_has_sink_count(struct intel_dp *intel_dp) { if (!intel_dp->attached_connector) return false; return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base, intel_dp->dpcd, &intel_dp->desc); } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp) { int ret; if (intel_dp_init_lttpr_and_dprx_caps(intel_dp) < 0) return false; /* * Don't clobber cached eDP rates. Also skip re-reading * the OUI/ID since we know it won't change. */ if (!intel_dp_is_edp(intel_dp)) { drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); intel_dp_set_sink_rates(intel_dp); intel_dp_set_max_sink_lane_count(intel_dp); intel_dp_set_common_rates(intel_dp); } if (intel_dp_has_sink_count(intel_dp)) { ret = drm_dp_read_sink_count(&intel_dp->aux); if (ret < 0) return false; /* * Sink count can change between short pulse hpd hence * a member variable in intel_dp will track any changes * between short pulse interrupts. */ intel_dp->sink_count = ret; /* * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that * a dongle is present but no display. Unless we require to know * if a dongle is present or not, we don't need to update * downstream port information. So, an early return here saves * time from performing other operations which are not required. */ if (!intel_dp->sink_count) return false; } return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd, intel_dp->downstream_ports) == 0; } static bool intel_dp_can_mst(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); return i915->params.enable_dp_mst && intel_dp_mst_source_support(intel_dp) && drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); } static void intel_dp_configure_mst(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd); drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", encoder->base.base.id, encoder->base.name, str_yes_no(intel_dp_mst_source_support(intel_dp)), str_yes_no(sink_can_mst), str_yes_no(i915->params.enable_dp_mst)); if (!intel_dp_mst_source_support(intel_dp)) return; intel_dp->is_mst = sink_can_mst && i915->params.enable_dp_mst; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } static bool intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *esi) { return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, esi, 4) == 4; } static bool intel_dp_ack_sink_irq_esi(struct intel_dp *intel_dp, u8 esi[4]) { int retry; for (retry = 0; retry < 3; retry++) { if (drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3) == 3) return true; } return false; } bool intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { /* * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication * of Color Encoding Format and Content Color Gamut], in order to * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) return true; switch (conn_state->colorspace) { case DRM_MODE_COLORIMETRY_SYCC_601: case DRM_MODE_COLORIMETRY_OPYCC_601: case DRM_MODE_COLORIMETRY_BT2020_YCC: case DRM_MODE_COLORIMETRY_BT2020_RGB: case DRM_MODE_COLORIMETRY_BT2020_CYCC: return true; default: break; } return false; } static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc, struct dp_sdp *sdp, size_t size) { size_t length = sizeof(struct dp_sdp); if (size < length) return -ENOSPC; memset(sdp, 0, size); /* * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 * VSC SDP Header Bytes */ sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */ sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */ sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */ sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */ /* * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as * per DP 1.4a spec. */ if (vsc->revision != 0x5) goto out; /* VSC SDP Payload for DB16 through DB18 */ /* Pixel Encoding and Colorimetry Formats */ sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */ sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */ switch (vsc->bpc) { case 6: /* 6bpc: 0x0 */ break; case 8: sdp->db[17] = 0x1; /* DB17[3:0] */ break; case 10: sdp->db[17] = 0x2; break; case 12: sdp->db[17] = 0x3; break; case 16: sdp->db[17] = 0x4; break; default: MISSING_CASE(vsc->bpc); break; } /* Dynamic Range and Component Bit Depth */ if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA) sdp->db[17] |= 0x80; /* DB17[7] */ /* Content Type */ sdp->db[18] = vsc->content_type & 0x7; out: return length; } static ssize_t intel_dp_hdr_metadata_infoframe_sdp_pack(struct drm_i915_private *i915, const struct hdmi_drm_infoframe *drm_infoframe, struct dp_sdp *sdp, size_t size) { size_t length = sizeof(struct dp_sdp); const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; ssize_t len; if (size < length) return -ENOSPC; memset(sdp, 0, size); len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); if (len < 0) { drm_dbg_kms(&i915->drm, "buffer size is smaller than hdr metadata infoframe\n"); return -ENOSPC; } if (len != infoframe_size) { drm_dbg_kms(&i915->drm, "wrong static hdr metadata size\n"); return -ENOSPC; } /* * Set up the infoframe sdp packet for HDR static metadata. * Prepare VSC Header for SU as per DP 1.4a spec, * Table 2-100 and Table 2-101 */ /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ sdp->sdp_header.HB0 = 0; /* * Packet Type 80h + Non-audio INFOFRAME Type value * HDMI_INFOFRAME_TYPE_DRM: 0x87 * - 80h + Non-audio INFOFRAME Type value * - InfoFrame Type: 0x07 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] */ sdp->sdp_header.HB1 = drm_infoframe->type; /* * Least Significant Eight Bits of (Data Byte Count – 1) * infoframe_size - 1 */ sdp->sdp_header.HB2 = 0x1D; /* INFOFRAME SDP Version Number */ sdp->sdp_header.HB3 = (0x13 << 2); /* CTA Header Byte 2 (INFOFRAME Version Number) */ sdp->db[0] = drm_infoframe->version; /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ sdp->db[1] = drm_infoframe->length; /* * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after * HDMI_INFOFRAME_HEADER_SIZE */ BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], HDMI_DRM_INFOFRAME_SIZE); /* * Size of DP infoframe sdp packet for HDR static metadata consists of * - DP SDP Header(struct dp_sdp_header): 4 bytes * - Two Data Blocks: 2 bytes * CTA Header Byte2 (INFOFRAME Version Number) * CTA Header Byte3 (Length of INFOFRAME) * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes * * Prior to GEN11's GMP register size is identical to DP HDR static metadata * infoframe size. But GEN11+ has larger than that size, write_infoframe * will pad rest of the size. */ return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; } static void intel_write_dp_sdp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct dp_sdp sdp = {}; ssize_t len; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; switch (type) { case DP_SDP_VSC: len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp, sizeof(sdp)); break; case HDMI_PACKET_TYPE_GAMUT_METADATA: len = intel_dp_hdr_metadata_infoframe_sdp_pack(dev_priv, &crtc_state->infoframes.drm.drm, &sdp, sizeof(sdp)); break; default: MISSING_CASE(type); return; } if (drm_WARN_ON(&dev_priv->drm, len < 0)) return; dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); } void intel_write_dp_vsc_sdp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_dp_vsc_sdp *vsc) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct dp_sdp sdp = {}; ssize_t len; len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp)); if (drm_WARN_ON(&dev_priv->drm, len < 0)) return; dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC, &sdp, len); } void