Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Auld | 3746 | 71.52% | 15 | 10.87% |
Chris Wilson | 1083 | 20.68% | 67 | 48.55% |
Ben Widawsky | 108 | 2.06% | 11 | 7.97% |
Tvrtko A. Ursulin | 61 | 1.16% | 7 | 5.07% |
Joonas Lahtinen | 49 | 0.94% | 1 | 0.72% |
Mika Kuoppala | 38 | 0.73% | 6 | 4.35% |
Thomas Hellstrom | 31 | 0.59% | 2 | 1.45% |
Jon Bloomfield | 16 | 0.31% | 1 | 0.72% |
Daniel Vetter | 15 | 0.29% | 5 | 3.62% |
Daniele Ceraolo Spurio | 14 | 0.27% | 2 | 1.45% |
Zhi Wang | 13 | 0.25% | 3 | 2.17% |
Michael Cheng | 11 | 0.21% | 2 | 1.45% |
Eric Anholt | 9 | 0.17% | 2 | 1.45% |
Akash Goel | 9 | 0.17% | 1 | 0.72% |
Kenneth Graunke | 7 | 0.13% | 2 | 1.45% |
Lionel Landwerlin | 6 | 0.11% | 2 | 1.45% |
Maarten Lankhorst | 6 | 0.11% | 1 | 0.72% |
Dave Airlie | 4 | 0.08% | 1 | 0.72% |
Jani Nikula | 4 | 0.08% | 2 | 1.45% |
Zeng Zhaoxiu | 3 | 0.06% | 1 | 0.72% |
Zou Nan hai | 2 | 0.04% | 1 | 0.72% |
Michel Thierry | 2 | 0.04% | 2 | 1.45% |
Lucas De Marchi | 1 | 0.02% | 1 | 0.72% |
Total | 5238 | 138 |
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include <linux/log2.h> #include "gem/i915_gem_lmem.h" #include "gen8_ppgtt.h" #include "i915_scatterlist.h" #include "i915_trace.h" #include "i915_pvinfo.h" #include "i915_vgpu.h" #include "intel_gt.h" #include "intel_gtt.h" static u64 gen8_pde_encode(const dma_addr_t addr, const enum i915_cache_level level) { u64 pde = addr | GEN8_PAGE_PRESENT | GEN8_PAGE_RW; if (level != I915_CACHE_NONE) pde |= PPAT_CACHED_PDE; else pde |= PPAT_UNCACHED; return pde; } static u64 gen8_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen8_pte_t pte = addr | GEN8_PAGE_PRESENT | GEN8_PAGE_RW; if (unlikely(flags & PTE_READ_ONLY)) pte &= ~GEN8_PAGE_RW; if (flags & PTE_LM) pte |= GEN12_PPGTT_PTE_LM; switch (level) { case I915_CACHE_NONE: pte |= PPAT_UNCACHED; break; case I915_CACHE_WT: pte |= PPAT_DISPLAY_ELLC; break; default: pte |= PPAT_CACHED; break; } return pte; } static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create) { struct drm_i915_private *i915 = ppgtt->vm.i915; struct intel_uncore *uncore = ppgtt->vm.gt->uncore; enum vgt_g2v_type msg; int i; if (create) atomic_inc(px_used(ppgtt->pd)); /* never remove */ else atomic_dec(px_used(ppgtt->pd)); mutex_lock(&i915->vgpu.lock); if (i915_vm_is_4lvl(&ppgtt->vm)) { const u64 daddr = px_dma(ppgtt->pd); intel_uncore_write(uncore, vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); intel_uncore_write(uncore, vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); msg = create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY; } else { for (i = 0; i < GEN8_3LVL_PDPES; i++) { const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); intel_uncore_write(uncore, vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); intel_uncore_write(uncore, vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); } msg = create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY; } /* g2v_notify atomically (via hv trap) consumes the message packet. */ intel_uncore_write(uncore, vgtif_reg(g2v_notify), msg); mutex_unlock(&i915->vgpu.lock); } /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */ #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */ #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE)) #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64)) #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES)) #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl)) #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl)) #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl)) #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt) static