Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Imre Deak | 7400 | 71.39% | 44 | 30.14% |
Jani Nikula | 1708 | 16.48% | 10 | 6.85% |
Ville Syrjälä | 415 | 4.00% | 31 | 21.23% |
Dave Airlie | 374 | 3.61% | 10 | 6.85% |
Juha-Pekka Heikkila | 82 | 0.79% | 1 | 0.68% |
Matt Roper | 67 | 0.65% | 2 | 1.37% |
Wambui Karuga | 60 | 0.58% | 1 | 0.68% |
Jesse Barnes | 43 | 0.41% | 4 | 2.74% |
Stanislav Lisovskiy | 36 | 0.35% | 2 | 1.37% |
José Roberto de Souza | 32 | 0.31% | 2 | 1.37% |
Maarten Lankhorst | 29 | 0.28% | 5 | 3.42% |
Chris Wilson | 20 | 0.19% | 9 | 6.16% |
Dhinakaran Pandiyan | 18 | 0.17% | 3 | 2.05% |
Lucas De Marchi | 12 | 0.12% | 1 | 0.68% |
Tvrtko A. Ursulin | 11 | 0.11% | 4 | 2.74% |
Pankaj Bharadiya | 10 | 0.10% | 1 | 0.68% |
Paulo Zanoni | 9 | 0.09% | 2 | 1.37% |
Niranjana Vishwanathapura | 9 | 0.09% | 1 | 0.68% |
Pradeep Bhat | 6 | 0.06% | 1 | 0.68% |
Rodrigo Vivi | 6 | 0.06% | 2 | 1.37% |
Damien Lespiau | 5 | 0.05% | 2 | 1.37% |
Daniel Vetter | 3 | 0.03% | 1 | 0.68% |
Zhi Wang | 3 | 0.03% | 2 | 1.37% |
Eugeni Dodonov | 2 | 0.02% | 1 | 0.68% |
Wayne Boyer | 2 | 0.02% | 1 | 0.68% |
Radhakrishna Sripada | 2 | 0.02% | 1 | 0.68% |
Zhenyu Wang | 1 | 0.01% | 1 | 0.68% |
Andi Shyti | 1 | 0.01% | 1 | 0.68% |
Total | 10366 | 146 |
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include <drm/drm_blend.h> #include <drm/drm_framebuffer.h> #include <drm/drm_modeset_helper.h> #include "i915_drv.h" #include "intel_display.h" #include "intel_display_types.h" #include "intel_dpt.h" #include "intel_fb.h" #define check_array_bounds(i915, a, i) drm_WARN_ON(&(i915)->drm, (i) >= ARRAY_SIZE(a)) /* * From the Sky Lake PRM: * "The Color Control Surface (CCS) contains the compression status of * the cache-line pairs. The compression state of the cache-line pair * is specified by 2 bits in the CCS. Each CCS cache-line represents * an area on the main surface of 16 x16 sets of 128 byte Y-tiled * cache-line-pairs. CCS is always Y tiled." * * Since cache line pairs refers to horizontally adjacent cache lines, * each cache line in the CCS corresponds to an area of 32x16 cache * lines on the main surface. Since each pixel is 4 bytes, this gives * us a ratio of one byte in the CCS for each 8x16 pixels in the * main surface. */ static const struct drm_format_info skl_ccs_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, }, }; /* * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles * in the main surface. With 4 byte pixels and each Y-tile having dimensions of * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in * the main surface. */ static const struct drm_format_info gen12_ccs_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, { .format = DRM_FORMAT_YUYV, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_YVYU, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_UYVY, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_VYUY, .num_planes = 2, .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 2, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_XYUV8888, .num_planes = 2, .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, .is_yuv = true }, { .format = DRM_FORMAT_NV12, .num_planes = 4, .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, { .format = DRM_FORMAT_P010, .num_planes = 4, .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, { .format = DRM_FORMAT_P012, .num_planes = 4, .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, { .format = DRM_FORMAT_P016, .num_planes = 4, .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 }, .hsub = 2, .vsub = 2, .is_yuv = true }, }; /* * Same as gen12_ccs_formats[] above, but with additional surface used * to pass Clear Color information in plane 2 with 64 bits of data. */ static const struct drm_format_info gen12_ccs_cc_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 3, .char_per_block = { 4, 1, 0 }, .block_w = { 1, 2, 2 }, .block_h = { 1, 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, }; static const struct drm_format_info gen12_flat_ccs_cc_formats[] = { { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .char_per_block = { 4, 0 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .char_per_block = { 4, 0 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, }, { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .char_per_block = { 4, 0 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .char_per_block = { 4, 0 }, .block_w = { 1, 2 }, .block_h = { 1, 1 }, .hsub = 1, .vsub = 1, .has_alpha = true }, }; struct intel_modifier_desc { u64 modifier; struct { u8 from; u8 until; } display_ver; #define DISPLAY_VER_ALL { 0, -1 } const struct drm_format_info *formats; int format_count; #define FORMAT_OVERRIDE(format_list) \ .formats = format_list, \ .format_count = ARRAY_SIZE(format_list) u8 plane_caps; struct { u8 cc_planes:3; u8 packed_aux_planes:4; u8 planar_aux_planes:4; } ccs; }; #define INTEL_PLANE_CAP_CCS_MASK (INTEL_PLANE_CAP_CCS_RC | \ INTEL_PLANE_CAP_CCS_RC_CC | \ INTEL_PLANE_CAP_CCS_MC) #define INTEL_PLANE_CAP_TILING_MASK (INTEL_PLANE_CAP_TILING_X | \ INTEL_PLANE_CAP_TILING_Y | \ INTEL_PLANE_CAP_TILING_Yf | \ INTEL_PLANE_CAP_TILING_4) #define INTEL_PLANE_CAP_TILING_NONE 0 static const struct intel_modifier_desc intel_modifiers[] = { { .modifier = I915_FORMAT_MOD_4_TILED_DG2_MC_CCS, .display_ver = { 13, 13 }, .plane_caps = INTEL_PLANE_CAP_TILING_4 | INTEL_PLANE_CAP_CCS_MC, }, { .modifier = I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC, .display_ver = { 13, 13 }, .plane_caps = INTEL_PLANE_CAP_TILING_4 | INTEL_PLANE_CAP_CCS_RC_CC, .ccs.cc_planes = BIT(1), FORMAT_OVERRIDE(gen12_flat_ccs_cc_formats), }, { .modifier = I915_FORMAT_MOD_4_TILED_DG2_RC_CCS, .display_ver = { 13, 13 }, .plane_caps = INTEL_PLANE_CAP_TILING_4 | INTEL_PLANE_CAP_CCS_RC, }, { .modifier = I915_FORMAT_MOD_4_TILED, .display_ver = { 13, -1 }, .plane_caps = INTEL_PLANE_CAP_TILING_4, }, { .modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS, .display_ver = { 12, 13 }, .plane_caps = INTEL_PLANE_CAP_TILING_Y | INTEL_PLANE_CAP_CCS_MC, .ccs.packed_aux_planes = BIT(1), .ccs.planar_aux_planes = BIT(2) | BIT(3), FORMAT_OVERRIDE(gen12_ccs_formats), }, { .modifier = I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS, .display_ver = { 12, 13 }, .plane_caps = INTEL_PLANE_CAP_TILING_Y | INTEL_PLANE_CAP_CCS_RC, .ccs.packed_aux_planes = BIT(1), FORMAT_OVERRIDE(gen12_ccs_formats), }, { .modifier = I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC, .display_ver = { 12, 13 }, .plane_caps = INTEL_PLANE_CAP_TILING_Y | INTEL_PLANE_CAP_CCS_RC_CC, .ccs.cc_planes = BIT(2), .ccs.packed_aux_planes = BIT(1), FORMAT_OVERRIDE(gen12_ccs_cc_formats), }, { .modifier = I915_FORMAT_MOD_Yf_TILED_CCS, .display_ver = { 9, 11 }, .plane_caps = INTEL_PLANE_CAP_TILING_Yf | INTEL_PLANE_CAP_CCS_RC, .ccs.packed_aux_planes = BIT(1), FORMAT_OVERRIDE(skl_ccs_formats), }, { .modifier = I915_FORMAT_MOD_Y_TILED_CCS, .display_ver = { 9, 11 }, .plane_caps = INTEL_PLANE_CAP_TILING_Y | INTEL_PLANE_CAP_CCS_RC, .ccs.packed_aux_planes = BIT(1), FORMAT_OVERRIDE(skl_ccs_formats), }, { .modifier = I915_FORMAT_MOD_Yf_TILED, .display_ver = { 9, 11 }, .plane_caps = INTEL_PLANE_CAP_TILING_Yf, }, { .modifier = I915_FORMAT_MOD_Y_TILED, .display_ver = { 9, 13 }, .plane_caps = INTEL_PLANE_CAP_TILING_Y, }, { .modifier = I915_FORMAT_MOD_X_TILED, .display_ver = DISPLAY_VER_ALL, .plane_caps = INTEL_PLANE_CAP_TILING_X, }, { .modifier = DRM_FORMAT_MOD_LINEAR, .display_ver = DISPLAY_VER_ALL, }, }; static const struct intel_modifier_desc *lookup_modifier_or_null(u64 modifier) { int i; for (i = 0; i < ARRAY_SIZE(intel_modifiers); i++) if (intel_modifiers[i].modifier == modifier) return &intel_modifiers[i]; return NULL; } static const struct intel_modifier_desc *lookup_modifier(u64 modifier) { const struct intel_modifier_desc *md = lookup_modifier_or_null(modifier); if (WARN_ON(!md)) return &intel_modifiers[0]; return md; } static const struct drm_format_info * lookup_format_info(const struct drm_format_info formats[], int num_formats, u32 format) { int i; for (i = 0; i < num_formats; i++) { if (formats[i].format == format) return &formats[i]; } return NULL; } /** * intel_fb_get_format_info: Get a modifier specific format information * @cmd: FB add command structure * * Returns: * Returns the format information for @cmd->pixel_format specific to @cmd->modifier[0], * or %NULL if the modifier doesn't override the format. */ const struct drm_format_info * intel_fb_get_format_info(const struct drm_mode_fb_cmd2 *cmd) { const struct intel_modifier_desc *md = lookup_modifier_or_null(cmd->modifier[0]); if (!md || !md->formats) return NULL; return lookup_format_info(md->formats, md->format_count, cmd->pixel_format); } static bool plane_caps_contain_any(u8 caps, u8 mask) { return caps & mask; } static bool plane_caps_contain_all(u8 caps, u8 mask) { return (caps & mask) == mask; } /** * intel_fb_is_tiled_modifier: Check if a modifier is a tiled modifier type * @modifier: Modifier to check * * Returns: * Returns %true if @modifier is a tiled modifier. */ bool intel_fb_is_tiled_modifier(u64 modifier) { return plane_caps_contain_any(lookup_modifier(modifier)->plane_caps, INTEL_PLANE_CAP_TILING_MASK); } /** * intel_fb_is_ccs_modifier: Check if a modifier is a CCS modifier type * @modifier: Modifier to check * * Returns: * Returns %true if @modifier is a render, render with color clear or * media compression modifier. */ bool intel_fb_is_ccs_modifier(u64 modifier) { return plane_caps_contain_any(lookup_modifier(modifier)->plane_caps, INTEL_PLANE_CAP_CCS_MASK); } /** * intel_fb_is_rc_ccs_cc_modifier: Check if a modifier is an RC CCS CC modifier type * @modifier: Modifier to check * * Returns: * Returns %true if @modifier is a render with color clear modifier. */ bool intel_fb_is_rc_ccs_cc_modifier(u64 modifier) { return plane_caps_contain_any(lookup_modifier(modifier)->plane_caps, INTEL_PLANE_CAP_CCS_RC_CC); } /** * intel_fb_is_mc_ccs_modifier: Check if a modifier is an MC CCS modifier type * @modifier: Modifier to check * * Returns: * Returns %true if @modifier is a media compression modifier. */ bool intel_fb_is_mc_ccs_modifier(u64 modifier) { return plane_caps_contain_any(lookup_modifier(modifier)->plane_caps, INTEL_PLANE_CAP_CCS_MC); } static bool check_modifier_display_ver_range(const struct intel_modifier_desc *md, u8 display_ver_from, u8 display_ver_until) { return md->display_ver.from <= display_ver_until && display_ver_from <= md->display_ver.until; } static bool plane_has_modifier(struct drm_i915_private *i915, u8 plane_caps, const struct intel_modifier_desc *md) { if (!IS_DISPLAY_VER(i915, md->display_ver.from, md->display_ver.until)) return false; if (!plane_caps_contain_all(plane_caps, md->plane_caps)) return false; return true; } /** * intel_fb_plane_get_modifiers: Get the modifiers for the given platform and plane capabilities * @i915: i915 device instance * @plane_caps: capabilities for the plane the modifiers are queried for * * Returns: * Returns the list of modifiers allowed by the @i915 platform and @plane_caps. * The caller must free the returned buffer. */ u64 *intel_fb_plane_get_modifiers(struct drm_i915_private *i915, u8 plane_caps) { u64 *list, *p; int count = 1; /* +1 for invalid modifier terminator */ int i; for (i = 0; i < ARRAY_SIZE(intel_modifiers); i++) { if (plane_has_modifier(i915, plane_caps, &intel_modifiers[i])) count++; } list = kmalloc_array(count, sizeof(*list), GFP_KERNEL); if (drm_WARN_ON(&i915->drm, !list)) return NULL; p = list; for (i = 0; i < ARRAY_SIZE(intel_modifiers); i++) { if (plane_has_modifier(i915, plane_caps, &intel_modifiers[i])) *p++ = intel_modifiers[i].modifier; } *p++ = DRM_FORMAT_MOD_INVALID; return list; } /** * intel_fb_plane_supports_modifier: Determine if a modifier is supported by the given plane * @plane: Plane to check the modifier support for * @modifier: The modifier to check the support for * * Returns: * %true if the @modifier is supported on @plane. */ bool intel_fb_plane_supports_modifier(struct intel_plane *plane, u64 modifier) { int i; for (i = 0; i < plane->base.modifier_count; i++) if (plane->base.modifiers[i] == modifier) return true; return false; } static bool format_is_yuv_semiplanar(const struct intel_modifier_desc *md, const struct drm_format_info *info) { if (!info->is_yuv) return false; if (hweight8(md->ccs.planar_aux_planes) == 2) return info->num_planes == 4; else return info->num_planes == 2; } /** * intel_format_info_is_yuv_semiplanar: Check if the given format is YUV semiplanar * @info: format to check * @modifier: modifier used with the format * * Returns: * %true if @info / @modifier is YUV semiplanar. */ bool intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info, u64 modifier) { return format_is_yuv_semiplanar(lookup_modifier(modifier), info); } static u8 ccs_aux_plane_mask(const struct intel_modifier_desc *md, const struct drm_format_info *format) { if (format_is_yuv_semiplanar(md, format)) return md->ccs.planar_aux_planes; else return md->ccs.packed_aux_planes; } /** * intel_fb_is_ccs_aux_plane: Check if a framebuffer color plane is a CCS AUX plane * @fb: Framebuffer * @color_plane: color plane index to check * * Returns: * Returns %true if @fb's color plane at index @color_plane is a CCS AUX plane. */ bool intel_fb_is_ccs_aux_plane(const struct drm_framebuffer *fb, int color_plane) { const struct intel_modifier_desc *md = lookup_modifier(fb->modifier); return ccs_aux_plane_mask(md, fb->format) & BIT(color_plane); } /** * intel_fb_is_gen12_ccs_aux_plane: Check if a framebuffer color plane is a GEN12 CCS AUX plane * @fb: Framebuffer * @color_plane: color plane index to check * * Returns: * Returns %true if @fb's color plane at index @color_plane is a GEN12 CCS AUX plane. */ static bool intel_fb_is_gen12_ccs_aux_plane(const struct drm_framebuffer *fb, int color_plane) { const struct intel_modifier_desc *md = lookup_modifier(fb->modifier); return