intel_dp_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; u32 val = intel_de_read(dev_priv, reg) & ~dip_enable; /* TODO: Add DSC case (DIP_ENABLE_PPS) */ /* When PSR is enabled, this routine doesn't disable VSC DIP */ if (!crtc_state->has_psr) val &= ~VIDEO_DIP_ENABLE_VSC_HSW; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); if (!enable) return; /* When PSR is enabled, VSC SDP is handled by PSR routine */ if (!crtc_state->has_psr) intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); } static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, const void *buffer, size_t size) { const struct dp_sdp *sdp = buffer; if (size < sizeof(struct dp_sdp)) return -EINVAL; memset(vsc, 0, sizeof(*vsc)); if (sdp->sdp_header.HB0 != 0) return -EINVAL; if (sdp->sdp_header.HB1 != DP_SDP_VSC) return -EINVAL; vsc->sdp_type = sdp->sdp_header.HB1; vsc->revision = sdp->sdp_header.HB2; vsc->length = sdp->sdp_header.HB3; if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) { /* * - HB2 = 0x2, HB3 = 0x8 * VSC SDP supporting 3D stereo + PSR * - HB2 = 0x4, HB3 = 0xe * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of * first scan line of the SU region (applies to eDP v1.4b * and higher). */ return 0; } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { /* * - HB2 = 0x5, HB3 = 0x13 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry * Format. */ vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; vsc->colorimetry = sdp->db[16] & 0xf; vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; switch (sdp->db[17] & 0x7) { case 0x0: vsc->bpc = 6; break; case 0x1: vsc->bpc = 8; break; case 0x2: vsc->bpc = 10; break; case 0x3: vsc->bpc = 12; break; case 0x4: vsc->bpc = 16; break; default: MISSING_CASE(sdp->db[17] & 0x7); return -EINVAL; } vsc->content_type = sdp->db[18] & 0x7; } else { return -EINVAL; } return 0; } static int intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, const void *buffer, size_t size) { int ret; const struct dp_sdp *sdp = buffer; if (size < sizeof(struct dp_sdp)) return -EINVAL; if (sdp->sdp_header.HB0 != 0) return -EINVAL; if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) return -EINVAL; /* * Least Significant Eight Bits of (Data Byte Count – 1) * 1Dh (i.e., Data Byte Count = 30 bytes). */ if (sdp->sdp_header.HB2 != 0x1D) return -EINVAL; /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ if ((sdp->sdp_header.HB3 & 0x3) != 0) return -EINVAL; /* INFOFRAME SDP Version Number */ if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) return -EINVAL; /* CTA Header Byte 2 (INFOFRAME Version Number) */ if (sdp->db[0] != 1) return -EINVAL; /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) return -EINVAL; ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], HDMI_DRM_INFOFRAME_SIZE); return ret; } static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_dp_vsc_sdp *vsc) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); unsigned int type = DP_SDP_VSC; struct dp_sdp sdp = {}; int ret; /* When PSR is enabled, VSC SDP is handled by PSR routine */ if (crtc_state->has_psr) return; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); if (ret) drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n"); } static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct hdmi_drm_infoframe *drm_infoframe) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; struct dp_sdp sdp = {}; int ret; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, sizeof(sdp)); if (ret) drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP HDR Metadata Infoframe SDP\n"); } void intel_read_dp_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, unsigned int type) { switch (type) { case DP_SDP_VSC: intel_read_dp_vsc_sdp(encoder, crtc_state, &crtc_state->infoframes.vsc); break; case HDMI_PACKET_TYPE_GAMUT_METADATA: intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, &crtc_state->infoframes.drm.drm); break; default: MISSING_CASE(type); break; } } static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int status = 0; int test_link_rate; u8 test_lane_count, test_link_bw; /* (DP CTS 1.2) * 4.3.1.11 */ /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, &test_lane_count); if (status <= 0) { drm_dbg_kms(&i915->drm, "Lane count read failed\n"); return DP_TEST_NAK; } test_lane_count &= DP_MAX_LANE_COUNT_MASK; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, &test_link_bw); if (status <= 0) { drm_dbg_kms(&i915->drm, "Link Rate read failed\n"); return DP_TEST_NAK; } test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); /* Validate the requested link rate and lane count */ if (!intel_dp_link_params_valid(intel_dp, test_link_rate, test_lane_count)) return DP_TEST_NAK; intel_dp->compliance.test_lane_count = test_lane_count; intel_dp->compliance.test_link_rate = test_link_rate; return DP_TEST_ACK; } static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 test_pattern; u8 test_misc; __be16 h_width, v_height; int status = 0; /* Read the TEST_PATTERN (DP CTS 3.1.5) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, &test_pattern); if (status <= 0) { drm_dbg_kms(&i915->drm, "Test pattern read failed\n"); return DP_TEST_NAK; } if (test_pattern != DP_COLOR_RAMP) return DP_TEST_NAK; status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, &h_width, 2); if (status <= 0) { drm_dbg_kms(&i915->drm, "H Width read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, &v_height, 2); if (status <= 0) { drm_dbg_kms(&i915->drm, "V Height read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, &test_misc); if (status <= 0) { drm_dbg_kms(&i915->drm, "TEST MISC read failed\n"); return DP_TEST_NAK; } if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) return DP_TEST_NAK; if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) return DP_TEST_NAK; switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { case DP_TEST_BIT_DEPTH_6: intel_dp->compliance.test_data.bpc = 6; break; case DP_TEST_BIT_DEPTH_8: intel_dp->compliance.test_data.bpc = 8; break; default: return DP_TEST_NAK; } intel_dp->compliance.test_data.video_pattern = test_pattern; intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return DP_TEST_ACK; } static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 test_result = DP_TEST_ACK; struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; if (intel_connector->detect_edid == NULL || connector->edid_corrupt || intel_dp->aux.i2c_defer_count > 6) { /* Check EDID read for NACKs, DEFERs and corruption * (DP CTS 1.2 Core r1.1) * 4.2.2.4 : Failed EDID read, I2C_NAK * 4.2.2.5 : Failed EDID read, I2C_DEFER * 4.2.2.6 : EDID corruption detected * Use failsafe mode for all cases */ if (intel_dp->aux.i2c_nack_count > 0 || intel_dp->aux.i2c_defer_count > 0) drm_dbg_kms(&i915->drm, "EDID read had %d NACKs, %d DEFERs\n", intel_dp->aux.i2c_nack_count, intel_dp->aux.i2c_defer_count); intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; } else { /* FIXME: Get rid of drm_edid_raw() */ const struct edid *block = drm_edid_raw(intel_connector->detect_edid); /* We have to write the checksum of the last block read */ block += block->extensions; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, block->checksum) <= 0) drm_dbg_kms(&i915->drm, "Failed to write EDID checksum\n"); test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; } /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return