unsigned int gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx) { const int shift = gen8_pd_shift(lvl); const u64 mask = ~0ull << gen8_pd_shift(lvl + 1); GEM_BUG_ON(start >= end); end += ~mask >> gen8_pd_shift(1); *idx = i915_pde_index(start, shift); if ((start ^ end) & mask) return GEN8_PDES - *idx; else return i915_pde_index(end, shift) - *idx; } static bool gen8_pd_contains(u64 start, u64 end, int lvl) { const u64 mask = ~0ull << gen8_pd_shift(lvl + 1); GEM_BUG_ON(start >= end); return (start ^ end) & mask && (start & ~mask) == 0; } static unsigned int gen8_pt_count(u64 start, u64 end) { GEM_BUG_ON(start >= end); if ((start ^ end) >> gen8_pd_shift(1)) return GEN8_PDES - (start & (GEN8_PDES - 1)); else return end - start; } static unsigned int gen8_pd_top_count(const struct i915_address_space *vm) { unsigned int shift = __gen8_pte_shift(vm->top); return (vm->total + (1ull << shift) - 1) >> shift; } static struct i915_page_directory * gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx) { struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm); if (vm->top == 2) return ppgtt->pd; else return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top)); } static struct i915_page_directory * gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr) { return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT); } static void __gen8_ppgtt_cleanup(struct i915_address_space *vm, struct i915_page_directory *pd, int count, int lvl) { if (lvl) { void **pde = pd->entry; do { if (!*pde) continue; __gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1); } while (pde++, --count); } free_px(vm, &pd->pt, lvl); } static void gen8_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); if (intel_vgpu_active(vm->i915)) gen8_ppgtt_notify_vgt(ppgtt, false); if (ppgtt->pd) __gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top); free_scratch(vm); } static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm, struct i915_page_directory * const pd, u64 start, const u64 end, int lvl) { const struct drm_i915_gem_object * const scratch = vm->scratch[lvl]; unsigned int idx, len; GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT); len = gen8_pd_range(start, end, lvl--, &idx); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n", __func__, vm, lvl + 1, start, end, idx, len, atomic_read(px_used(pd))); GEM_BUG_ON(!len || len >= atomic_read(px_used(pd))); do { struct i915_page_table *pt = pd->entry[idx]; if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) && gen8_pd_contains(start, end, lvl)) { DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n", __func__, vm, lvl + 1, idx, start, end); clear_pd_entry(pd, idx, scratch); __gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl); start += (u64)I915_PDES << gen8_pd_shift(lvl); continue; } if (lvl) { start = __gen8_ppgtt_clear(vm, as_pd(pt), start, end, lvl); } else { unsigned int count; unsigned int pte = gen8_pd_index(start, 0); unsigned int num_ptes; u64 *vaddr; count = gen8_pt_count(start, end); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n", __func__, vm, lvl, start, end, gen8_pd_index(start, 0), count, atomic_read(&pt->used)); GEM_BUG_ON(!count || count >= atomic_read(&pt->used)); num_ptes = count; if (pt->is_compact) { GEM_BUG_ON(num_ptes % 16); GEM_BUG_ON(pte % 16); num_ptes /= 16; pte /= 16; } vaddr = px_vaddr(pt); memset64(vaddr + pte, vm->scratch[0]->encode, num_ptes); atomic_sub(count, &pt->used); start += count; } if (release_pd_entry(pd, idx, pt, scratch)) free_px(vm, pt, lvl); } while (idx++, --len); return start; } static void gen8_ppgtt_clear(struct i915_address_space *vm, u64 start, u64 length) { GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(range_overflows(start, length, vm->total)); start >>= GEN8_PTE_SHIFT; length >>= GEN8_PTE_SHIFT; GEM_BUG_ON(length == 0); __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd, start, start + length, vm->top); } static void __gen8_ppgtt_alloc(struct i915_address_space * const vm, struct i915_vm_pt_stash *stash, struct i915_page_directory * const pd, u64 * const start, const u64 end, int lvl) { unsigned int idx, len; GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT); len = gen8_pd_range(*start, end, lvl--, &idx); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n", __func__, vm, lvl + 1, *start, end, idx, len, atomic_read(px_used(pd))); GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1)); spin_lock(&pd->lock); GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */ do { struct i915_page_table *pt = pd->entry[idx]; if (!pt) { spin_unlock(&pd->lock); DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n", __func__, vm, lvl + 1, idx); pt = stash->pt[!!lvl]; __i915_gem_object_pin_pages(pt->base); fill_px(pt, vm->scratch[lvl]->encode); spin_lock(&pd->lock); if (likely(!pd->entry[idx])) { stash->pt[!!lvl] = pt->stash; atomic_set(&pt->used, 0); set_pd_entry(pd, idx, pt); } else { pt = pd->entry[idx]; } } if (lvl) { atomic_inc(&pt->used); spin_unlock(&pd->lock); __gen8_ppgtt_alloc(vm, stash, as_pd(pt), start, end, lvl); spin_lock(&pd->lock); atomic_dec(&pt->used); GEM_BUG_ON(!atomic_read(&pt->used)); } else { unsigned int count = gen8_pt_count(*start, end); DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n", __func__, vm, lvl, *start, end, gen8_pd_index(*start, 0), count, atomic_read(&pt->used)); atomic_add(count, &pt->used); /* All other pdes may be simultaneously removed */ GEM_BUG_ON(atomic_read(&pt->used) > NALLOC * I915_PDES); *start += count; } } while (idx++, --len); spin_unlock(&pd->lock); } static void gen8_ppgtt_alloc(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, u64 start, u64 length) { GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT))); GEM_BUG_ON(range_overflows(start, length, vm->total)); start >>= GEN8_PTE_SHIFT; length >>= GEN8_PTE_SHIFT; GEM_BUG_ON(length == 0); __gen8_ppgtt_alloc(vm, stash, i915_vm_to_ppgtt(vm)->pd, &start, start + length, vm->top); } static void __gen8_ppgtt_foreach(struct i915_address_space *vm, struct i915_page_directory *pd, u64 *start, u64 end, int lvl, void (*fn)(struct i915_address_space *vm, struct i915_page_table *pt, void *data), void *data) { unsigned int idx, len; len = gen8_pd_range(*start, end, lvl--, &idx); spin_lock(&pd->lock); do { struct i915_page_table *pt = pd->entry[idx]; atomic_inc(&pt->used); spin_unlock(&pd->lock); if (lvl) { __gen8_ppgtt_foreach(vm, as_pd(pt), start, end, lvl, fn, data); } else { fn(vm, pt, data); *start += gen8_pt_count(*start, end); } spin_lock(&pd->lock); atomic_dec(&pt->used); } while (idx++, --len); spin_unlock(&pd->lock); } static void gen8_ppgtt_foreach(struct i915_address_space *vm, u64 start, u64 length, void (*fn)(struct i915_address_space *vm, struct i915_page_table *pt, void *data), void *data) { start >>= GEN8_PTE_SHIFT; length >>= GEN8_PTE_SHIFT; __gen8_ppgtt_foreach(vm, i915_vm_to_ppgtt(vm)->pd, &start, start + length, vm->top, fn, data); } static __always_inline u64 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt, struct i915_page_directory *pdp, struct sgt_dma *iter, u64 idx, enum i915_cache_level cache_level, u32 flags) { struct i915_page_directory *pd; const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); gen8_pte_t *vaddr; pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2)); vaddr = px_vaddr(i915_pt_entry(pd, gen8_pd_index(idx, 1))); do { GEM_BUG_ON(sg_dma_len(iter->sg) < I915_GTT_PAGE_SIZE); vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma; iter->dma += I915_GTT_PAGE_SIZE; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg || sg_dma_len(iter->sg) == 0) { idx = 0; break; } iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + sg_dma_len(iter->sg); } if (gen8_pd_index(++idx, 0) == 0) { if (gen8_pd_index(idx, 1) == 0) { /* Limited by sg length for 3lvl */ if (gen8_pd_index(idx, 2) == 0) break; pd = pdp->entry[gen8_pd_index(idx, 2)]; } drm_clflush_virt_range(vaddr, PAGE_SIZE); vaddr = px_vaddr(i915_pt_entry(pd, gen8_pd_index(idx, 1))); } } while (1); drm_clflush_virt_range(vaddr, PAGE_SIZE); return idx; } static void xehpsdv_ppgtt_insert_huge(struct i915_address_space *vm, struct i915_vma_resource *vma_res, struct sgt_dma *iter, enum i915_cache_level cache_level, u32 flags) { const gen8_pte_t pte_encode = vm->pte_encode(0, cache_level, flags); unsigned int rem = sg_dma_len(iter->sg); u64 start = vma_res->start; u64 end = start + vma_res->vma_size; GEM_BUG_ON(!i915_vm_is_4lvl(vm)); do { struct i915_page_directory * const pdp = gen8_pdp_for_page_address(vm, start); struct i915_page_directory * const pd = i915_pd_entry(pdp, __gen8_pte_index(start, 2)); struct i915_page_table *pt = i915_pt_entry(pd, __gen8_pte_index(start, 1)); gen8_pte_t encode = pte_encode; unsigned int page_size; gen8_pte_t *vaddr; u16 index, max, nent, i; max = I915_PDES; nent = 1; if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_2M && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && rem >= I915_GTT_PAGE_SIZE_2M && !__gen8_pte_index(start, 0)) { index = __gen8_pte_index(start, 1); encode |= GEN8_PDE_PS_2M; page_size = I915_GTT_PAGE_SIZE_2M; vaddr = px_vaddr(pd); } else { index = __gen8_pte_index(start, 0); page_size = I915_GTT_PAGE_SIZE; if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_64K) { /* * Device local-memory on these platforms should * always use 64K pages or larger (including GTT * alignment), therefore if we know the whole * page-table needs to be filled we can always * safely use the compact-layout. Otherwise fall * back to the TLB hint with PS64. If this is * system memory we only bother with PS64. */ if ((encode & GEN12_PPGTT_PTE_LM) && end - start >= SZ_2M && !index) { index = __gen8_pte_index(start, 0) / 16; page_size = I915_GTT_PAGE_SIZE_64K; max /= 16; vaddr = px_vaddr(pd); vaddr[__gen8_pte_index(start, 1)] |= GEN12_PDE_64K; pt->is_compact = true; } else if (IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && rem >= I915_GTT_PAGE_SIZE_64K && !