check_modifier_display_ver_range(md, 12, 13) && ccs_aux_plane_mask(md, fb->format) & BIT(color_plane); } /** * intel_fb_rc_ccs_cc_plane: Get the CCS CC color plane index for a framebuffer * @fb: Framebuffer * * Returns: * Returns the index of the color clear plane for @fb, or -1 if @fb is not a * framebuffer using a render compression/color clear modifier. */ int intel_fb_rc_ccs_cc_plane(const struct drm_framebuffer *fb) { const struct intel_modifier_desc *md = lookup_modifier(fb->modifier); if (!md->ccs.cc_planes) return -1; drm_WARN_ON_ONCE(fb->dev, hweight8(md->ccs.cc_planes) > 1); return ilog2((int)md->ccs.cc_planes); } static bool is_gen12_ccs_cc_plane(const struct drm_framebuffer *fb, int color_plane) { return intel_fb_rc_ccs_cc_plane(fb) == color_plane; } static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb, int color_plane) { return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) && color_plane == 1; } bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane) { return fb->modifier == DRM_FORMAT_MOD_LINEAR || intel_fb_is_gen12_ccs_aux_plane(fb, color_plane) || is_gen12_ccs_cc_plane(fb, color_plane); } int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane) { drm_WARN_ON(fb->dev, !intel_fb_is_ccs_modifier(fb->modifier) || (main_plane && main_plane >= fb->format->num_planes / 2)); return fb->format->num_planes / 2 + main_plane; } int skl_ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane) { drm_WARN_ON(fb->dev, !intel_fb_is_ccs_modifier(fb->modifier) || ccs_plane < fb->format->num_planes / 2); if (is_gen12_ccs_cc_plane(fb, ccs_plane)) return 0; return ccs_plane - fb->format->num_planes / 2; } static unsigned int gen12_ccs_aux_stride(struct intel_framebuffer *fb, int ccs_plane) { int main_plane = skl_ccs_to_main_plane(&fb->base, ccs_plane); unsigned int main_stride = fb->base.pitches[main_plane]; unsigned int main_tile_width = intel_tile_width_bytes(&fb->base, main_plane); return DIV_ROUND_UP(main_stride, 4 * main_tile_width) * 64; } int skl_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane) { const struct intel_modifier_desc *md = lookup_modifier(fb->modifier); struct drm_i915_private *i915 = to_i915(fb->dev); if (md->ccs.packed_aux_planes | md->ccs.planar_aux_planes) return main_to_ccs_plane(fb, main_plane); else if (DISPLAY_VER(i915) < 11 && format_is_yuv_semiplanar(md, fb->format)) return 1; else return 0; } unsigned int intel_tile_size(const struct drm_i915_private *i915) { return DISPLAY_VER(i915) == 2 ? 2048 : 4096; } unsigned int intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); unsigned int cpp = fb->format->cpp[color_plane]; switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: return intel_tile_size(dev_priv); case I915_FORMAT_MOD_X_TILED: if (DISPLAY_VER(dev_priv) == 2) return 128; else return 512; case I915_FORMAT_MOD_4_TILED_DG2_RC_CCS: case I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC: case I915_FORMAT_MOD_4_TILED_DG2_MC_CCS: case I915_FORMAT_MOD_4_TILED: /* * Each 4K tile consists of 64B(8*8) subtiles, with * same shape as Y Tile(i.e 4*16B OWords) */ return 128; case I915_FORMAT_MOD_Y_TILED_CCS: if (intel_fb_is_ccs_aux_plane(fb, color_plane)) return 128; fallthrough; case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: if (intel_fb_is_ccs_aux_plane(fb, color_plane) || is_gen12_ccs_cc_plane(fb, color_plane)) return 64; fallthrough; case I915_FORMAT_MOD_Y_TILED: if (DISPLAY_VER(dev_priv) == 2 || HAS_128_BYTE_Y_TILING(dev_priv)) return 128; else return 512; case I915_FORMAT_MOD_Yf_TILED_CCS: if (intel_fb_is_ccs_aux_plane(fb, color_plane)) return 128; fallthrough; case I915_FORMAT_MOD_Yf_TILED: switch (cpp) { case 1: return 64; case 2: case 4: return 128; case 8: case 16: return 256; default: MISSING_CASE(cpp); return cpp; } break; default: MISSING_CASE(fb->modifier); return cpp; } } unsigned int intel_tile_height(const struct drm_framebuffer *fb, int color_plane) { return intel_tile_size(to_i915(fb->dev)) / intel_tile_width_bytes(fb, color_plane); } /* * Return the tile dimensions in pixel units, based on the (2 or 4 kbyte) GTT * page tile size. */ static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane, unsigned int *tile_width, unsigned int *tile_height) { unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane); unsigned int cpp = fb->format->cpp[color_plane]; *tile_width = tile_width_bytes / cpp; *tile_height = intel_tile_height(fb, color_plane); } /* * Return the tile dimensions in pixel units, based on the tile block size. * The block covers the full GTT page sized tile on all tiled surfaces and * it's a 64 byte portion of the tile on TGL+ CCS surfaces. */ static void intel_tile_block_dims(const struct drm_framebuffer *fb, int color_plane, unsigned int *tile_width, unsigned int *tile_height) { intel_tile_dims(fb, color_plane, tile_width, tile_height); if (intel_fb_is_gen12_ccs_aux_plane(fb, color_plane)) *tile_height = 1; } unsigned int intel_tile_row_size(const struct drm_framebuffer *fb, int color_plane) { unsigned int tile_width, tile_height; intel_tile_dims(fb, color_plane, &tile_width, &tile_height); return fb->pitches[color_plane] * tile_height; } unsigned int intel_fb_align_height(const struct drm_framebuffer *fb, int color_plane, unsigned int height) { unsigned int tile_height = intel_tile_height(fb, color_plane); return ALIGN(height, tile_height); } static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier) { u8 tiling_caps = lookup_modifier(fb_modifier)->plane_caps & INTEL_PLANE_CAP_TILING_MASK; switch (tiling_caps) { case INTEL_PLANE_CAP_TILING_Y: return I915_TILING_Y; case INTEL_PLANE_CAP_TILING_X: return I915_TILING_X; case INTEL_PLANE_CAP_TILING_4: case INTEL_PLANE_CAP_TILING_Yf: case INTEL_PLANE_CAP_TILING_NONE: return I915_TILING_NONE; default: MISSING_CASE(tiling_caps); return I915_TILING_NONE; } } static bool intel_modifier_uses_dpt(struct drm_i915_private *i915, u64 modifier) { return DISPLAY_VER(i915) >= 13 && modifier != DRM_FORMAT_MOD_LINEAR; } bool intel_fb_uses_dpt(const struct drm_framebuffer *fb) { return fb && intel_modifier_uses_dpt(to_i915(fb->dev), fb->modifier); } unsigned int intel_cursor_alignment(const struct drm_i915_private *i915) { if (IS_I830(i915)) return 16 * 1024; else if (IS_I85X(i915)) return 256; else if (IS_I845G(i915) || IS_I865G(i915)) return 32; else return 4 * 1024; } static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv) { if (DISPLAY_VER(dev_priv) >= 9) return 256 * 1024; else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return 128 * 1024; else if (DISPLAY_VER(dev_priv) >= 4) return 4 * 1024; else return 0; } unsigned int intel_surf_alignment(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); if (intel_fb_uses_dpt(fb)) return 512 * 4096; /* AUX_DIST needs only 4K alignment */ if (intel_fb_is_ccs_aux_plane(fb, color_plane)) return 4096; if (is_semiplanar_uv_plane(fb, color_plane)) { /* * TODO: cross-check wrt. the bspec stride in bytes * 