test_result; } static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; u32 pattern_val; switch (data->phy_pattern) { case DP_PHY_TEST_PATTERN_NONE: drm_dbg_kms(&dev_priv->drm, "Disable Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); break; case DP_PHY_TEST_PATTERN_D10_2: drm_dbg_kms(&dev_priv->drm, "Set D10.2 Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2); break; case DP_PHY_TEST_PATTERN_ERROR_COUNT: drm_dbg_kms(&dev_priv->drm, "Set Error Count Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_SCRAMBLED_0); break; case DP_PHY_TEST_PATTERN_PRBS7: drm_dbg_kms(&dev_priv->drm, "Set PRBS7 Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7); break; case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: /* * FIXME: Ideally pattern should come from DPCD 0x250. As * current firmware of DPR-100 could not set it, so hardcoding * now for complaince test. */ drm_dbg_kms(&dev_priv->drm, "Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n"); pattern_val = 0x3e0f83e0; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val); pattern_val = 0x0f83e0f8; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val); pattern_val = 0x0000f83e; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_CUSTOM80); break; case DP_PHY_TEST_PATTERN_CP2520: /* * FIXME: Ideally pattern should come from DPCD 0x24A. As * current firmware of DPR-100 could not set it, so hardcoding * now for complaince test. */ drm_dbg_kms(&dev_priv->drm, "Set HBR2 compliance Phy Test Pattern\n"); pattern_val = 0xFB; intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 | pattern_val); break; default: WARN(1, "Invalid Phy Test Pattern\n"); } } static void intel_dp_process_phy_request(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; u8 link_status[DP_LINK_STATUS_SIZE]; if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, link_status) < 0) { drm_dbg_kms(&i915->drm, "failed to get link status\n"); return; } /* retrieve vswing & pre-emphasis setting */ intel_dp_get_adjust_train(intel_dp, crtc_state, DP_PHY_DPRX, link_status); intel_dp_set_signal_levels(intel_dp, crtc_state, DP_PHY_DPRX); intel_dp_phy_pattern_update(intel_dp, crtc_state); drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET, intel_dp->train_set, crtc_state->lane_count); drm_dp_set_phy_test_pattern(&intel_dp->aux, data, link_status[DP_DPCD_REV]); } static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) { drm_dbg_kms(&i915->drm, "DP Phy Test pattern AUX read failure\n"); return DP_TEST_NAK; } /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return DP_TEST_ACK; } static void intel_dp_handle_test_request(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 response = DP_TEST_NAK; u8 request = 0; int status; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); if (status <= 0) { drm_dbg_kms(&i915->drm, "Could not read test request from sink\n"); goto update_status; } switch (request) { case DP_TEST_LINK_TRAINING: drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n"); response = intel_dp_autotest_link_training(intel_dp); break; case DP_TEST_LINK_VIDEO_PATTERN: drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n"); response = intel_dp_autotest_video_pattern(intel_dp); break; case DP_TEST_LINK_EDID_READ: drm_dbg_kms(&i915->drm, "EDID test requested\n"); response = intel_dp_autotest_edid(intel_dp); break; case DP_TEST_LINK_PHY_TEST_PATTERN: drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n"); response = intel_dp_autotest_phy_pattern(intel_dp); break; default: drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n", request); break; } if (response & DP_TEST_ACK) intel_dp->compliance.test_type = request; update_status: status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); if (status <= 0) drm_dbg_kms(&i915->drm, "Could not write test response to sink\n"); } static bool intel_dp_link_ok(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *i915 = to_i915(encoder->base.dev); bool uhbr = intel_dp->link_rate >= 1000000; bool ok; if (uhbr) ok = drm_dp_128b132b_lane_channel_eq_done(link_status, intel_dp->lane_count); else ok = drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); if (ok) return true; intel_dp_dump_link_status(intel_dp, DP_PHY_DPRX, link_status); drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] %s link not ok, retraining\n", encoder->base.base.id, encoder->base.name, uhbr ? "128b/132b" : "8b/10b"); return false; } static void intel_dp_mst_hpd_irq(struct intel_dp *intel_dp, u8 *esi, u8 *ack) { bool handled = false; drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); if (handled) ack[1] |= esi[1] & (DP_DOWN_REP_MSG_RDY | DP_UP_REQ_MSG_RDY); if (esi[1] & DP_CP_IRQ) { intel_hdcp_handle_cp_irq(intel_dp->attached_connector); ack[1] |= DP_CP_IRQ; } } static bool intel_dp_mst_link_status(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *i915 = to_i915(encoder->base.dev); u8 link_status[DP_LINK_STATUS_SIZE] = {}; const size_t esi_link_status_size = DP_LINK_STATUS_SIZE - 2; if (drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS_ESI, link_status, esi_link_status_size) != esi_link_status_size) { drm_err(&i915->drm, "[ENCODER:%d:%s] Failed to read link status\n", encoder->base.base.id, encoder->base.name); return false; } return intel_dp_link_ok(intel_dp, link_status); } /** * intel_dp_check_mst_status - service any pending MST interrupts, check link status * @intel_dp: Intel DP struct * * Read any pending MST interrupts, call MST core to handle these and ack the * interrupts. Check if the main and AUX link state is ok. * * Returns: * - %true if pending interrupts were serviced (or no interrupts were * pending) w/o detecting an error condition. * - %false if an error condition - like AUX failure or a loss of link - is * detected, which needs servicing from the hotplug work. */ static bool intel_dp_check_mst_status(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); bool link_ok = true; drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0); for (;;) { u8 esi[4] = {}; u8 ack[4] = {}; if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) { drm_dbg_kms(&i915->drm, "failed to get ESI - device may have failed\n"); link_ok = false; break; } drm_dbg_kms(&i915->drm, "DPRX ESI: %4ph\n", esi); if (intel_dp->active_mst_links > 0 && link_ok && esi[3] & LINK_STATUS_CHANGED) { if (!intel_dp_mst_link_status(intel_dp)) link_ok = false; ack[3] |= LINK_STATUS_CHANGED; } intel_dp_mst_hpd_irq(intel_dp, esi, ack); if (!memchr_inv(ack, 0, sizeof(ack))) break; if (!intel_dp_ack_sink_irq_esi(intel_dp, ack)) drm_dbg_kms(&i915->drm, "Failed to ack ESI\n"); } return link_ok; } static void intel_dp_handle_hdmi_link_status_change(struct intel_dp *intel_dp) { bool is_active; u8 buf = 0; is_active = drm_dp_pcon_hdmi_link_active(&intel_dp->aux); if (intel_dp->frl.is_trained && !is_active) { if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf) < 0) return; buf &= ~DP_PCON_ENABLE_HDMI_LINK; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_PCON_HDMI_LINK_CONFIG_1, buf) < 0) return; drm_dp_pcon_hdmi_frl_link_error_count(&intel_dp->aux, &intel_dp->attached_connector->base); intel_dp->frl.is_trained = false; /* Restart FRL training or fall back to TMDS mode */ intel_dp_check_frl_training(intel_dp); } } static bool intel_dp_needs_link_retrain(struct intel_dp *intel_dp) { u8 link_status[DP_LINK_STATUS_SIZE]; if (!intel_dp->link_trained) return