(index % 16)) { encode |= GEN12_PTE_PS64; page_size = I915_GTT_PAGE_SIZE_64K; nent = 16; } } vaddr = px_vaddr(pt); } do { GEM_BUG_ON(rem < page_size); for (i = 0; i < nent; i++) { vaddr[index++] = encode | (iter->dma + i * I915_GTT_PAGE_SIZE); } start += page_size; iter->dma += page_size; rem -= page_size; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) break; rem = sg_dma_len(iter->sg); if (!rem) break; iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + rem; if (unlikely(!IS_ALIGNED(iter->dma, page_size))) break; } } while (rem >= page_size && index < max); vma_res->page_sizes_gtt |= page_size; } while (iter->sg && sg_dma_len(iter->sg)); } static void gen8_ppgtt_insert_huge(struct i915_address_space *vm, struct i915_vma_resource *vma_res, struct sgt_dma *iter, enum i915_cache_level cache_level, u32 flags) { const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); unsigned int rem = sg_dma_len(iter->sg); u64 start = vma_res->start; GEM_BUG_ON(!i915_vm_is_4lvl(vm)); do { struct i915_page_directory * const pdp = gen8_pdp_for_page_address(vm, start); struct i915_page_directory * const pd = i915_pd_entry(pdp, __gen8_pte_index(start, 2)); gen8_pte_t encode = pte_encode; unsigned int maybe_64K = -1; unsigned int page_size; gen8_pte_t *vaddr; u16 index; if (vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_2M && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && rem >= I915_GTT_PAGE_SIZE_2M && !__gen8_pte_index(start, 0)) { index = __gen8_pte_index(start, 1); encode |= GEN8_PDE_PS_2M; page_size = I915_GTT_PAGE_SIZE_2M; vaddr = px_vaddr(pd); } else { struct i915_page_table *pt = i915_pt_entry(pd, __gen8_pte_index(start, 1)); index = __gen8_pte_index(start, 0); page_size = I915_GTT_PAGE_SIZE; if (!index && vma_res->bi.page_sizes.sg & I915_GTT_PAGE_SIZE_64K && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)) maybe_64K = __gen8_pte_index(start, 1); vaddr = px_vaddr(pt); } do { GEM_BUG_ON(sg_dma_len(iter->sg) < page_size); vaddr[index++] = encode | iter->dma; start += page_size; iter->dma += page_size; rem -= page_size; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) break; rem = sg_dma_len(iter->sg); if (!rem) break; iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + rem; if (maybe_64K != -1 && index < I915_PDES && !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))) maybe_64K = -1; if (unlikely(!IS_ALIGNED(iter->dma, page_size))) break; } } while (rem >= page_size && index < I915_PDES); drm_clflush_virt_range(vaddr, PAGE_SIZE); /* * Is it safe to mark the 2M block as 64K? -- Either we have * filled whole page-table with 64K entries, or filled part of * it and have reached the end of the sg table and we have * enough padding. */ if (maybe_64K != -1 && (index == I915_PDES || (i915_vm_has_scratch_64K(vm) && !iter->sg && IS_ALIGNED(vma_res->start + vma_res->node_size, I915_GTT_PAGE_SIZE_2M)))) { vaddr = px_vaddr(pd); vaddr[maybe_64K] |= GEN8_PDE_IPS_64K; drm_clflush_virt_range(vaddr, PAGE_SIZE); page_size = I915_GTT_PAGE_SIZE_64K; /* * We write all 4K page entries, even when using 64K * pages. In order to verify that the HW isn't cheating * by using the 4K PTE instead of the 64K PTE, we want * to remove all the surplus entries. If the HW skipped * the 64K PTE, it will read/write into the scratch page * instead - which we detect as missing results during * selftests. */ if (I915_SELFTEST_ONLY(vm->scrub_64K)) { u16 i; encode = vm->scratch[0]->encode; vaddr = px_vaddr(i915_pt_entry(pd, maybe_64K)); for (i = 1; i < index; i += 16) memset64(vaddr + i, encode, 15); drm_clflush_virt_range(vaddr, PAGE_SIZE); } } vma_res->page_sizes_gtt |= page_size; } while (iter->sg && sg_dma_len(iter->sg)); } static void gen8_ppgtt_insert(struct i915_address_space *vm, struct i915_vma_resource *vma_res, enum i915_cache_level cache_level, u32 