64 bytes * alignment for linear UV planes on all platforms. */ if (DISPLAY_VER(dev_priv) >= 12) { if (fb->modifier == DRM_FORMAT_MOD_LINEAR) return intel_linear_alignment(dev_priv); return intel_tile_row_size(fb, color_plane); } return 4096; } drm_WARN_ON(&dev_priv->drm, color_plane != 0); switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: return intel_linear_alignment(dev_priv); case I915_FORMAT_MOD_X_TILED: if (HAS_ASYNC_FLIPS(dev_priv)) return 256 * 1024; return 0; case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS: case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC: return 16 * 1024; case I915_FORMAT_MOD_Y_TILED_CCS: case I915_FORMAT_MOD_Yf_TILED_CCS: case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_4_TILED: case I915_FORMAT_MOD_Yf_TILED: return 1 * 1024 * 1024; case I915_FORMAT_MOD_4_TILED_DG2_RC_CCS: case I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC: case I915_FORMAT_MOD_4_TILED_DG2_MC_CCS: return 16 * 1024; default: MISSING_CASE(fb->modifier); return 0; } } void intel_fb_plane_get_subsampling(int *hsub, int *vsub, const struct drm_framebuffer *fb, int color_plane) { int main_plane; if (color_plane == 0) { *hsub = 1; *vsub = 1; return; } /* * TODO: Deduct the subsampling from the char block for all CCS * formats and planes. */ if (!intel_fb_is_gen12_ccs_aux_plane(fb, color_plane)) { *hsub = fb->format->hsub; *vsub = fb->format->vsub; return; } main_plane = skl_ccs_to_main_plane(fb, color_plane); *hsub = drm_format_info_block_width(fb->format, color_plane) / drm_format_info_block_width(fb->format, main_plane); /* * The min stride check in the core framebuffer_check() function * assumes that format->hsub applies to every plane except for the * first plane. That's incorrect for the CCS AUX plane of the first * plane, but for the above check to pass we must define the block * width with that subsampling applied to it. Adjust the width here * accordingly, so we can calculate the actual subsampling factor. */ if (main_plane == 0) *hsub *= fb->format->hsub; *vsub = 32; } static void intel_fb_plane_dims(const struct intel_framebuffer *fb, int color_plane, int *w, int *h) { int main_plane = intel_fb_is_ccs_aux_plane(&fb->base, color_plane) ? skl_ccs_to_main_plane(&fb->base, color_plane) : 0; unsigned int main_width = fb->base.width; unsigned int main_height = fb->base.height; int main_hsub, main_vsub; int hsub, vsub; intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, &fb->base, main_plane); intel_fb_plane_get_subsampling(&hsub, &vsub, &fb->base, color_plane); *w = DIV_ROUND_UP(main_width, main_hsub * hsub); *h = DIV_ROUND_UP(main_height, main_vsub * vsub); } static u32 intel_adjust_tile_offset(int *x, int *y, unsigned int tile_width, unsigned int tile_height, unsigned int tile_size, unsigned int pitch_tiles, u32 old_offset, u32 new_offset) { unsigned int pitch_pixels = pitch_tiles * tile_width; unsigned int tiles; WARN_ON(old_offset & (tile_size - 1)); WARN_ON(new_offset & (tile_size - 1)); WARN_ON(new_offset > old_offset); tiles = (old_offset - new_offset) / tile_size; *y += tiles / pitch_tiles * tile_height; *x += tiles % pitch_tiles * tile_width; /* minimize x in case it got needlessly big */ *y += *x / pitch_pixels * tile_height; *x %= pitch_pixels; return new_offset; } static u32 intel_adjust_linear_offset(int *x, int *y, unsigned int cpp, unsigned int pitch, u32 old_offset, u32 new_offset) { old_offset += *y * pitch + *x * cpp; *y = (old_offset - new_offset) / pitch; *x = ((old_offset - new_offset) - *y * pitch) / cpp; return new_offset; } static u32 intel_adjust_aligned_offset(int *x, int *y, const struct drm_framebuffer *fb, int color_plane, unsigned int rotation, unsigned int pitch, u32 old_offset, u32 new_offset) { struct drm_i915_private *i915 = to_i915(fb->dev); unsigned int cpp = fb->format->cpp[color_plane]; drm_WARN_ON(&i915->drm, new_offset > old_offset); if (!is_surface_linear(fb, color_plane)) { unsigned int tile_size, tile_width, tile_height; unsigned int pitch_tiles; tile_size = intel_tile_size(i915); intel_tile_dims(fb, color_plane, &tile_width, &tile_height); if (drm_rotation_90_or_270(rotation)) { pitch_tiles = pitch / tile_height; swap(tile_width, tile_height); } else { pitch_tiles = pitch / (tile_width * cpp); } intel_adjust_tile_offset(x, y, tile_width, tile_height, tile_size, pitch_tiles, old_offset, new_offset); } else { intel_adjust_linear_offset(x, y, cpp, pitch, old_offset, new_offset); } return new_offset; } /* * Adjust the tile offset by moving the difference into * the x/y offsets. */ u32 intel_plane_adjust_aligned_offset(int *x, int *y, const struct intel_plane_state *state, int color_plane, u32 old_offset, u32 new_offset) { return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane, state->hw.rotation, state->view.color_plane[color_plane].mapping_stride, old_offset, new_offset); } /* * Computes the aligned offset to the base tile and adjusts * x, y. bytes per pixel is assumed to be a power-of-two. * * In the 90/270 rotated case, x and y are assumed * to be already rotated to match the rotated GTT view, and * pitch is the tile_height aligned framebuffer height. * * This function is used when computing the derived information * under intel_framebuffer, so using any of that information * here is not allowed. Anything under drm_framebuffer can be * used. This is why the user has to pass in the pitch since it * is specified in the rotated orientation. */ static u32 intel_compute_aligned_offset(struct drm_i915_private *i915, int *x, int *y, const struct drm_framebuffer *fb, int color_plane, unsigned int pitch, unsigned int rotation, u32 alignment) { unsigned int cpp = fb->format->cpp[color_plane]; u32 offset, offset_aligned; if (!is_surface_linear(fb, color_plane)) { unsigned int tile_size, tile_width, tile_height; unsigned int tile_rows, tiles, pitch_tiles; tile_size = intel_tile_size(i915); intel_tile_dims(fb, color_plane, &tile_width, &tile_height); if (drm_rotation_90_or_270(rotation)) { pitch_tiles = pitch / tile_height; swap(tile_width, tile_height); } else { pitch_tiles = pitch / (tile_width * cpp); } tile_rows = *y / tile_height; *y %= tile_height; tiles = *x / tile_width; *x %= tile_width; offset = (tile_rows * pitch_tiles + tiles) * tile_size; offset_aligned = offset; if (alignment) offset_aligned = rounddown(offset_aligned, alignment); intel_adjust_tile_offset(x, y, tile_width, tile_height, tile_size, pitch_tiles, offset, offset_aligned); } else { offset = *y * pitch + *x * cpp; offset_aligned = offset; if (alignment) { offset_aligned = rounddown(offset_aligned, alignment); *y = (offset % alignment) / pitch; *x = ((offset % alignment) - *y * pitch) / cpp; } else { *y = *x = 0; } } return offset_aligned; } u32 intel_plane_compute_aligned_offset(int *x, int *y, const struct intel_plane_state *state, int color_plane) { struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane); struct drm_i915_private *i915 = to_i915(intel_plane->base.dev); const struct drm_framebuffer *fb = state->hw.fb; unsigned int rotation = state->hw.rotation; int pitch = state->view.color_plane[color_plane].mapping_stride; u32 alignment; if (intel_plane->id == PLANE_CURSOR) alignment = intel_cursor_alignment(i915); else alignment = intel_surf_alignment(fb, color_plane); return intel_compute_aligned_offset(i915, x, y, fb, color_plane, pitch, rotation, alignment); } /* Convert the fb->offset[] into x/y offsets */ static int intel_fb_offset_to_xy(int *x, int *y, const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *i915 = to_i915(fb->dev); unsigned int height; u32 alignment; if (DISPLAY_VER(i915) >= 12 && !intel_fb_needs_pot_stride_remap(to_intel_framebuffer(fb)) && is_semiplanar_uv_plane(fb, color_plane)) alignment = intel_tile_row_size(fb, color_plane); else if (fb->modifier != DRM_FORMAT_MOD_LINEAR) alignment = intel_tile_size(i915); else alignment = 0; if (alignment != 0 && fb->offsets[color_plane] % alignment) { drm_dbg_kms(&i915->drm, "Misaligned offset 0x%08x for color plane %d\n", fb->offsets[color_plane], color_plane); return -EINVAL; } height = drm_framebuffer_plane_height(fb->height, fb, color_plane); height = ALIGN(height, intel_tile_height(fb, color_plane)); /* Catch potential overflows early */ if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]), fb->offsets[color_plane])) { drm_dbg_kms(&i915->drm, "Bad offset 0x%08x or pitch %d for color plane %d\n", fb->offsets[color_plane], fb->pitches[color_plane], color_plane); return -ERANGE; } *x = 0; *y = 0; intel_adjust_aligned_offset(x, y, fb, color_plane, DRM_MODE_ROTATE_0, fb->pitches[color_plane], fb->offsets[color_plane], 0); return 0; } static int intel_fb_check_ccs_xy(const struct drm_framebuffer *fb, int ccs_plane, int x, int y) { struct drm_i915_private *i915 = to_i915(fb->dev); const struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); int main_plane; int hsub, vsub; int tile_width, tile_height; int ccs_x, ccs_y; int main_x, main_y; if (!intel_fb_is_ccs_aux_plane(fb, ccs_plane)) return 0; /* * While all the tile dimensions are based on a 2k or 4k GTT page size * here the main and CCS coordinates must match only within a (64 byte * on TGL+) block inside the tile. */ intel_tile_block_dims(fb, ccs_plane, &tile_width, &tile_height); intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane); tile_width *= hsub; tile_height *= vsub; ccs_x = (x * hsub) % tile_width; ccs_y = (y * vsub) % tile_height; main_plane = skl_ccs_to_main_plane(fb, ccs_plane); main_x = intel_fb->normal_view.color_plane[main_plane].x % tile_width; main_y = intel_fb->normal_view.color_plane[main_plane].y % tile_height; /* * CCS doesn't have its own x/y offset register, so the intra CCS tile * x/y offsets must match between CCS and the main surface. */ if (main_x != ccs_x || main_y != ccs_y) { drm_dbg_kms(&i915->drm, "Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n", main_x, main_y, ccs_x, ccs_y, intel_fb->normal_view.color_plane[main_plane].x, intel_fb->normal_view.color_plane[main_plane].y, x, y); return -EINVAL; } return 0; } static bool intel_plane_can_remap(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *i915 = to_i915(plane->base.dev); const struct drm_framebuffer *fb = plane_state->hw.fb; int i; /* We don't want to deal with remapping with cursors */ if (plane->id == PLANE_CURSOR) return false; /* * The display engine limits already match/exceed the * render engine limits, so not much point in remapping. * Would also need to deal with the fence POT alignment * and gen2 2KiB GTT tile size. */ if (DISPLAY_VER(i915) < 4) return false; /* * The new CCS hash mode isn't compatible with remapping as * the virtual address of the pages affects the compressed data. */ if (intel_fb_is_ccs_modifier(fb->modifier)) return false; /* Linear needs a page aligned stride for remapping */ if (fb->modifier == DRM_FORMAT_MOD_LINEAR) { unsigned int alignment = intel_tile_size(i915) - 1; for (i = 0; i < fb->format->num_planes; i++) { if (fb->pitches[i] & alignment) return false; } } return true; } bool intel_fb_needs_pot_stride_remap(const struct intel_framebuffer *fb) { struct drm_i915_private *i915 = to_i915(fb->base.dev); return IS_ALDERLAKE_P(i915) && fb->base.modifier != DRM_FORMAT_MOD_LINEAR; } static int intel_fb_pitch(const struct intel_framebuffer *fb, int color_plane, unsigned int rotation) { if (drm_rotation_90_or_270(rotation)) return fb->rotated_view.color_plane[color_plane].mapping_stride; else if (intel_fb_needs_pot_stride_remap(fb)) return fb->remapped_view.color_plane[color_plane].mapping_stride; else return fb->normal_view.color_plane[color_plane].mapping_stride; } static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); const struct intel_framebuffer *fb = to_intel_framebuffer(plane_state->hw.fb); unsigned int rotation = plane_state->hw.rotation; u32 stride, max_stride; /* * No remapping for invisible planes since we don't have * an actual source viewport to remap. */ if (!plane_state->uapi.visible) return false; if (!intel_plane_can_remap(plane_state)) return false; /* * FIXME: aux plane limits on gen9+ are * unclear in Bspec, for now no checking. */ stride = intel_fb_pitch(fb, 0, rotation); max_stride = plane->max_stride(plane, fb->base.format->format, fb->base.modifier, rotation); return stride > max_stride; } static int convert_plane_offset_to_xy(const struct intel_framebuffer *fb, int color_plane, int plane_width, int *x, int *y) { struct drm_i915_gem_object *obj = intel_fb_obj(&fb->base); int ret; ret = intel_fb_offset_to_xy(x, y, &fb->base, color_plane); if (ret) { drm_dbg_kms(fb->base.dev, "bad fb plane %d offset: 0x%x\n", color_plane, fb->base.offsets[color_plane]); return ret; } ret = intel_fb_check_ccs_xy(&fb->base, color_plane, *x, *y); if (ret) return ret; /* * The fence (if used) is aligned to the start of the object * so having the framebuffer wrap around across the edge of the * fenced region doesn't really work. We have no API to configure * the fence start offset within the object (nor could we probably * on gen2/3). So it's just easier if we just require that the * fb layout agrees with the fence layout. We already check that the * fb stride matches the fence stride elsewhere. */ if (color_plane == 0 && i915_gem_object_is_tiled(obj) && (*x + plane_width) * fb->base.format->cpp[color_plane] > fb->base.pitches[color_plane]) { drm_dbg_kms(fb->base.dev, "bad fb plane %d offset: 0x%x\n", color_plane, fb->base.offsets[color_plane]); return -EINVAL; } return 0; } static u32 calc_plane_aligned_offset(const struct intel_framebuffer *fb, int color_plane, int *x, int *y) { struct drm_i915_private *i915 = to_i915(fb->base.dev); unsigned int tile_size = intel_tile_size(i915); u32 offset; offset = intel_compute_aligned_offset(i915, x, y, &fb->base, color_plane, fb->base.pitches[color_plane], DRM_MODE_ROTATE_0, tile_size); return offset / tile_size; } struct fb_plane_view_dims { unsigned int