Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Animesh Manna | 661 | 54.00% | 8 | 21.62% |
Ville Syrjälä | 399 | 32.60% | 13 | 35.14% |
Jani Nikula | 120 | 9.80% | 6 | 16.22% |
Lucas De Marchi | 17 | 1.39% | 1 | 2.70% |
Chris Wilson | 8 | 0.65% | 4 | 10.81% |
Wambui Karuga | 8 | 0.65% | 1 | 2.70% |
Colin Ian King | 5 | 0.41% | 1 | 2.70% |
Dave Airlie | 3 | 0.25% | 1 | 2.70% |
Pankaj Bharadiya | 2 | 0.16% | 1 | 2.70% |
Maarten Lankhorst | 1 | 0.08% | 1 | 2.70% |
Total | 1224 | 37 |
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation * */ #include "gem/i915_gem_internal.h" #include "i915_drv.h" #include "i915_reg.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dsb.h" struct i915_vma; enum dsb_id { INVALID_DSB = -1, DSB1, DSB2, DSB3, MAX_DSB_PER_PIPE }; struct intel_dsb { enum dsb_id id; u32 *cmd_buf; struct i915_vma *vma; struct intel_crtc *crtc; /* * maximum number of dwords the buffer will hold. */ unsigned int size; /* * free_pos will point the first free dword and * help in calculating tail of command buffer. */ unsigned int free_pos; /* * ins_start_offset will help to store start dword of the dsb * instuction and help in identifying the batch of auto-increment * register. */ unsigned int ins_start_offset; }; /** * DOC: DSB * * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA * engine that can be programmed to download the DSB from memory. * It allows driver to batch submit display HW programming. This helps to * reduce loading time and CPU activity, thereby making the context switch * faster. DSB Support added from Gen12 Intel graphics based platform. * * DSB's can access only the pipe, plane, and transcoder Data Island Packet * registers. * * DSB HW can support only register writes (both indexed and direct MMIO * writes). There are no registers reads possible with DSB HW engine. */ /* DSB opcodes. */ #define DSB_OPCODE_SHIFT 24 #define DSB_OPCODE_NOOP 0x0 #define DSB_OPCODE_MMIO_WRITE 0x1 #define DSB_OPCODE_WAIT_USEC 0x2 #define DSB_OPCODE_WAIT_LINES 0x3 #define DSB_OPCODE_WAIT_VBLANKS 0x4 #define DSB_OPCODE_WAIT_DSL_IN 0x5 #define DSB_OPCODE_WAIT_DSL_OUT 0x6 #define DSB_OPCODE_INTERRUPT 0x7 #define DSB_OPCODE_INDEXED_WRITE 0x9 #define DSB_OPCODE_POLL 0xA #define DSB_BYTE_EN 0xF #define DSB_BYTE_EN_SHIFT 20 #define DSB_REG_VALUE_MASK 0xfffff static bool assert_dsb_has_room(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct drm_i915_private *i915 = to_i915(crtc->base.dev); /* each instruction is 2 dwords */ return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2, "DSB buffer overflow\n"); } static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe, enum dsb_id id) { return intel_de_read(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY; } static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) { u32 *buf = dsb->cmd_buf; if (!assert_dsb_has_room(dsb)) return; /* Every instruction should be 8 byte aligned. */ dsb->free_pos = ALIGN(dsb->free_pos, 2); dsb->ins_start_offset = dsb->free_pos; buf[dsb->free_pos++] = ldw; buf[dsb->free_pos++] = udw; } static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, u32 opcode, i915_reg_t reg) { const u32 *buf = dsb->cmd_buf; u32 prev_opcode, prev_reg; prev_opcode = buf[dsb->ins_start_offset + 1] >> DSB_OPCODE_SHIFT; prev_reg = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK; return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); } static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg) { return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_MMIO_WRITE, reg); } static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) { return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_INDEXED_WRITE, reg); } /** * intel_dsb_reg_write() - Emit register wriite to the DSB context * @dsb: DSB context * @reg: register address. * @val: value. * * This function is used for writing register-value pair in command * buffer of DSB. */ void intel_dsb_reg_write(struct intel_dsb *dsb, i915_reg_t reg, u32 val) { /* * For example the buffer will look like below for 3 dwords for auto * increment register: * +--------------------------------------------------------+ * | size = 3 | offset &| value1 | value2 | value3 | zero | * | | opcode | | | | | * +--------------------------------------------------------+ * + + + + + + + * 0 4 8 12 16 20 24 * Byte * * As every instruction is 8 byte aligned the index of dsb instruction * will start always from even number while dealing with u32 array. If * we are writing odd no of dwords, Zeros will be added in the end for * padding. */ if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) && !