Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Hellstrom | 2647 | 85.53% | 20 | 40.00% |
Matthew Auld | 250 | 8.08% | 9 | 18.00% |
Christian König | 124 | 4.01% | 6 | 12.00% |
Michał Winiarski | 21 | 0.68% | 1 | 2.00% |
Ramalingam C | 16 | 0.52% | 2 | 4.00% |
Chris Wilson | 13 | 0.42% | 6 | 12.00% |
Maarten Lankhorst | 8 | 0.26% | 1 | 2.00% |
Daniel Vetter | 6 | 0.19% | 2 | 4.00% |
Nirmoy Das | 4 | 0.13% | 1 | 2.00% |
Jesse Barnes | 3 | 0.10% | 1 | 2.00% |
Dave Airlie | 3 | 0.10% | 1 | 2.00% |
Total | 3095 | 50 |
// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include <drm/ttm/ttm_tt.h> #include "i915_deps.h" #include "i915_drv.h" #include "intel_memory_region.h" #include "intel_region_ttm.h" #include "gem/i915_gem_object.h" #include "gem/i915_gem_region.h" #include "gem/i915_gem_ttm.h" #include "gem/i915_gem_ttm_move.h" #include "gt/intel_engine_pm.h" #include "gt/intel_gt.h" #include "gt/intel_migrate.h" /** * DOC: Selftest failure modes for failsafe migration: * * For fail_gpu_migration, the gpu blit scheduled is always a clear blit * rather than a copy blit, and then we force the failure paths as if * the blit fence returned an error. * * For fail_work_allocation we fail the kmalloc of the async worker, we * sync the gpu blit. If it then fails, or fail_gpu_migration is set to * true, then a memcpy operation is performed sync. */ #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) static bool fail_gpu_migration; static bool fail_work_allocation; static bool ban_memcpy; void i915_ttm_migrate_set_failure_modes(bool gpu_migration, bool work_allocation) { fail_gpu_migration = gpu_migration; fail_work_allocation = work_allocation; } void i915_ttm_migrate_set_ban_memcpy(bool ban) { ban_memcpy = ban; } #endif static enum i915_cache_level i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res, struct ttm_tt *ttm) { return ((HAS_LLC(i915) || HAS_SNOOP(i915)) && !i915_ttm_gtt_binds_lmem(res) && ttm->caching == ttm_cached) ? I915_CACHE_LLC : I915_CACHE_NONE; } static struct intel_memory_region * i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type) { struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); /* There's some room for optimization here... */ GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM && ttm_mem_type < I915_PL_LMEM0); if (ttm_mem_type == I915_PL_SYSTEM) return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM, 0); return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL, ttm_mem_type - I915_PL_LMEM0); } /** * i915_ttm_adjust_domains_after_move - Adjust the GEM domains after a * TTM move * @obj: The gem object */ void i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj) { struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); if (i915_ttm_cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) { obj->write_domain = I915_GEM_DOMAIN_WC; obj->read_domains = I915_GEM_DOMAIN_WC; } else { obj->write_domain = I915_GEM_DOMAIN_CPU; obj->read_domains = I915_GEM_DOMAIN_CPU; } } /** * i915_ttm_adjust_gem_after_move - Adjust the GEM state after a TTM move * @obj: The gem object * * Adjusts the GEM object's region, mem_flags and cache coherency after a * TTM move. */ void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj) { struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); unsigned int cache_level; unsigned int mem_flags; unsigned int i; int mem_type; /* * We might have been purged (or swapped out) if the resource is NULL, * in which case the SYSTEM placement is the closest match to describe * the current