false; /* * While PSR source HW is enabled, it will control main-link sending * frames, enabling and disabling it so trying to do a retrain will fail * as the link would or not be on or it could mix training patterns * and frame data at the same time causing retrain to fail. * Also when exiting PSR, HW will retrain the link anyways fixing * any link status error. */ if (intel_psr_enabled(intel_dp)) return false; if (drm_dp_dpcd_read_phy_link_status(&intel_dp->aux, DP_PHY_DPRX, link_status) < 0) return false; /* * Validate the cached values of intel_dp->link_rate and * intel_dp->lane_count before attempting to retrain. * * FIXME would be nice to user the crtc state here, but since * we need to call this from the short HPD handler that seems * a bit hard. */ if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, intel_dp->lane_count)) return false; /* Retrain if link not ok */ return !intel_dp_link_ok(intel_dp, link_status); } static bool intel_dp_has_connector(struct intel_dp *intel_dp, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_encoder *encoder; enum pipe pipe; if (!conn_state->best_encoder) return false; /* SST */ encoder = &dp_to_dig_port(intel_dp)->base; if (conn_state->best_encoder == &encoder->base) return true; /* MST */ for_each_pipe(i915, pipe) { encoder = &intel_dp->mst_encoders[pipe]->base; if (conn_state->best_encoder == &encoder->base) return true; } return false; } static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp, struct drm_modeset_acquire_ctx *ctx, u8 *pipe_mask) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_connector_list_iter conn_iter; struct intel_connector *connector; int ret = 0; *pipe_mask = 0; if (!intel_dp_needs_link_retrain(intel_dp)) return 0; drm_connector_list_iter_begin(&i915->drm, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state = connector->base.state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!intel_dp_has_connector(intel_dp, conn_state)) continue; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) break; crtc_state = to_intel_crtc_state(crtc->base.state); drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); if (!crtc_state->hw.active) continue; if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) continue; *pipe_mask |= BIT(crtc->pipe); } drm_connector_list_iter_end(&conn_iter); if (!intel_dp_needs_link_retrain(intel_dp)) *pipe_mask = 0; return ret; } static bool intel_dp_is_connected(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; return connector->base.status == connector_status_connected || intel_dp->is_mst; } int intel_dp_retrain_link(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc; u8 pipe_mask; int ret; if (!intel_dp_is_connected(intel_dp)) return 0; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; ret = intel_dp_prep_link_retrain(intel_dp, ctx, &pipe_mask); if (ret) return ret; if (pipe_mask == 0) return 0; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n", encoder->base.base.id, encoder->base.name); for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* Suppress underruns caused by re-training */ intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); if (crtc_state->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), false); } for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* retrain on the MST master transcoder */ if (DISPLAY_VER(dev_priv) >= 12 && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) && !intel_dp_mst_is_master_trans(crtc_state)) continue; intel_dp_check_frl_training(intel_dp); intel_dp_pcon_dsc_configure(intel_dp, crtc_state); intel_dp_start_link_train(intel_dp, crtc_state); intel_dp_stop_link_train(intel_dp, crtc_state); break; } for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* Keep underrun reporting disabled until things are stable */ intel_crtc_wait_for_next_vblank(crtc); intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (crtc_state->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), true); } return 0; } static int intel_dp_prep_phy_test(struct intel_dp *intel_dp, struct drm_modeset_acquire_ctx *ctx, u8 *pipe_mask) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_connector_list_iter conn_iter; struct intel_connector *connector; int ret = 0; *pipe_mask = 0; drm_connector_list_iter_begin(&i915->drm, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state = connector->base.state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!intel_dp_has_connector(intel_dp, conn_state)) continue; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) break; crtc_state = to_intel_crtc_state(crtc->base.state); drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); if (!crtc_state->hw.active) continue; if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) continue; *pipe_mask |= BIT(crtc->pipe); } drm_connector_list_iter_end(&conn_iter); return ret; } static int intel_dp_do_phy_test(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc; u8 pipe_mask; int ret; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; ret = intel_dp_prep_phy_test(intel_dp, ctx, &pipe_mask); if (ret) return ret; if (pipe_mask == 0) return 0; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] PHY test\n", encoder->base.base.id, encoder->base.name); for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, pipe_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* test on the MST master transcoder */ if (DISPLAY_VER(dev_priv) >= 12 && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) && !intel_dp_mst_is_master_trans(crtc_state)) continue; intel_dp_process_phy_request(intel_dp, crtc_state); break; } return 0; } void intel_dp_phy_test(struct intel_encoder *encoder) { struct drm_modeset_acquire_ctx ctx; int ret; drm_modeset_acquire_init(&ctx, 0); for (;;) { ret = intel_dp_do_phy_test(encoder, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); continue; } break; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_WARN(encoder->base.dev, ret, "Acquiring modeset locks failed with %i\n", ret); } static void intel_dp_check_device_service_irq(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 val; if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) return; drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); if (val & DP_AUTOMATED_TEST_REQUEST) intel_dp_handle_test_request(intel_dp); if (val & DP_CP_IRQ) intel_hdcp_handle_cp_irq(intel_dp->attached_connector); if (val & DP_SINK_SPECIFIC_IRQ) drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n"); } static void intel_dp_check_link_service_irq(struct intel_dp *intel_dp) { u8 val; if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_LINK_SERVICE_IRQ_VECTOR_ESI0, &val) != 1 || !val) return; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_LINK_SERVICE_IRQ_VECTOR_ESI0, val) != 1) return; if (val & HDMI_LINK_STATUS_CHANGED) intel_dp_handle_hdmi_link_status_change(intel_dp); } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt * * intel_dp_short_pulse - handles short pulse interrupts * when full detection is not required. * Returns %true if short pulse is handled and full detection * is NOT required and %false otherwise. */ static bool intel_dp_short_pulse(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 old_sink_count = intel_dp->sink_count; bool ret; /* * Clearing compliance test variables to allow capturing * of values for next automated test request. */ memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); /* * Now