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) { intel_dsb_emit(dsb, val, (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | i915_mmio_reg_offset(reg)); } else { u32 *buf = dsb->cmd_buf; if (!assert_dsb_has_room(dsb)) return; /* convert to indexed write? */ if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) { u32 prev_val = buf[dsb->ins_start_offset + 0]; buf[dsb->ins_start_offset + 0] = 1; /* count */ buf[dsb->ins_start_offset + 1] = (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | i915_mmio_reg_offset(reg); buf[dsb->ins_start_offset + 2] = prev_val; dsb->free_pos++; } buf[dsb->free_pos++] = val; /* Update the count */ buf[dsb->ins_start_offset]++; /* if number of data words is odd, then the last dword should be 0.*/ if (dsb->free_pos & 0x1) buf[dsb->free_pos] = 0; } } static u32 intel_dsb_align_tail(struct intel_dsb *dsb) { u32 aligned_tail, tail; tail = dsb->free_pos * 4; aligned_tail = ALIGN(tail, CACHELINE_BYTES); if (aligned_tail > tail) memset(&dsb->cmd_buf[dsb->free_pos], 0, aligned_tail - tail); dsb->free_pos = aligned_tail / 4; return aligned_tail; } /** * intel_dsb_commit() - Trigger workload execution of DSB. * @dsb: DSB context * * This function is used to do actual write to hardware using DSB. */ void intel_dsb_commit(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 tail; tail = intel_dsb_align_tail(dsb); if (tail == 0) return; if (is_dsb_busy(dev_priv, pipe, dsb->id)) { drm_err(&dev_priv->drm, "DSB engine is busy.\n"); goto reset; } intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id), DSB_ENABLE); intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id), i915_ggtt_offset(dsb->vma)); intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id), i915_ggtt_offset(dsb->vma) + tail); drm_dbg_kms(&dev_priv->drm, "DSB execution started - head 0x%x, tail 0x%x\n", i915_ggtt_offset(dsb->vma), i915_ggtt_offset(dsb->vma) + tail); if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) drm_err(&dev_priv->drm, "Timed out waiting for DSB workload completion.\n"); reset: dsb->free_pos = 0; dsb->ins_start_offset = 0; intel_de_write(dev_priv, DSB_CTRL(pipe, dsb->id), 0); } /** * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. * @crtc: the CRTC * @max_cmds: number of commands we need to fit into command buffer * * This function prepare the command buffer which is used to store dsb * instructions with data. * * Returns: * DSB context, NULL on failure */ struct intel_dsb *intel_dsb_prepare(struct intel_crtc *crtc, unsigned int max_cmds) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct drm_i915_gem_object *obj; intel_wakeref_t wakeref; struct intel_dsb *dsb; struct i915_vma *vma; unsigned int size; u32 *buf; if (!HAS_DSB(i915)) return NULL; dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); if (!dsb) goto out; wakeref = intel_runtime_pm_get(&i915->runtime_pm); /* ~1 qword per instruction, full cachelines */ size = ALIGN(max_cmds * 8, CACHELINE_BYTES); obj = i915_gem_object_create_internal(i915, PAGE_ALIGN(size)); if (IS_ERR(obj)) goto out_put_rpm; vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { i915_gem_object_put(obj); goto out_put_rpm; } buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC); if (IS_ERR(buf)) { i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP); goto out_put_rpm; } intel_runtime_pm_put(&i915->runtime_pm, wakeref); dsb->id = DSB1; dsb->vma = vma; dsb->crtc = crtc; dsb->cmd_buf = buf; dsb->size = size / 4; /* in dwords */ dsb->free_pos = 0; dsb->ins_start_offset = 0; return dsb; out_put_rpm: intel_runtime_pm_put(&i915->runtime_pm, wakeref); kfree(dsb); out: drm_info_once(&i915->drm, "DSB queue setup failed, will fallback to MMIO for display HW programming\n"); return NULL; } /** * intel_dsb_cleanup() - To cleanup DSB context. * @dsb: DSB context * * This function cleanup the DSB context by unpinning and releasing * the VMA object associated with it. */ void intel_dsb_cleanup(struct intel_dsb *dsb) { i915_vma_unpin_and_release(&dsb->vma, I915_VMA_RELEASE_MAP); kfree(dsb); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1