flags) { struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm); struct sgt_dma iter = sgt_dma(vma_res); if (vma_res->bi.page_sizes.sg > I915_GTT_PAGE_SIZE) { if (HAS_64K_PAGES(vm->i915)) xehpsdv_ppgtt_insert_huge(vm, vma_res, &iter, cache_level, flags); else gen8_ppgtt_insert_huge(vm, vma_res, &iter, cache_level, flags); } else { u64 idx = vma_res->start >> GEN8_PTE_SHIFT; do { struct i915_page_directory * const pdp = gen8_pdp_for_page_index(vm, idx); idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx, cache_level, flags); } while (idx); vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; } } static void gen8_ppgtt_insert_entry(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 flags) { u64 idx = offset >> GEN8_PTE_SHIFT; struct i915_page_directory * const pdp = gen8_pdp_for_page_index(vm, idx); struct i915_page_directory *pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2)); struct i915_page_table *pt = i915_pt_entry(pd, gen8_pd_index(idx, 1)); gen8_pte_t *vaddr; GEM_BUG_ON(pt->is_compact); vaddr = px_vaddr(pt); vaddr[gen8_pd_index(idx, 0)] = gen8_pte_encode(addr, level, flags); drm_clflush_virt_range(&vaddr[gen8_pd_index(idx, 0)], sizeof(*vaddr)); } static void __xehpsdv_ppgtt_insert_entry_lm(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 flags) { u64 idx = offset >> GEN8_PTE_SHIFT; struct i915_page_directory * const pdp = gen8_pdp_for_page_index(vm, idx); struct i915_page_directory *pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2)); struct i915_page_table *pt = i915_pt_entry(pd, gen8_pd_index(idx, 1)); gen8_pte_t *vaddr; GEM_BUG_ON(!IS_ALIGNED(addr, SZ_64K)); GEM_BUG_ON(!IS_ALIGNED(offset, SZ_64K)); /* XXX: we don't strictly need to use this layout */ if (!pt->is_compact) { vaddr = px_vaddr(pd); vaddr[gen8_pd_index(idx, 1)] |= GEN12_PDE_64K; pt->is_compact = true; } vaddr = px_vaddr(pt); vaddr[gen8_pd_index(idx, 0) / 16] = gen8_pte_encode(addr, level, flags); } static void xehpsdv_ppgtt_insert_entry(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 flags) { if (flags & PTE_LM) return __xehpsdv_ppgtt_insert_entry_lm(vm, addr, offset, level, flags); return gen8_ppgtt_insert_entry(vm, addr, offset, level, flags); } static int gen8_init_scratch(struct i915_address_space *vm) { u32 pte_flags; int ret; int i; /* * If everybody agrees to not to write into the scratch page, * we can reuse it for all vm, keeping contexts and processes separate. */ if (vm->has_read_only && vm->gt->vm && !i915_is_ggtt(vm->gt->vm)) { struct i915_address_space *clone = vm->gt->vm; GEM_BUG_ON(!clone->has_read_only); vm->scratch_order = clone->scratch_order; for (i = 0; i <= vm->top; i++) vm->scratch[i] = i915_gem_object_get(clone->scratch[i]); return 0; } ret = setup_scratch_page(vm); if (ret) return ret; pte_flags = vm->has_read_only; if (i915_gem_object_is_lmem(vm->scratch[0])) pte_flags |= PTE_LM; vm->scratch[0]->encode = gen8_pte_encode(px_dma(vm->scratch[0]), I915_CACHE_NONE, pte_flags); for (i = 1; i <= vm->top; i++) { struct drm_i915_gem_object *obj; obj = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K); if (IS_ERR(obj)) { ret = PTR_ERR(obj); goto free_scratch; } ret = map_pt_dma(vm, obj); if (ret) { i915_gem_object_put(obj); goto free_scratch; } fill_px(obj, vm->scratch[i - 1]->encode); obj->encode = gen8_pde_encode(px_dma(obj), I915_CACHE_NONE); vm->scratch[i] = obj; } return 0; free_scratch: while (i--) i915_gem_object_put(vm->scratch[i]); vm->scratch[0] = NULL; return