read the DPCD to see if it's actually running * If the current value of sink count doesn't match with * the value that was stored earlier or dpcd read failed * we need to do full detection */ ret = intel_dp_get_dpcd(intel_dp); if ((old_sink_count != intel_dp->sink_count) || !ret) { /* No need to proceed if we are going to do full detect */ return false; } intel_dp_check_device_service_irq(intel_dp); intel_dp_check_link_service_irq(intel_dp); /* Handle CEC interrupts, if any */ drm_dp_cec_irq(&intel_dp->aux); /* defer to the hotplug work for link retraining if needed */ if (intel_dp_needs_link_retrain(intel_dp)) return false; intel_psr_short_pulse(intel_dp); switch (intel_dp->compliance.test_type) { case DP_TEST_LINK_TRAINING: drm_dbg_kms(&dev_priv->drm, "Link Training Compliance Test requested\n"); /* Send a Hotplug Uevent to userspace to start modeset */ drm_kms_helper_hotplug_event(&dev_priv->drm); break; case DP_TEST_LINK_PHY_TEST_PATTERN: drm_dbg_kms(&dev_priv->drm, "PHY test pattern Compliance Test requested\n"); /* * Schedule long hpd to do the test * * FIXME get rid of the ad-hoc phy test modeset code * and properly incorporate it into the normal modeset. */ return false; } return true; } /* XXX this is probably wrong for multiple downstream ports */ static enum drm_connector_status intel_dp_detect_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); u8 *dpcd = intel_dp->dpcd; u8 type; if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp))) return connector_status_connected; lspcon_resume(dig_port); if (!intel_dp_get_dpcd(intel_dp)) return connector_status_disconnected; /* if there's no downstream port, we're done */ if (!drm_dp_is_branch(dpcd)) return connector_status_connected; /* If we're HPD-aware, SINK_COUNT changes dynamically */ if (intel_dp_has_sink_count(intel_dp) && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { return intel_dp->sink_count ? connector_status_connected : connector_status_disconnected; } if (intel_dp_can_mst(intel_dp)) return connector_status_connected; /* If no HPD, poke DDC gently */ if (drm_probe_ddc(&intel_dp->aux.ddc)) return connector_status_connected; /* Well we tried, say unknown for unreliable port types */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID) return connector_status_unknown; } else { type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK; if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || type == DP_DWN_STRM_PORT_TYPE_OTHER) return connector_status_unknown; } /* Anything else is out of spec, warn and ignore */ drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n"); return connector_status_disconnected; } static enum drm_connector_status edp_detect(struct intel_dp *intel_dp) { return connector_status_connected; } /* * intel_digital_port_connected - is the specified port connected? * @encoder: intel_encoder * * In cases where there's a connector physically connected but it can't be used * by our hardware we also return false, since the rest of the driver should * pretty much treat the port as disconnected. This is relevant for type-C * (starting on ICL) where there's ownership involved. * * Return %true if port is connected, %false otherwise. */ bool intel_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); bool is_connected = false; intel_wakeref_t wakeref; with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) is_connected = dig_port->connected(encoder); return is_connected; } static const struct drm_edid * intel_dp_get_edid(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; const struct drm_edid *fixed_edid = connector->panel.fixed_edid; /* Use panel fixed edid if we have one */ if (fixed_edid) { /* invalid edid */ if (IS_ERR(fixed_edid)) return NULL; return drm_edid_dup(fixed_edid); } return drm_edid_read_ddc(&connector->base, &intel_dp->aux.ddc); } static void intel_dp_update_dfp(struct intel_dp *intel_dp, const struct drm_edid *drm_edid) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; const struct edid *edid; /* FIXME: Get rid of drm_edid_raw() */ edid = drm_edid_raw(drm_edid); intel_dp->dfp.max_bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports, edid); intel_dp->dfp.max_dotclock = drm_dp_downstream_max_dotclock(intel_dp->dpcd, intel_dp->downstream_ports); intel_dp->dfp.min_tmds_clock = drm_dp_downstream_min_tmds_clock(intel_dp->dpcd, intel_dp->downstream_ports, edid); intel_dp->dfp.max_tmds_clock = drm_dp_downstream_max_tmds_clock(intel_dp->dpcd, intel_dp->downstream_ports, edid); intel_dp->dfp.pcon_max_frl_bw = drm_dp_get_pcon_max_frl_bw(intel_dp->dpcd, intel_dp->downstream_ports); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d, PCON Max FRL BW %dGbps\n", connector->base.base.id, connector->base.name, intel_dp->dfp.max_bpc, intel_dp->dfp.max_dotclock, intel_dp->dfp.min_tmds_clock, intel_dp->dfp.max_tmds_clock, intel_dp->dfp.pcon_max_frl_bw); intel_dp_get_pcon_dsc_cap(intel_dp); } static void intel_dp_update_420(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420, rgb_to_ycbcr; /* No YCbCr output support on gmch platforms */ if (HAS_GMCH(i915)) return; /* * ILK doesn't seem capable of DP YCbCr output. The * displayed image is severly corrupted. SNB+ is fine. */ if (IS_IRONLAKE(i915)) return; is_branch = drm_dp_is_branch(intel_dp->dpcd); ycbcr_420_passthrough = drm_dp_downstream_420_passthrough(intel_dp->dpcd, intel_dp->downstream_ports); /* on-board LSPCON always assumed to support 4:4:4->4:2:0 conversion */ ycbcr_444_to_420 = dp_to_dig_port(intel_dp)->lspcon.active || drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd, intel_dp->downstream_ports); rgb_to_ycbcr = drm_dp_downstream_rgb_to_ycbcr_conversion(intel_dp->dpcd, intel_dp->downstream_ports, DP_DS_HDMI_BT709_RGB_YCBCR_CONV); if (DISPLAY_VER(i915) >= 11) { /* Let PCON convert from RGB->YCbCr if possible */ if (is_branch && rgb_to_ycbcr && ycbcr_444_to_420) { intel_dp->dfp.rgb_to_ycbcr = true; intel_dp->dfp.ycbcr_444_to_420 = true; connector->base.ycbcr_420_allowed = true; } else { /* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */ intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420 && !ycbcr_420_passthrough; connector->base.ycbcr_420_allowed = !is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough; } } else { /* 4:4:4->4:2:0 conversion is the only way */ intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420; connector->base.ycbcr_420_allowed = ycbcr_444_to_420; } drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] RGB->YcbCr conversion? %s, YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n", connector->base.base.id, connector->base.name, str_yes_no(intel_dp->dfp.rgb_to_ycbcr), str_yes_no(connector->base.ycbcr_420_allowed), str_yes_no(intel_dp->dfp.ycbcr_444_to_420)); } static void intel_dp_set_edid(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; const struct drm_edid *drm_edid; const struct edid *edid; bool vrr_capable; intel_dp_unset_edid(intel_dp); drm_edid = intel_dp_get_edid(intel_dp); connector->detect_edid = drm_edid; /* Below we depend on display info having been updated */ drm_edid_connector_update(&connector->base, drm_edid); vrr_capable = intel_vrr_is_capable(connector); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] VRR capable: %s\n", connector->base.base.id, connector->base.name, str_yes_no(vrr_capable)); drm_connector_set_vrr_capable_property(&connector->base, vrr_capable); intel_dp_update_dfp(intel_dp, drm_edid); intel_dp_update_420(intel_dp); /* FIXME: Get rid of drm_edid_raw() */ edid = drm_edid_raw(drm_edid); if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid); intel_dp->has_audio = drm_detect_monitor_audio(edid); } drm_dp_cec_set_edid(&intel_dp->aux, edid); } static void intel_dp_unset_edid(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; drm_dp_cec_unset_edid(&intel_dp->aux); drm_edid_free(connector->detect_edid); connector->detect_edid = NULL; intel_dp->has_hdmi_sink = false; intel_dp->has_audio = false; intel_dp->dfp.max_bpc = 0; intel_dp->dfp.max_dotclock = 0; intel_dp->dfp.min_tmds_clock = 0; intel_dp->dfp.max_tmds_clock = 0; intel_dp->dfp.pcon_max_frl_bw = 0; intel_dp->dfp.ycbcr_444_to_420 = false; connector->base.ycbcr_420_allowed = false; drm_connector_set_vrr_capable_property(&connector->base, false); } static int intel_dp_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &dig_port->base; enum drm_connector_status status; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); drm_WARN_ON(&dev_priv->drm, !