width, height; unsigned int tile_width, tile_height; }; static void init_plane_view_dims(const struct intel_framebuffer *fb, int color_plane, unsigned int width, unsigned int height, struct fb_plane_view_dims *dims) { dims->width = width; dims->height = height; intel_tile_dims(&fb->base, color_plane, &dims->tile_width, &dims->tile_height); } static unsigned int plane_view_src_stride_tiles(const struct intel_framebuffer *fb, int color_plane, const struct fb_plane_view_dims *dims) { return DIV_ROUND_UP(fb->base.pitches[color_plane], dims->tile_width * fb->base.format->cpp[color_plane]); } static unsigned int plane_view_dst_stride_tiles(const struct intel_framebuffer *fb, int color_plane, unsigned int pitch_tiles) { if (intel_fb_needs_pot_stride_remap(fb)) { /* * ADL_P, the only platform needing a POT stride has a minimum * of 8 main surface tiles. */ return roundup_pow_of_two(max(pitch_tiles, 8u)); } else { return pitch_tiles; } } static unsigned int plane_view_scanout_stride(const struct intel_framebuffer *fb, int color_plane, unsigned int tile_width, unsigned int src_stride_tiles, unsigned int dst_stride_tiles) { unsigned int stride_tiles; if (IS_ALDERLAKE_P(to_i915(fb->base.dev))) stride_tiles = src_stride_tiles; else stride_tiles = dst_stride_tiles; return stride_tiles * tile_width * fb->base.format->cpp[color_plane]; } static unsigned int plane_view_width_tiles(const struct intel_framebuffer *fb, int color_plane, const struct fb_plane_view_dims *dims, int x) { return DIV_ROUND_UP(x + dims->width, dims->tile_width); } static unsigned int plane_view_height_tiles(const struct intel_framebuffer *fb, int color_plane, const struct fb_plane_view_dims *dims, int y) { return DIV_ROUND_UP(y + dims->height, dims->tile_height); } static unsigned int plane_view_linear_tiles(const struct intel_framebuffer *fb, int color_plane, const struct fb_plane_view_dims *dims, int x, int y) { struct drm_i915_private *i915 = to_i915(fb->base.dev); unsigned int size; size = (y + dims->height) * fb->base.pitches[color_plane] + x * fb->base.format->cpp[color_plane]; return DIV_ROUND_UP(size, intel_tile_size(i915)); } #define assign_chk_ovf(i915, var, val) ({ \ drm_WARN_ON(&(i915)->drm, overflows_type(val, var)); \ (var) = (val); \ }) #define assign_bfld_chk_ovf(i915, var, val) ({ \ (var) = (val); \ drm_WARN_ON(&(i915)->drm, (var) != (val)); \ (var); \ }) static u32 calc_plane_remap_info(const struct intel_framebuffer *fb, int color_plane, const struct fb_plane_view_dims *dims, u32 obj_offset, u32 gtt_offset, int x, int y, struct intel_fb_view *view) { struct drm_i915_private *i915 = to_i915(fb->base.dev); struct intel_remapped_plane_info *remap_info = &view->gtt.remapped.plane[color_plane]; struct i915_color_plane_view *color_plane_info = &view->color_plane[color_plane]; unsigned int tile_width = dims->tile_width; unsigned int tile_height = dims->tile_height; unsigned int tile_size = intel_tile_size(i915); struct drm_rect r; u32 size = 0; assign_bfld_chk_ovf(i915, remap_info->offset, obj_offset); if (intel_fb_is_gen12_ccs_aux_plane(&fb->base, color_plane)) { remap_info->linear = 1; assign_chk_ovf(i915, remap_info->size, plane_view_linear_tiles(fb, color_plane, dims, x, y)); } else { remap_info->linear = 0; assign_chk_ovf(i915, remap_info->src_stride, plane_view_src_stride_tiles(fb, color_plane, dims)); assign_chk_ovf(i915, remap_info->width, plane_view_width_tiles(fb, color_plane, dims, x)); assign_chk_ovf(i915, remap_info->height, plane_view_height_tiles(fb, color_plane, dims, y)); } if (view->gtt.type == I915_GTT_VIEW_ROTATED) { drm_WARN_ON(&i915->drm, remap_info->linear); check_array_bounds(i915, view->gtt.rotated.plane, color_plane); assign_chk_ovf(i915, remap_info->dst_stride, plane_view_dst_stride_tiles(fb, color_plane, remap_info->height)); /* rotate the x/y offsets to match the GTT view */ drm_rect_init(&r, x, y, dims->width, dims->height); drm_rect_rotate(&r, remap_info->width * tile_width, remap_info->height * tile_height, DRM_MODE_ROTATE_270); color_plane_info->x = r.x1; color_plane_info->y = r.y1; color_plane_info->mapping_stride = remap_info->dst_stride * tile_height; color_plane_info->scanout_stride = color_plane_info->mapping_stride; size += remap_info->dst_stride * remap_info->width; /* rotate the tile dimensions to match the GTT view */ swap(tile_width, tile_height); } else { drm_WARN_ON(&i915->drm, view->gtt.type != I915_GTT_VIEW_REMAPPED); check_array_bounds(i915, view->gtt.remapped.plane, color_plane); if (view->gtt.remapped.plane_alignment) { unsigned int aligned_offset = ALIGN(gtt_offset, view->gtt.remapped.plane_alignment); size += aligned_offset - gtt_offset; gtt_offset = aligned_offset; } color_plane_info->x = x; color_plane_info->y = y; if (remap_info->linear) { color_plane_info->mapping_stride = fb->base.pitches[color_plane]; color_plane_info->scanout_stride = color_plane_info->mapping_stride; size += remap_info->size; } else { unsigned int dst_stride = plane_view_dst_stride_tiles(fb, color_plane, remap_info->width); assign_chk_ovf(i915, remap_info->dst_stride, dst_stride); color_plane_info->mapping_stride = dst_stride * tile_width * fb->base.format->cpp[color_plane]; color_plane_info->scanout_stride = plane_view_scanout_stride(fb, color_plane, tile_width, remap_info->src_stride, dst_stride); size += dst_stride * remap_info->height; } } /* * We only keep the x/y offsets, so push all of the gtt offset into * the x/y offsets. x,y will hold the first pixel of the framebuffer * plane from the start of the remapped/rotated gtt mapping. */ if (remap_info->linear) intel_adjust_linear_offset(&color_plane_info->x, &color_plane_info->y, fb->base.format->cpp[color_plane], color_plane_info->mapping_stride, gtt_offset * tile_size, 0); else intel_adjust_tile_offset(&color_plane_info->x, &color_plane_info->y, tile_width, tile_height, tile_size, remap_info->dst_stride, gtt_offset * tile_size, 0); return size; } #undef assign_chk_ovf /* Return number of tiles @color_plane needs. */ static unsigned int calc_plane_normal_size(const struct intel_framebuffer *fb, int color_plane, const struct fb_plane_view_dims *dims, int x, int y) { unsigned int tiles; if (is_surface_linear(&fb->base, color_plane)) { tiles = plane_view_linear_tiles(fb, color_plane, dims, x, y); } else { tiles = plane_view_src_stride_tiles(fb, color_plane, dims) * plane_view_height_tiles(fb, color_plane, dims, y); /* * If the plane isn't horizontally tile aligned, * we need one more tile. */ if (x != 0) tiles++; } return tiles; } static void intel_fb_view_init(struct drm_i915_private *i915, struct intel_fb_view *view, enum i915_gtt_view_type view_type) { memset(view, 0, sizeof(*view)); view->gtt.type = view_type; if (view_type == I915_GTT_VIEW_REMAPPED && IS_ALDERLAKE_P(i915)) view->gtt.remapped.plane_alignment = SZ_2M / PAGE_SIZE; } bool intel_fb_supports_90_270_rotation(const struct intel_framebuffer *fb) { if (DISPLAY_VER(to_i915(fb->base.dev)) >= 13) return