ret; } static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt) { struct i915_address_space *vm = &ppgtt->vm; struct i915_page_directory *pd = ppgtt->pd; unsigned int idx; GEM_BUG_ON(vm->top != 2); GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES); for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) { struct i915_page_directory *pde; int err; pde = alloc_pd(vm); if (IS_ERR(pde)) return PTR_ERR(pde); err = map_pt_dma(vm, pde->pt.base); if (err) { free_pd(vm, pde); return err; } fill_px(pde, vm->scratch[1]->encode); set_pd_entry(pd, idx, pde); atomic_inc(px_used(pde)); /* keep pinned */ } wmb(); return 0; } static struct i915_page_directory * gen8_alloc_top_pd(struct i915_address_space *vm) { const unsigned int count = gen8_pd_top_count(vm); struct i915_page_directory *pd; int err; GEM_BUG_ON(count > I915_PDES); pd = __alloc_pd(count); if (unlikely(!pd)) return ERR_PTR(-ENOMEM); pd->pt.base = vm->alloc_pt_dma(vm, I915_GTT_PAGE_SIZE_4K); if (IS_ERR(pd->pt.base)) { err = PTR_ERR(pd->pt.base); pd->pt.base = NULL; goto err_pd; } err = map_pt_dma(vm, pd->pt.base); if (err) goto err_pd; fill_page_dma(px_base(pd), vm->scratch[vm->top]->encode, count); atomic_inc(px_used(pd)); /* mark as pinned */ return pd; err_pd: free_pd(vm, pd); return ERR_PTR(err); } /* * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers * with a net effect resembling a 2-level page table in normal x86 terms. Each * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address * space. * */ struct i915_ppgtt *gen8_ppgtt_create(struct intel_gt *gt, unsigned long lmem_pt_obj_flags) { struct i915_page_directory *pd; struct i915_ppgtt *ppgtt; int err; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); ppgtt_init(ppgtt, gt, lmem_pt_obj_flags); ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2; ppgtt->vm.pd_shift = ilog2(SZ_4K * SZ_4K / sizeof(gen8_pte_t)); /* * From bdw, there is hw support for read-only pages in the PPGTT. * * Gen11 has HSDES#:1807136187 unresolved. Disable ro support * for now. * * Gen12 has inherited the same read-only fault issue from gen11. */ ppgtt->vm.has_read_only = !IS_GRAPHICS_VER(gt->i915, 11, 12); if (HAS_LMEM(gt->i915)) ppgtt->vm.alloc_pt_dma = alloc_pt_lmem; else ppgtt->vm.alloc_pt_dma = alloc_pt_dma; /* * Using SMEM here instead of LMEM has the advantage of not reserving * high performance memory for a "never" used filler page. It also * removes the device access that would be required to initialise the * scratch page, reducing pressure on an even scarcer resource. */ ppgtt->vm.alloc_scratch_dma = alloc_pt_dma; ppgtt->vm.pte_encode = gen8_pte_encode; ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND; ppgtt->vm.insert_entries = gen8_ppgtt_insert; if (HAS_64K_PAGES(gt->i915)) ppgtt->vm.insert_page = xehpsdv_ppgtt_insert_entry; else ppgtt->vm.insert_page = gen8_ppgtt_insert_entry; ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc; ppgtt->vm.clear_range = gen8_ppgtt_clear; ppgtt->vm.foreach = gen8_ppgtt_foreach; ppgtt->vm.cleanup = gen8_ppgtt_cleanup; err = gen8_init_scratch(&ppgtt->vm); if (err) goto err_put; pd = gen8_alloc_top_pd(&ppgtt->vm); if (IS_ERR(pd)) { err = PTR_ERR(pd); goto err_put; } ppgtt->pd = pd; if (!i915_vm_is_4lvl(&ppgtt->vm)) { err = gen8_preallocate_top_level_pdp(ppgtt); if (err) goto err_put; } if (intel_vgpu_active(gt->i915)) gen8_ppgtt_notify_vgt(ppgtt, true); return ppgtt; err_put: i915_vm_put(&ppgtt->vm); return ERR_PTR(err); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1