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); if (!INTEL_DISPLAY_ENABLED(dev_priv)) return connector_status_disconnected; /* Can't disconnect eDP */ if (intel_dp_is_edp(intel_dp)) status = edp_detect(intel_dp); else if (intel_digital_port_connected(encoder)) status = intel_dp_detect_dpcd(intel_dp); else status = connector_status_disconnected; if (status == connector_status_disconnected) { memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); if (intel_dp->is_mst) { drm_dbg_kms(&dev_priv->drm, "MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } goto out; } /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ if (HAS_DSC(dev_priv)) intel_dp_get_dsc_sink_cap(intel_dp); intel_dp_configure_mst(intel_dp); /* * TODO: Reset link params when switching to MST mode, until MST * supports link training fallback params. */ if (intel_dp->reset_link_params || intel_dp->is_mst) { intel_dp_reset_max_link_params(intel_dp); intel_dp->reset_link_params = false; } intel_dp_print_rates(intel_dp); if (intel_dp->is_mst) { /* * If we are in MST mode then this connector * won't appear connected or have anything * with EDID on it */ status = connector_status_disconnected; goto out; } /* * Some external monitors do not signal loss of link synchronization * with an IRQ_HPD, so force a link status check. */ if (!intel_dp_is_edp(intel_dp)) { int ret; ret = intel_dp_retrain_link(encoder, ctx); if (ret) return ret; } /* * Clearing NACK and defer counts to get their exact values * while reading EDID which are required by Compliance tests * 4.2.2.4 and 4.2.2.5 */ intel_dp->aux.i2c_nack_count = 0; intel_dp->aux.i2c_defer_count = 0; intel_dp_set_edid(intel_dp); if (intel_dp_is_edp(intel_dp) || to_intel_connector(connector)->detect_edid) status = connector_status_connected; intel_dp_check_device_service_irq(intel_dp); out: if (status != connector_status_connected && !intel_dp->is_mst) intel_dp_unset_edid(intel_dp); /* * Make sure the refs for power wells enabled during detect are * dropped to avoid a new detect cycle triggered by HPD polling. */ intel_display_power_flush_work(dev_priv); if (!intel_dp_is_edp(intel_dp)) drm_dp_set_subconnector_property(connector, status, intel_dp->dpcd, intel_dp->downstream_ports); return status; } static void intel_dp_force(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &dig_port->base; struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); enum intel_display_power_domain aux_domain = intel_aux_power_domain(dig_port); intel_wakeref_t wakeref; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_dp_unset_edid(intel_dp); if (connector->status != connector_status_connected) return; wakeref = intel_display_power_get(dev_priv, aux_domain); intel_dp_set_edid(intel_dp); intel_display_power_put(dev_priv, aux_domain, wakeref); } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); int num_modes; /* drm_edid_connector_update() done in ->detect() or ->force() */ num_modes = drm_edid_connector_add_modes(connector); /* Also add fixed mode, which may or may not be present in EDID */ if (intel_dp_is_edp(intel_attached_dp(intel_connector))) num_modes += intel_panel_get_modes(intel_connector); if (num_modes) return num_modes; if (!intel_connector->detect_edid) { struct intel_dp *intel_dp = intel_attached_dp(intel_connector); struct drm_display_mode *mode; mode = drm_dp_downstream_mode(connector->dev, intel_dp->dpcd, intel_dp->downstream_ports); if (mode) { drm_mode_probed_add(connector, mode); num_modes++; } } return num_modes; } static int intel_dp_connector_register(struct drm_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->dev); struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_lspcon *lspcon = &dig_port->lspcon; int ret; ret = intel_connector_register(connector); if (ret) return ret; drm_dbg_kms(&i915->drm, "registering %s bus for %s\n", intel_dp->aux.name, connector->kdev->kobj.name); intel_dp->aux.dev = connector->kdev; ret = drm_dp_aux_register(&intel_dp->aux); if (!ret) drm_dp_cec_register_connector(&intel_dp->aux, connector); if (!intel_bios_is_lspcon_present(i915, dig_port->base.port)) return ret; /* * ToDo: Clean this up to handle lspcon init and resume more * efficiently and streamlined. */ if (lspcon_init(dig_port)) { lspcon_detect_hdr_capability(lspcon); if (lspcon->hdr_supported) drm_connector_attach_hdr_output_metadata_property(connector); } return ret; } static void intel_dp_connector_unregister(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); drm_dp_cec_unregister_connector(&intel_dp->aux); drm_dp_aux_unregister(&intel_dp->aux); intel_connector_unregister(connector); } void intel_dp_encoder_flush_work(struct drm_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder)); struct intel_dp *intel_dp = &dig_port->dp; intel_dp_mst_encoder_cleanup(dig_port); intel_pps_vdd_off_sync(intel_dp); /* * Ensure power off delay is respected on module remove, so that we can * reduce delays at driver probe. See pps_init_timestamps(). */ intel_pps_wait_power_cycle(intel_dp); intel_dp_aux_fini(intel_dp); } void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); intel_pps_vdd_off_sync(intel_dp); } void intel_dp_encoder_shutdown(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); intel_pps_wait_power_cycle(intel_dp); } static int intel_modeset_tile_group(struct intel_atomic_state *state, int tile_group_id) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct drm_connector_list_iter conn_iter; struct drm_connector *connector; int ret = 0; drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!connector->has_tile || connector->tile_group->id != tile_group_id) continue; conn_state = drm_atomic_get_connector_state(&state->base, connector); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); break; } crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; crtc_state = intel_atomic_get_new_crtc_state(state, crtc); crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) break; } drm_connector_list_iter_end(&conn_iter); return ret; } static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; if (transcoders == 0) return 0; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state; int ret; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state->hw.enable) continue; if (!