false; return fb->base.modifier == I915_FORMAT_MOD_Y_TILED || fb->base.modifier == I915_FORMAT_MOD_Yf_TILED; } int intel_fill_fb_info(struct drm_i915_private *i915, struct intel_framebuffer *fb) { struct drm_i915_gem_object *obj = intel_fb_obj(&fb->base); u32 gtt_offset_rotated = 0; u32 gtt_offset_remapped = 0; unsigned int max_size = 0; int i, num_planes = fb->base.format->num_planes; unsigned int tile_size = intel_tile_size(i915); intel_fb_view_init(i915, &fb->normal_view, I915_GTT_VIEW_NORMAL); drm_WARN_ON(&i915->drm, intel_fb_supports_90_270_rotation(fb) && intel_fb_needs_pot_stride_remap(fb)); if (intel_fb_supports_90_270_rotation(fb)) intel_fb_view_init(i915, &fb->rotated_view, I915_GTT_VIEW_ROTATED); if (intel_fb_needs_pot_stride_remap(fb)) intel_fb_view_init(i915, &fb->remapped_view, I915_GTT_VIEW_REMAPPED); for (i = 0; i < num_planes; i++) { struct fb_plane_view_dims view_dims; unsigned int width, height; unsigned int cpp, size; u32 offset; int x, y; int ret; /* * Plane 2 of Render Compression with Clear Color fb modifier * is consumed by the driver and not passed to DE. Skip the * arithmetic related to alignment and offset calculation. */ if (is_gen12_ccs_cc_plane(&fb->base, i)) { if (IS_ALIGNED(fb->base.offsets[i], PAGE_SIZE)) continue; else return -EINVAL; } cpp = fb->base.format->cpp[i]; intel_fb_plane_dims(fb, i, &width, &height); ret = convert_plane_offset_to_xy(fb, i, width, &x, &y); if (ret) return ret; init_plane_view_dims(fb, i, width, height, &view_dims); /* * First pixel of the framebuffer from * the start of the normal gtt mapping. */ fb->normal_view.color_plane[i].x = x; fb->normal_view.color_plane[i].y = y; fb->normal_view.color_plane[i].mapping_stride = fb->base.pitches[i]; fb->normal_view.color_plane[i].scanout_stride = fb->normal_view.color_plane[i].mapping_stride; offset = calc_plane_aligned_offset(fb, i, &x, &y); if (intel_fb_supports_90_270_rotation(fb)) gtt_offset_rotated += calc_plane_remap_info(fb, i, &view_dims, offset, gtt_offset_rotated, x, y, &fb->rotated_view); if (intel_fb_needs_pot_stride_remap(fb)) gtt_offset_remapped += calc_plane_remap_info(fb, i, &view_dims, offset, gtt_offset_remapped, x, y, &fb->remapped_view); size = calc_plane_normal_size(fb, i, &view_dims, x, y); /* how many tiles in total needed in the bo */ max_size = max(max_size, offset + size); } if (mul_u32_u32(max_size, tile_size) > obj->base.size) { drm_dbg_kms(&i915->drm, "fb too big for bo (need %llu bytes, have %zu bytes)\n", mul_u32_u32(max_size, tile_size), obj->base.size); return -EINVAL; } return 0; } static void intel_plane_remap_gtt(struct intel_plane_state *plane_state) { struct drm_i915_private *i915 = to_i915(plane_state->uapi.plane->dev); struct drm_framebuffer *fb = plane_state->hw.fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); unsigned int rotation = plane_state->hw.rotation; int i, num_planes = fb->format->num_planes; unsigned int src_x, src_y; unsigned int src_w, src_h; u32 gtt_offset = 0; intel_fb_view_init(i915, &plane_state->view, drm_rotation_90_or_270(rotation) ? I915_GTT_VIEW_ROTATED : I915_GTT_VIEW_REMAPPED); src_x = plane_state->uapi.src.x1 >> 16; src_y = plane_state->uapi.src.y1 >> 16; src_w = drm_rect_width(&plane_state->uapi.src) >> 16; src_h = drm_rect_height(&plane_state->uapi.src) >> 16; drm_WARN_ON(&i915->drm, intel_fb_is_ccs_modifier(fb->modifier)); /* Make src coordinates relative to the viewport */ drm_rect_translate(&plane_state->uapi.src, -(src_x << 16), -(src_y << 16)); /* Rotate src coordinates to match rotated GTT view */ if (drm_rotation_90_or_270(rotation)) drm_rect_rotate(&plane_state->uapi.src, src_w << 16, src_h << 16, DRM_MODE_ROTATE_270); for (i = 0; i < num_planes; i++) { unsigned int hsub = i ? fb->format->hsub : 1; unsigned int vsub = i ? fb->format->vsub : 1; struct fb_plane_view_dims view_dims; unsigned int width, height; unsigned int x, y; u32 offset; x = src_x / hsub; y = src_y / vsub; width = src_w / hsub; height = src_h / vsub; init_plane_view_dims(intel_fb, i, width, height, &view_dims); /* * First pixel of the src viewport from the * start of the normal gtt mapping. */ x += intel_fb->normal_view.color_plane[i].x; y += intel_fb->normal_view.color_plane[i].y; offset = calc_plane_aligned_offset(intel_fb, i, &x, &y); gtt_offset += calc_plane_remap_info(intel_fb, i, &view_dims, offset, gtt_offset, x, y, &plane_state->view); } } void intel_fb_fill_view(const struct intel_framebuffer *fb, unsigned int rotation, struct intel_fb_view *view) { if (drm_rotation_90_or_270(rotation)) *view = fb->rotated_view; else if (intel_fb_needs_pot_stride_remap(fb)) *view = fb->remapped_view; else *view = fb->normal_view; } static u32 intel_fb_max_stride(struct drm_i915_private *dev_priv, u32 pixel_format, u64 modifier) { /* * Arbitrary limit for gen4+ chosen to match the * render engine max stride. * * The new CCS hash mode makes remapping impossible */ if (DISPLAY_VER(dev_priv) < 4 || intel_fb_is_ccs_modifier(modifier) || intel_modifier_uses_dpt(dev_priv, modifier)) return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier); else if (DISPLAY_VER(dev_priv) >= 7) return 256 * 1024; else return 128 * 1024; } static u32 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane) { struct drm_i915_private *dev_priv = to_i915(fb->dev); u32 tile_width; if (is_surface_linear(fb, color_plane)) { u32 max_stride = intel_plane_fb_max_stride(dev_priv, fb->format->format, fb->modifier); /* * To make remapping with linear generally feasible * we need the stride to be page aligned. */ if (fb->pitches[color_plane] > max_stride && !intel_fb_is_ccs_modifier(fb->modifier)) return intel_tile_size(dev_priv); else return 64; } tile_width = intel_tile_width_bytes(fb, color_plane); if (intel_fb_is_ccs_modifier(fb->modifier)) { /* * On TGL the surface stride must be 4 tile aligned, mapped by * one 64 byte cacheline on the CCS AUX surface. */ if (DISPLAY_VER(dev_priv) >= 12) tile_width *= 4; /* * Display WA #0531: skl,bxt,kbl,glk * * Render decompression and plane width > 3840 * combined with horizontal panning requires the * plane stride to be a multiple of 4. We'll just * require the entire fb to accommodate that to avoid * potential runtime errors at plane configuration time. */ else if ((DISPLAY_VER(dev_priv) == 9 || IS_GEMINILAKE(dev_priv)) && color_plane == 0 && fb->width > 3840) tile_width *= 4; } return tile_width; } static int intel_plane_check_stride(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); const struct drm_framebuffer *fb = plane_state->hw.fb; unsigned int rotation = plane_state->hw.rotation; u32 stride, max_stride; /* * We ignore stride for all invisible planes that * can be remapped. Otherwise we could end up * with a false positive when the remapping didn't * kick in due the plane being invisible. */ if (intel_plane_can_remap(plane_state) && !plane_state->uapi.visible) return 0; /* FIXME other color planes? */ stride = plane_state->view.color_plane[0].mapping_stride; max_stride = plane->max_stride(plane, fb->format->format, fb->modifier, rotation); if (stride > max_stride) { DRM_DEBUG_KMS("[FB:%d] stride (%d) exceeds [PLANE:%d:%s] max stride (%d)\n", fb->base.id, stride, plane->base.base.id, plane->base.name, max_stride); return -EINVAL; } return 0; } int intel_plane_compute_gtt(struct intel_plane_state *plane_state) { const struct intel_framebuffer *fb = to_intel_framebuffer(plane_state->hw.fb); unsigned int rotation = plane_state->hw.rotation; if (!fb) return 0; if (intel_plane_needs_remap(plane_state)) { intel_plane_remap_gtt(plane_state); /* * Sometimes even remapping can't overcome * the stride limitations :( Can happen with * big plane sizes and suitably misaligned * offsets. */ return intel_plane_check_stride(plane_state); } intel_fb_fill_view(fb, rotation, &plane_state->view); /* Rotate src coordinates to match rotated GTT view */ if (drm_rotation_90_or_270(rotation)) drm_rect_rotate(&plane_state->uapi.src, fb->base.width << 16, fb->base.height << 16, DRM_MODE_ROTATE_270); return intel_plane_check_stride(plane_state); } static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); drm_framebuffer_cleanup(fb); if (intel_fb_uses_dpt(fb)) intel_dpt_destroy(intel_fb->dpt_vm); intel_frontbuffer_put(intel_fb->frontbuffer); kfree(intel_fb); } static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file, unsigned int *handle) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct drm_i915_private *i915 = to_i915(obj->base.dev); if (i915_gem_object_is_userptr(obj)) { drm_dbg(&i915->drm, "attempting to use a userptr for a framebuffer, denied\n"); return -EINVAL; } return drm_gem_handle_create(file, &obj->base, handle); } static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb, struct drm_file *file, unsigned int flags, unsigned int color, struct drm_clip_rect *clips, unsigned int num_clips) { struct drm_i915_gem_object *obj = intel_fb_obj(fb); i915_gem_object_flush_if_display(obj); intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB); return 0; } static const struct drm_framebuffer_funcs intel_fb_funcs = { .destroy = intel_user_framebuffer_destroy, .create_handle = intel_user_framebuffer_create_handle, .dirty = intel_user_framebuffer_dirty, }; int intel_framebuffer_init(struct intel_framebuffer *intel_fb, struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct drm_framebuffer *fb = &intel_fb->base; u32 max_stride; unsigned int tiling, stride; int ret = -EINVAL; int i; intel_fb->frontbuffer = intel_frontbuffer_get(obj); if (!intel_fb->frontbuffer) return -ENOMEM; i915_gem_object_lock(obj, NULL); tiling = i915_gem_object_get_tiling(obj); stride = i915_gem_object_get_stride(obj); i915_gem_object_unlock(obj); if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) { /* * If there's a fence, enforce that * the fb modifier and tiling mode match. */ if (tiling != I915_TILING_NONE && tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { drm_dbg_kms(&dev_priv->drm, "tiling_mode doesn't match fb modifier\n"); goto err; } } else { if (tiling == I915_TILING_X) { mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED; } else if (tiling == I915_TILING_Y) { drm_dbg_kms(&dev_priv->drm, "No Y tiling for legacy addfb\n"); goto err; } } if (!drm_any_plane_has_format(&dev_priv->drm, mode_cmd->pixel_format, mode_cmd->modifier[0])) { drm_dbg_kms(&dev_priv->drm, "unsupported pixel format %p4cc / modifier 0x%llx\n", &mode_cmd->pixel_format, mode_cmd->modifier[0]); goto err; } /* * gen2/3 display engine uses the fence if present, * so the tiling mode must match the fb modifier exactly. */ if (DISPLAY_VER(dev_priv) < 4 && tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) { drm_dbg_kms(&dev_priv->drm, "tiling_mode must match fb modifier exactly on gen2/3\n"); goto err; } max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format, mode_cmd->modifier[0]); if (mode_cmd->pitches[0] > max_stride) { drm_dbg_kms(&dev_priv->drm, "%s pitch (%u) must be at most %d\n", mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ? "tiled" : "linear", mode_cmd->pitches[0], max_stride); goto err; } /* * If there's a fence, enforce that * the fb pitch and fence stride match. */ if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) { drm_dbg_kms(&dev_priv->drm, "pitch (%d) must match tiling stride (%d)\n", mode_cmd->pitches[0], stride); goto err; } /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ if (mode_cmd->offsets[0] != 0) { drm_dbg_kms(&dev_priv->drm, "plane 0 offset (0x%08x) must be 0\n", mode_cmd->offsets[0]); goto err; } drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd); for (i = 0; i < fb->format->num_planes; i++) { u32 stride_alignment; if (mode_cmd->handles[i] != mode_cmd->handles[0]) { drm_dbg_kms(&dev_priv->drm, "bad plane %d handle\n", i); goto err; } stride_alignment = intel_fb_stride_alignment(fb, i); if (fb->pitches[i] & (stride_alignment - 1)) { drm_dbg_kms(&dev_priv->drm, "plane %d pitch (%d) must be at least %u byte aligned\n", i, fb->pitches[i], stride_alignment); goto err; } if (intel_fb_is_gen12_ccs_aux_plane(fb, i)) { int ccs_aux_stride = gen12_ccs_aux_stride(intel_fb, i); if (fb->pitches[i] != ccs_aux_stride) { drm_dbg_kms(&dev_priv->drm, "ccs aux plane %d pitch (%d) must be %d\n", i, fb->pitches[i], ccs_aux_stride); goto err; } } fb->obj[i] = &obj->base; } ret = intel_fill_fb_info(dev_priv, intel_fb); if (ret) goto err; if (intel_fb_uses_dpt(fb)) { struct i915_address_space *vm; vm = intel_dpt_create(intel_fb); if (IS_ERR(vm)) { ret = PTR_ERR(vm); goto err; } intel_fb->dpt_vm = vm; } ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs); if (ret) { drm_err(&dev_priv->drm, "framebuffer init failed %d\n", ret); goto err; } return 0; err: intel_frontbuffer_put(intel_fb->frontbuffer); return ret; } struct drm_framebuffer * intel_user_framebuffer_create(struct drm_device *dev, struct drm_file *filp, const struct drm_mode_fb_cmd2 *user_mode_cmd) { struct drm_framebuffer *fb; struct drm_i915_gem_object *obj; struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd; struct drm_i915_private *i915; obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]); if (!obj) return ERR_PTR(-ENOENT); /* object is backed with LMEM for discrete */ i915 = to_i915(obj->base.dev); if (HAS_LMEM(i915) && !i915_gem_object_can_migrate(obj, INTEL_REGION_LMEM_0)) { /* object is "remote", not in local memory */ i915_gem_object_put(obj); return ERR_PTR(-EREMOTE); } fb = intel_framebuffer_create(obj, &mode_cmd); i915_gem_object_put(obj); return fb; } struct drm_framebuffer * intel_framebuffer_create(struct drm_i915_gem_object *obj, struct drm_mode_fb_cmd2 *mode_cmd) { struct intel_framebuffer *intel_fb; int ret; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) return ERR_PTR(-ENOMEM); ret = intel_framebuffer_init(intel_fb, obj, mode_cmd); if (ret) goto err; return &intel_fb->base; err: kfree(intel_fb); return ERR_PTR(ret); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1