domain. If the object is ever used in this state then we * will require moving it again. */ if (!bo->resource) { mem_flags = I915_BO_FLAG_STRUCT_PAGE; mem_type = I915_PL_SYSTEM; cache_level = I915_CACHE_NONE; } else { mem_flags = i915_ttm_cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM : I915_BO_FLAG_STRUCT_PAGE; mem_type = bo->resource->mem_type; cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource, bo->ttm); } /* * If object was moved to an allowable region, update the object * region to consider it migrated. Note that if it's currently not * in an allowable region, it's evicted and we don't update the * object region. */ if (intel_region_to_ttm_type(obj->mm.region) != mem_type) { for (i = 0; i < obj->mm.n_placements; ++i) { struct intel_memory_region *mr = obj->mm.placements[i]; if (intel_region_to_ttm_type(mr) == mem_type && mr != obj->mm.region) { i915_gem_object_release_memory_region(obj); i915_gem_object_init_memory_region(obj, mr); break; } } } obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM); obj->mem_flags |= mem_flags; i915_gem_object_set_cache_coherency(obj, cache_level); } /** * i915_ttm_move_notify - Prepare an object for move * @bo: The ttm buffer object. * * This function prepares an object for move by removing all GPU bindings, * removing all CPU mapings and finally releasing the pages sg-table. * * Return: 0 if successful, negative error code on error. */ int i915_ttm_move_notify(struct ttm_buffer_object *bo) { struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); int ret; /* * Note: The async unbinding here will actually transform the * blocking wait for unbind into a wait before finally submitting * evict / migration blit and thus stall the migration timeline * which may not be good for overall throughput. We should make * sure we await the unbind fences *after* the migration blit * instead of *before* as we currently do. */ ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE | I915_GEM_OBJECT_UNBIND_ASYNC); if (ret) return ret; ret = __i915_gem_object_put_pages(obj); if (ret) return ret; return 0; } static struct dma_fence *i915_ttm_accel_move(struct ttm_buffer_object *bo, bool clear, struct ttm_resource *dst_mem, struct ttm_tt *dst_ttm, struct sg_table *dst_st, const struct i915_deps *deps) { struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), bdev); struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); struct i915_request *rq; struct ttm_tt *src_ttm = bo->ttm; enum i915_cache_level src_level, dst_level; int ret; if (!to_gt(i915)->migrate.context || intel_gt_is_wedged(to_gt(i915))) return ERR_PTR(-EINVAL); /* With fail_gpu_migration, we always perform a GPU clear. */ if (I915_SELFTEST_ONLY(fail_gpu_migration)) clear = true; dst_level = i915_ttm_cache_level(i915, dst_mem, dst_ttm); if (clear) { if (bo->type == ttm_bo_type_kernel && !I915_SELFTEST_ONLY(fail_gpu_migration)) return ERR_PTR(-EINVAL); intel_engine_pm_get(to_gt(i915)->migrate.context->engine); ret = intel_context_migrate_clear(to_gt(i915)->migrate.context, deps, dst_st->sgl, dst_level, i915_ttm_gtt_binds_lmem(dst_mem), 0, &rq); } else { struct i915_refct_sgt *src_rsgt = i915_ttm_resource_get_st(obj, bo->resource); if (IS_ERR(src_rsgt)) return ERR_CAST(src_rsgt); src_level = i915_ttm_cache_level(i915, bo->resource, src_ttm); intel_engine_pm_get(to_gt(i915)->migrate.context->engine); ret = intel_context_migrate_copy(to_gt(i915)->migrate.context, deps, src_rsgt->table.sgl, src_level, i915_ttm_gtt_binds_lmem(bo->resource), dst_st->sgl, dst_level, i915_ttm_gtt_binds_lmem(dst_mem), &rq); i915_refct_sgt_put(src_rsgt); } intel_engine_pm_put(to_gt(i915)->migrate.context->engine); if (ret && rq) { i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); i915_request_put(rq); } return ret ? ERR_PTR(ret) : &rq->fence; } /** * struct i915_ttm_memcpy_arg - argument for the bo memcpy functionality. * @_dst_iter: Storage space for the destination kmap iterator. * @_src_iter: Storage space for the source kmap iterator. * @dst_iter: Pointer to the destination kmap iterator. * @src_iter: Pointer to the source kmap iterator. * @clear: Whether to clear instead of copy. * @src_rsgt: Refcounted scatter-gather list of source memory. * @dst_rsgt: Refcounted scatter-gather list of destination memory. */ struct i915_ttm_memcpy_arg { union { struct ttm_kmap_iter_tt tt; struct ttm_kmap_iter_iomap io; } _dst_iter, _src_iter; struct ttm_kmap_iter *dst_iter; struct ttm_kmap_iter *src_iter; unsigned long num_pages; bool clear; struct i915_refct_sgt *src_rsgt; struct i915_refct_sgt *dst_rsgt; }; /** * struct i915_ttm_memcpy_work - Async memcpy worker under a dma-fence. * @fence: The dma-fence. * @work: The work struct use for the memcpy work. * @lock: The fence lock. Not used to protect anything else ATM. * @irq_work: Low latency worker to signal the fence since it can't be done * from the callback for lockdep reasons. * @cb: Callback for the accelerated migration fence. * @arg: The argument for the memcpy functionality. * @i915: The i915 pointer. * @obj: The GEM object. * @memcpy_allowed: Instead of processing the @arg, and falling back to memcpy * or memset, we wedge the device and set the @obj unknown_state, to prevent * further access to the object with the CPU or GPU. On some devices we might * only be permitted to use the blitter engine for such operations. */ struct i915_ttm_memcpy_work { struct dma_fence fence; struct work_struct work; spinlock_t lock; struct irq_work irq_work; struct dma_fence_cb cb; struct i915_ttm_memcpy_arg arg; struct drm_i915_private *i915; struct drm_i915_gem_object *obj; bool memcpy_allowed; }; static void i915_ttm_move_memcpy(struct i915_ttm_memcpy_arg *arg) { ttm_move_memcpy(arg->clear, arg->num_pages, arg->dst_iter, arg->src_iter); } static void i915_ttm_memcpy_init(struct i915_ttm_memcpy_arg *arg, struct ttm_buffer_object *bo, bool clear, struct ttm_resource *dst_mem, struct ttm_tt *dst_ttm, struct i915_refct_sgt *dst_rsgt) { struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); struct intel_memory_region *dst_reg, *src_reg; dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type); src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type); GEM_BUG_ON(!dst_reg || !src_reg); arg->dst_iter = !i915_ttm_cpu_maps_iomem(dst_mem) ? ttm_kmap_iter_tt_init(&arg->_dst_iter.tt, dst_ttm) : ttm_kmap_iter_iomap_init(&arg->_dst_iter.io, &dst_reg->iomap, &dst_rsgt->table, dst_reg->region.start); arg->src_iter = !i915_ttm_cpu_maps_iomem(bo->resource) ? ttm_kmap_iter_tt_init(&arg->_src_iter.tt, bo->ttm) : ttm_kmap_iter_iomap_init(&arg->_src_iter.io, &src_reg->iomap, &obj->ttm.cached_io_rsgt->table, src_reg->region.start); arg->clear = clear; arg->num_pages = bo->base.size >> PAGE_SHIFT; arg->dst_rsgt = i915_refct_sgt_get(dst_rsgt); arg->src_rsgt = clear ? NULL : i915_ttm_resource_get_st(obj, bo->resource); } static void i915_ttm_memcpy_release(struct i915_ttm_memcpy_arg *arg) { i915_refct_sgt_put(arg->src_rsgt); i915_refct_sgt_put(arg->dst_rsgt); } static void __memcpy_work(struct work_struct *work) { struct i915_ttm_memcpy_work *copy_work = container_of(work, typeof(*copy_work), work); struct i915_ttm_memcpy_arg *arg = ©_work->arg; bool cookie; /* * FIXME: We need to take a closer look here. We should be able to plonk * this into the fence critical section. */ if (!copy_work->memcpy_allowed) { struct intel_gt *gt; unsigned int id; for_each_gt(gt, copy_work->i915, id) intel_gt_set_wedged(gt); } cookie = dma_fence_begin_signalling(); if (copy_work->memcpy_allowed) { i915_ttm_move_memcpy(arg); } else { /* * Prevent further use of the object. Any future GTT binding or * CPU access is not allowed once we signal the fence. Outside * of the fence critical section, we then also then wedge the gpu * to indicate the device is not functional. * * The below dma_fence_signal() is our write-memory-barrier. */ copy_work->obj->mm.unknown_state = true; } dma_fence_end_signalling(cookie); dma_fence_signal(©_work->fence); i915_ttm_memcpy_release(arg); i915_gem_object_put(copy_work->obj); dma_fence_put(©_work->fence); } static void __memcpy_irq_work(struct irq_work *irq_work) { struct i915_ttm_memcpy_work *copy_work = container_of(irq_work, typeof(*copy_work), irq_work); struct i915_ttm_memcpy_arg *arg = ©_work->arg; dma_fence_signal(©_work->fence); i915_ttm_memcpy_release(arg); i915_gem_object_put(copy_work->obj); dma_fence_put(©_work->fence); } static void __memcpy_cb(struct dma_fence *fence, struct dma_fence_cb *cb) { struct i915_ttm_memcpy_work *copy_work = container_of(cb, typeof(*copy_work), cb); if (unlikely(fence->error || I915_SELFTEST_ONLY(fail_gpu_migration))) { INIT_WORK(©_work->work, __memcpy_work); queue_work(system_unbound_wq, ©_work->work); } else { init_irq_work(©_work->irq_work, __memcpy_irq_work); irq_work_queue(©_work->irq_work); } } static const char *get_driver_name(struct dma_fence *fence) { return "i915_ttm_memcpy_work"; } static const char *get_timeline_name(struct dma_fence *fence) { return "unbound"; } static const struct dma_fence_ops dma_fence_memcpy_ops = { .get_driver_name = get_driver_name, .get_timeline_name = get_timeline_name, }; static struct dma_fence * i915_ttm_memcpy_work_arm(struct i915_ttm_memcpy_work *work, struct dma_fence *dep) { int ret; spin_lock_init(&work->lock); dma_fence_init(&work->fence, &dma_fence_memcpy_ops, &work->lock, 0, 0); dma_fence_get(&work->fence); ret = dma_fence_add_callback(dep, &work->cb, __memcpy_cb); if (ret) { if (ret != -ENOENT) dma_fence_wait(dep, false); return ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? -EINVAL : dep->error); } return &work->fence; } static bool i915_ttm_memcpy_allowed(struct ttm_buffer_object *bo, struct ttm_resource *dst_mem) { if (i915_gem_object_needs_ccs_pages(i915_ttm_to_gem(bo))) return false; if (!(i915_ttm_resource_mappable(bo->resource) && i915_ttm_resource_mappable(dst_mem))) return false; return I915_SELFTEST_ONLY(ban_memcpy) ? false : true; } static struct dma_fence * __i915_ttm_move(struct ttm_buffer_object *bo, const struct ttm_operation_ctx *ctx, bool clear, struct ttm_resource *dst_mem, struct ttm_tt *dst_ttm, struct i915_refct_sgt *dst_rsgt, bool allow_accel, const struct i915_deps *move_deps) { const bool memcpy_allowed = i915_ttm_memcpy_allowed(bo, dst_mem); struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); struct drm_i915_private *i915 = to_i915(bo->base.dev); struct i915_ttm_memcpy_work *copy_work = NULL; struct i915_ttm_memcpy_arg _arg, *arg = &_arg; struct dma_fence *fence = ERR_PTR(-EINVAL); if (allow_accel) { fence = i915_ttm_accel_move(bo, clear, dst_mem, dst_ttm, &dst_rsgt->table, move_deps); /* * We only need to intercept the error when moving to lmem. * When moving to system, TTM or shmem will provide us with * cleared pages. */ if (!IS_ERR(fence) && !i915_ttm_gtt_binds_lmem(dst_mem) && !I915_SELFTEST_ONLY(fail_gpu_migration || fail_work_allocation)) goto out; } /* If we've scheduled gpu migration. Try to arm error intercept. */ if (!IS_ERR(fence)) { struct dma_fence *dep = fence; if (!I915_SELFTEST_ONLY(fail_work_allocation)) copy_work = kzalloc(sizeof(*copy_work), GFP_KERNEL); if (copy_work) { copy_work->i915 = i915; copy_work->memcpy_allowed = memcpy_allowed; copy_work->obj = i915_gem_object_get(obj); arg = ©_work->arg; if (memcpy_allowed) i915_ttm_memcpy_init(arg, bo, clear, dst_mem, dst_ttm, dst_rsgt); fence = i915_ttm_memcpy_work_arm(copy_work, dep); } else { dma_fence_wait(dep, false); fence = ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? -EINVAL : fence->error); } dma_fence_put(dep); if (!IS_ERR(fence)) goto out; } else { int err = PTR_ERR(fence); if (err == -EINTR || err == -ERESTARTSYS || err == -EAGAIN) return fence; if (move_deps) { err = i915_deps_sync(move_deps, ctx); if (err) return ERR_PTR(err); } } /* Error intercept failed or no accelerated migration to start with */ if (memcpy_allowed) { if (!copy_work) i915_ttm_memcpy_init(arg, bo, clear, dst_mem, dst_ttm, dst_rsgt); i915_ttm_move_memcpy(arg); i915_ttm_memcpy_release(arg); } if (copy_work) i915_gem_object_put(copy_work->obj); kfree(copy_work); return memcpy_allowed ? NULL : ERR_PTR(-EIO); out: if (!fence && copy_work) { i915_ttm_memcpy_release(arg); i915_gem_object_put(copy_work->obj); kfree(copy_work); } return fence; } /** * i915_ttm_move - The TTM move callback used by i915. * @bo: The buffer object. * @evict: Whether this is an eviction. * @dst_mem: The destination ttm resource. * @hop: If we need multihop, what temporary memory type to move to. * * Return: 0 if successful, negative error code otherwise. */ int i915_ttm_move(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_resource *dst_mem, struct ttm_place *hop) { struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); struct ttm_resource_manager *dst_man = ttm_manager_type(bo->bdev, dst_mem->mem_type); struct dma_fence *migration_fence = NULL; struct ttm_tt *ttm = bo->ttm; struct i915_refct_sgt *dst_rsgt; bool clear; int ret; if (GEM_WARN_ON(i915_ttm_is_ghost_object(bo))) { ttm_bo_move_null(bo, dst_mem); return 0; } if (!bo->resource) { if (dst_mem->mem_type != TTM_PL_SYSTEM) { hop->mem_type = TTM_PL_SYSTEM; hop->flags = TTM_PL_FLAG_TEMPORARY; return -EMULTIHOP; } /* * This is only reached when first creating the object, or if * the object was purged or swapped out (pipeline-gutting). For * the former we can safely skip all of the below since we are * only using a dummy SYSTEM placement here. And with the latter * we will always re-enter here with bo->resource set correctly * (as per the above), since this is part of a multi-hop * sequence, where at the end we can do the move for real. * * The special case here is when the dst_mem is TTM_PL_SYSTEM, * which doens't require any kind of move, so it should be safe * to skip all the below and call ttm_bo_move_null() here, where * the caller in __i915_ttm_get_pages() will take care of the * rest, since we should have a valid ttm_tt. */ ttm_bo_move_null(bo, dst_mem); return 0; } ret = i915_ttm_move_notify(bo); if (ret) return ret; if (obj->mm.madv != I915_MADV_WILLNEED) { i915_ttm_purge(obj); ttm_resource_free(bo, &dst_mem); return 