(transcoders & BIT(crtc_state->cpu_transcoder))) continue; crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); if (ret) return ret; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) return ret; transcoders &= ~BIT(crtc_state->cpu_transcoder); } drm_WARN_ON(&dev_priv->drm, transcoders != 0); return 0; } static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, struct drm_connector *connector) { const struct drm_connector_state *old_conn_state = drm_atomic_get_old_connector_state(&state->base, connector); const struct intel_crtc_state *old_crtc_state; struct intel_crtc *crtc; u8 transcoders; crtc = to_intel_crtc(old_conn_state->crtc); if (!crtc) return 0; old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); if (!old_crtc_state->hw.active) return 0; transcoders = old_crtc_state->sync_mode_slaves_mask; if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) transcoders |= BIT(old_crtc_state->master_transcoder); return intel_modeset_affected_transcoders(state, transcoders); } static int intel_dp_connector_atomic_check(struct drm_connector *conn, struct drm_atomic_state *_state) { struct drm_i915_private *dev_priv = to_i915(conn->dev); struct intel_atomic_state *state = to_intel_atomic_state(_state); struct drm_connector_state *conn_state = drm_atomic_get_new_connector_state(_state, conn); struct intel_connector *intel_conn = to_intel_connector(conn); struct intel_dp *intel_dp = enc_to_intel_dp(intel_conn->encoder); int ret; ret = intel_digital_connector_atomic_check(conn, &state->base); if (ret) return ret; if (intel_dp_mst_source_support(intel_dp)) { ret = drm_dp_mst_root_conn_atomic_check(conn_state, &intel_dp->mst_mgr); if (ret) return ret; } /* * We don't enable port sync on BDW due to missing w/as and * due to not having adjusted the modeset sequence appropriately. */ if (DISPLAY_VER(dev_priv) < 9) return 0; if (!intel_connector_needs_modeset(state, conn)) return 0; if (conn->has_tile) { ret = intel_modeset_tile_group(state, conn->tile_group->id); if (ret) return ret; } return intel_modeset_synced_crtcs(state, conn); } static void intel_dp_oob_hotplug_event(struct drm_connector *connector) { struct intel_encoder *encoder = intel_attached_encoder(to_intel_connector(connector)); struct drm_i915_private *i915 = to_i915(connector->dev); spin_lock_irq(&i915->irq_lock); i915->display.hotplug.event_bits |= BIT(encoder->hpd_pin); spin_unlock_irq(&i915->irq_lock); queue_delayed_work(system_wq, &i915->display.hotplug.hotplug_work, 0); } static const struct drm_connector_funcs intel_dp_connector_funcs = { .force = intel_dp_force, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .late_register = intel_dp_connector_register, .early_unregister = intel_dp_connector_unregister, .destroy = intel_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, .oob_hotplug_event = intel_dp_oob_hotplug_event, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .detect_ctx = intel_dp_detect, .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .atomic_check = intel_dp_connector_atomic_check, }; enum irqreturn intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_dp *intel_dp = &dig_port->dp; if (dig_port->base.type == INTEL_OUTPUT_EDP && (long_hpd || !intel_pps_have_panel_power_or_vdd(intel_dp))) { /* * vdd off can generate a long/short pulse on eDP which * would require vdd on to handle it, and thus we * would end up in an endless cycle of * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." */ drm_dbg_kms(&i915->drm, "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", long_hpd ? "long" : "short", dig_port->base.base.base.id, dig_port->base.base.name); return IRQ_HANDLED; } drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", dig_port->base.base.base.id, dig_port->base.base.name, long_hpd ? "long" : "short"); if (long_hpd) { intel_dp->reset_link_params = true; return IRQ_NONE; } if (intel_dp->is_mst) { if (!intel_dp_check_mst_status(intel_dp)) return IRQ_NONE; } else if (!intel_dp_short_pulse(intel_dp)) { return IRQ_NONE; } return IRQ_HANDLED; } /* check the VBT to see whether the eDP is on another port */ bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) { /* * eDP not supported on g4x. so bail out early just * for a bit extra safety in case the VBT is bonkers. */ if (DISPLAY_VER(dev_priv) < 5) return false; if (DISPLAY_VER(dev_priv) < 9 && port == PORT_A) return true; return intel_bios_is_port_edp(dev_priv, port); } static bool has_gamut_metadata_dip(struct drm_i915_private *i915, enum port port) { if (intel_bios_is_lspcon_present(i915, port)) return false; if (DISPLAY_VER(i915) >= 11) return true; if (port == PORT_A) return false; if (IS_HASWELL(i915) || IS_BROADWELL(i915) || DISPLAY_VER(i915) >= 9) return true; return false; } static void intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); enum port port = dp_to_dig_port(intel_dp)->base.port; if (!intel_dp_is_edp(intel_dp)) drm_connector_attach_dp_subconnector_property(connector); if (!IS_G4X(dev_priv) && port != PORT_A) intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); if (HAS_GMCH(dev_priv)) drm_connector_attach_max_bpc_property(connector, 6, 10); else if (DISPLAY_VER(dev_priv) >= 5) drm_connector_attach_max_bpc_property(connector, 6, 12); /* Register HDMI colorspace for case of lspcon */ if (intel_bios_is_lspcon_present(dev_priv, port)) { drm_connector_attach_content_type_property(connector); intel_attach_hdmi_colorspace_property(connector); } else { intel_attach_dp_colorspace_property(connector); } if (has_gamut_metadata_dip(dev_priv, port)) drm_connector_attach_hdr_output_metadata_property(connector); if (HAS_VRR(dev_priv)) drm_connector_attach_vrr_capable_property(connector); } static void intel_edp_add_properties(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; struct drm_i915_private *i915 = to_i915(connector->base.dev); const struct drm_display_mode *fixed_mode = intel_panel_preferred_fixed_mode(connector); intel_attach_scaling_mode_property(&connector->base); drm_connector_set_panel_orientation_with_quirk(&connector->base, i915->display.vbt.orientation, fixed_mode->hdisplay, fixed_mode->vdisplay); } static void intel_edp_backlight_setup(struct intel_dp *intel_dp, struct intel_connector *connector) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); enum pipe pipe = INVALID_PIPE; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { /* * Figure out the current pipe for the initial backlight setup. * If the current pipe isn't valid, try the PPS pipe, and if that * fails just assume pipe A. */ pipe = vlv_active_pipe(intel_dp); if (pipe != PIPE_A && pipe != PIPE_B) pipe = intel_dp->pps.pps_pipe; if (pipe != PIPE_A && pipe != PIPE_B) pipe = PIPE_A; drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] using pipe %c for initial backlight setup\n", connector->base.base.id, connector->base.name, pipe_name(pipe)); } intel_backlight_setup(connector, pipe); } static bool intel_edp_init_connector(struct intel_dp *intel_dp, struct intel_connector *intel_connector) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct drm_connector *connector = &intel_connector->base; struct drm_display_mode *fixed_mode; struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; bool has_dpcd; const struct drm_edid *drm_edid; if (!intel_dp_is_edp(intel_dp)) return true; /* * On IBX/CPT we may get here with LVDS already registered. Since the * driver uses the only internal power sequencer available for both * eDP and LVDS bail out early in this case to prevent interfering * with an already powered-on LVDS power sequencer. */ if (intel_get_lvds_encoder(dev_priv)) { drm_WARN_ON(&dev_priv->drm, !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); drm_info(&dev_priv->drm, "LVDS was detected, not registering eDP\n"); return false; } intel_bios_init_panel_early(dev_priv, &intel_connector->panel, encoder->devdata); if (!intel_pps_init(intel_dp)) { drm_info(&dev_priv->drm, "[ENCODER:%d:%s] unusable PPS, disabling eDP\n", encoder->base.base.id, encoder->base.name); /* * The BIOS may have still enabled VDD on the PPS even * though it's unusable. Make sure we turn it back off * and to release the power domain references/etc. */ goto out_vdd_off; } /* Cache DPCD and EDID for edp. */ has_dpcd = intel_edp_init_dpcd(intel_dp); if (!has_dpcd) { /* if this fails, presume the device is a ghost */ drm_info(&dev_priv->drm, "[ENCODER:%d:%s] failed to retrieve link info, disabling eDP\n", encoder->base.base.id, encoder->base.name); goto out_vdd_off; } mutex_lock(&dev_priv->drm.mode_config.mutex); drm_edid = drm_edid_read_ddc(connector, &intel_dp->aux.ddc); if (!drm_edid) { /* Fallback to EDID from ACPI OpRegion, if any */ drm_edid = intel_opregion_get_edid(intel_connector); if (drm_edid) drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s] Using OpRegion EDID\n", connector->base.id, connector->name); } if (drm_edid) { if (drm_edid_connector_update(connector, drm_edid) || !drm_edid_connector_add_modes(connector)) { drm_edid_connector_update(connector, NULL); drm_edid_free(drm_edid); drm_edid = ERR_PTR(-EINVAL); } } else { drm_edid = ERR_PTR(-ENOENT); } intel_bios_init_panel_late(dev_priv, &intel_connector->panel, encoder->devdata, IS_ERR(drm_edid) ? NULL : drm_edid); intel_panel_add_edid_fixed_modes(intel_connector, true); /* MSO requires information from the EDID */ intel_edp_mso_init(intel_dp); /* multiply the mode clock and horizontal timings for MSO */ list_for_each_entry(fixed_mode, &intel_connector->panel.fixed_modes, head) intel_edp_mso_mode_fixup(intel_connector, fixed_mode); /* fallback to VBT if available for eDP */ if (!intel_panel_preferred_fixed_mode(intel_connector)) intel_panel_add_vbt_lfp_fixed_mode(intel_connector); mutex_unlock(&dev_priv->drm.mode_config.mutex); if (!intel_panel_preferred_fixed_mode(intel_connector)) { drm_info(&dev_priv->drm, "[ENCODER:%d:%s] failed to find fixed mode for the panel, disabling eDP\n", encoder->base.base.id, encoder->base.name); goto out_vdd_off; } intel_panel_init(intel_connector, drm_edid); intel_edp_backlight_setup(intel_dp, intel_connector); intel_edp_add_properties(intel_dp); intel_pps_init_late(intel_dp); return true; out_vdd_off: intel_pps_vdd_off_sync(intel_dp); return false; } static void intel_dp_modeset_retry_work_fn(struct work_struct *work) { struct intel_connector *intel_connector; struct drm_connector *connector; intel_connector = container_of(work, typeof(*intel_connector), modeset_retry_work); connector = &intel_connector->base; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* Grab the locks before changing connector property*/ mutex_lock(&connector->dev->mode_config.mutex); /* Set connector link status to BAD and send a Uevent to notify * userspace to do a modeset. */ drm_connector_set_link_status_property(connector, DRM_MODE_LINK_STATUS_BAD); mutex_unlock(&connector->dev->mode_config.mutex); /* Send Hotplug uevent so userspace can reprobe */ drm_kms_helper_connector_hotplug_event(connector); } bool intel_dp_init_connector(struct intel_digital_port *dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_dp *intel_dp = &dig_port->dp; struct intel_encoder *intel_encoder = &dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = intel_encoder->port; enum phy phy = intel_port_to_phy(dev_priv, port); int type; /* Initialize the work for modeset in case of link train failure */ INIT_WORK(&intel_connector->modeset_retry_work, intel_dp_modeset_retry_work_fn); if (drm_WARN(dev, dig_port->max_lanes < 1, "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", dig_port->max_lanes, intel_encoder->base.base.id, intel_encoder->base.name)) return false; intel_dp->reset_link_params = true; intel_dp->pps.pps_pipe = INVALID_PIPE; intel_dp->pps.active_pipe = INVALID_PIPE; /* Preserve the current hw state. */ intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); intel_dp->attached_connector = intel_connector; if (intel_dp_is_port_edp(dev_priv, port)) { /* * Currently we don't support eDP on TypeC ports, although in * theory it could work on TypeC legacy ports. */ drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy)); type = DRM_MODE_CONNECTOR_eDP; intel_encoder->type = INTEL_OUTPUT_EDP; /* eDP only on port B and/or C on vlv/chv */ if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && port != PORT_B && port != PORT_C)) return false; } else { type = DRM_MODE_CONNECTOR_DisplayPort; } intel_dp_set_default_sink_rates(intel_dp); intel_dp_set_default_max_sink_lane_count(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) intel_dp->pps.active_pipe = vlv_active_pipe(intel_dp); drm_dbg_kms(&dev_priv->drm, "Adding %s connector on [ENCODER:%d:%s]\n", type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", intel_encoder->base.base.id, intel_encoder->base.name); drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); if (!HAS_GMCH(dev_priv) && DISPLAY_VER(dev_priv) < 12) connector->interlace_allowed = true; intel_connector->polled = DRM_CONNECTOR_POLL_HPD; intel_dp_aux_init(intel_dp); intel_connector_attach_encoder(intel_connector, intel_encoder); if (HAS_DDI(dev_priv)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; if (!intel_edp_init_connector(intel_dp, intel_connector)) { intel_dp_aux_fini(intel_dp); goto fail; } intel_dp_set_source_rates(intel_dp); intel_dp_set_common_rates(intel_dp); intel_dp_reset_max_link_params(intel_dp); /* init MST on ports that can support it */ intel_dp_mst_encoder_init(dig_port, intel_connector->base.base.id); intel_dp_add_properties(intel_dp, connector); if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { int ret = intel_dp_hdcp_init(dig_port, intel_connector); if (ret) drm_dbg_kms(&dev_priv->drm, "HDCP init failed, skipping.\n"); } /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G45(dev_priv)) { u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); intel_de_write(dev_priv, PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } intel_dp->frl.is_trained = false; intel_dp->frl.trained_rate_gbps = 0; intel_psr_init(intel_dp); return true; fail: drm_connector_cleanup(connector); return false; } void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; if (!HAS_DISPLAY(dev_priv)) return; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(encoder); if (!intel_dp_mst_source_support(intel_dp)) continue; if (intel_dp->is_mst) drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); } } void intel_dp_mst_resume(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; if (!HAS_DISPLAY(dev_priv)) return; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; int ret; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(encoder); if (!intel_dp_mst_source_support(intel_dp)) continue; ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, true); if (ret) { intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, false); } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1