0; } /* Populate ttm with pages if needed. Typically system memory. */ if (ttm && (dst_man->use_tt || (ttm->page_flags & TTM_TT_FLAG_SWAPPED))) { ret = ttm_tt_populate(bo->bdev, ttm, ctx); if (ret) return ret; } dst_rsgt = i915_ttm_resource_get_st(obj, dst_mem); if (IS_ERR(dst_rsgt)) return PTR_ERR(dst_rsgt); clear = !i915_ttm_cpu_maps_iomem(bo->resource) && (!ttm || !ttm_tt_is_populated(ttm)); if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) { struct i915_deps deps; i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); ret = i915_deps_add_resv(&deps, bo->base.resv, ctx); if (ret) { i915_refct_sgt_put(dst_rsgt); return ret; } migration_fence = __i915_ttm_move(bo, ctx, clear, dst_mem, ttm, dst_rsgt, true, &deps); i915_deps_fini(&deps); } /* We can possibly get an -ERESTARTSYS here */ if (IS_ERR(migration_fence)) { i915_refct_sgt_put(dst_rsgt); return PTR_ERR(migration_fence); } if (migration_fence) { if (I915_SELFTEST_ONLY(evict && fail_gpu_migration)) ret = -EIO; /* never feed non-migrate fences into ttm */ else ret = ttm_bo_move_accel_cleanup(bo, migration_fence, evict, true, dst_mem); if (ret) { dma_fence_wait(migration_fence, false); ttm_bo_move_sync_cleanup(bo, dst_mem); } dma_fence_put(migration_fence); } else { ttm_bo_move_sync_cleanup(bo, dst_mem); } i915_ttm_adjust_domains_after_move(obj); i915_ttm_free_cached_io_rsgt(obj); if (i915_ttm_gtt_binds_lmem(dst_mem) || i915_ttm_cpu_maps_iomem(dst_mem)) { obj->ttm.cached_io_rsgt = dst_rsgt; obj->ttm.get_io_page.sg_pos = dst_rsgt->table.sgl; obj->ttm.get_io_page.sg_idx = 0; } else { i915_refct_sgt_put(dst_rsgt); } i915_ttm_adjust_lru(obj); i915_ttm_adjust_gem_after_move(obj); return 0; } /** * i915_gem_obj_copy_ttm - Copy the contents of one ttm-based gem object to * another * @dst: The destination object * @src: The source object * @allow_accel: Allow using the blitter. Otherwise TTM memcpy is used. * @intr: Whether to perform waits interruptible: * * Note: The caller is responsible for assuring that the underlying * TTM objects are populated if needed and locked. * * Return: Zero on success. Negative error code on error. If @intr == true, * then it may return -ERESTARTSYS or -EINTR. */ int i915_gem_obj_copy_ttm(struct drm_i915_gem_object *dst, struct drm_i915_gem_object *src, bool allow_accel, bool intr) { struct ttm_buffer_object *dst_bo = i915_gem_to_ttm(dst); struct ttm_buffer_object *src_bo = i915_gem_to_ttm(src); struct ttm_operation_ctx ctx = { .interruptible = intr, }; struct i915_refct_sgt *dst_rsgt; struct dma_fence *copy_fence; struct i915_deps deps; int ret; assert_object_held(dst); assert_object_held(src); i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); ret = dma_resv_reserve_fences(src_bo->base.resv, 1); if (ret) return ret; ret = dma_resv_reserve_fences(dst_bo->base.resv, 1); if (ret) return ret; ret = i915_deps_add_resv(&deps, dst_bo->base.resv, &ctx); if (ret) return ret; ret = i915_deps_add_resv(&deps, src_bo->base.resv, &ctx); if (ret) return ret; dst_rsgt = i915_ttm_resource_get_st(dst, dst_bo->resource); copy_fence = __i915_ttm_move(src_bo, &ctx, false, dst_bo->resource, dst_bo->ttm, dst_rsgt, allow_accel, &deps); i915_deps_fini(&deps); i915_refct_sgt_put(dst_rsgt); if (IS_ERR_OR_NULL(copy_fence)) return PTR_ERR_OR_ZERO(copy_fence); dma_resv_add_fence(dst_bo->base.resv, copy_fence, DMA_RESV_USAGE_WRITE); dma_resv_add_fence(src_bo->base.resv, copy_fence, DMA_RESV_USAGE_READ); dma_fence_put(copy_fence); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1