/* SPDX-License-Identifier: MIT */ #ifndef _INTEL_RINGBUFFER_H_ #define _INTEL_RINGBUFFER_H_ #include <asm/cacheflush.h> #include <drm/drm_util.h> #include <drm/drm_cache.h> #include <linux/hashtable.h> #include <linux/irq_work.h> #include <linux/random.h> #include <linux/seqlock.h> #include "i915_pmu.h" #include "i915_request.h" #include "i915_selftest.h" #include "intel_engine_types.h" #include "intel_gt_types.h" #include "intel_timeline.h" #include "intel_workarounds.h" struct drm_printer; struct intel_context; struct intel_gt; struct lock_class_key; /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, * but keeps the logic simple. Indeed, the whole purpose of this macro is just * to give some inclination as to some of the magic values used in the various * workarounds! */ #define CACHELINE_BYTES 64 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32)) #define ENGINE_TRACE(e, fmt, ...) do { \ const struct intel_engine_cs *e__ __maybe_unused = (e); \ GEM_TRACE("%s %s: " fmt, \ dev_name(e__->i915->drm.dev), e__->name, \ ##__VA_ARGS__); \ } while (0) /* * The register defines to be used with the following macros need to accept a * base param, e.g: * * REG_FOO(base) _MMIO((base) + <relative offset>) * ENGINE_READ(engine, REG_FOO); * * register arrays are to be defined and accessed as follows: * * REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>) * ENGINE_READ_IDX(engine, REG_BAR, i) */ #define __ENGINE_REG_OP(op__, engine__, ...) \ intel_uncore_##op__((engine__)->uncore, __VA_ARGS__) #define __ENGINE_READ_OP(op__, engine__, reg__) \ __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base)) #define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__) #define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__) #define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__) #define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__) #define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__) #define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \ __ENGINE_REG_OP(read64_2x32, (engine__), \ lower_reg__((engine__)->mmio_base), \ upper_reg__((engine__)->mmio_base)) #define ENGINE_READ_IDX(engine__, reg__, idx__) \ __ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__))) #define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \ __ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__)) #define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__) #define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__) #define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__) #define GEN6_RING_FAULT_REG_READ(engine__) \ intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__)) #define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \ intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__)) #define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \ ({ \ u32 __val; \ \ __val = intel_uncore_read((engine__)->uncore, \ RING_FAULT_REG(engine__)); \ __val &= ~(clear__); \ __val |= (set__); \ intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \ __val); \ }) /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. */ static inline unsigned int execlists_num_ports(const struct intel_engine_execlists * const execlists) { return execlists->port_mask + 1; } static inline struct i915_request * execlists_active(const struct intel_engine_execlists *execlists) { struct i915_request * const *cur, * const *old, *active; cur = READ_ONCE(execlists->active); smp_rmb(); /* pairs with overwrite protection in process_csb() */ do { old = cur; active = READ_ONCE(*cur); cur = READ_ONCE(execlists->active); smp_rmb(); /* and complete the seqlock retry */ } while (unlikely(cur != old)); return active; } struct i915_request * execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); static inline u32 intel_read_status_page(const struct intel_engine_cs *engine, int reg) { /* Ensure that the compiler doesn't optimize away the load. */ return READ_ONCE(engine->status_page.addr[reg]); } static inline void intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) { /* Writing into the status page should be done sparingly. Since * we do when we are uncertain of the device state, we take a bit * of extra paranoia to try and ensure that the HWS takes the value * we give and that it doesn't end up trapped inside the CPU! */ drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value)); WRITE_ONCE(engine->status_page.addr[reg], value); drm_clflush_virt_range(&engine->status_page.addr[reg], sizeof(value)); } /* * Reads a dword out of the status page, which is written to from the command * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or * MI_STORE_DATA_IMM. * * The following dwords have a reserved meaning: * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. * 0x04: ring 0 head pointer * 0x05: ring 1 head pointer (915-class) * 0x06: ring 2 head pointer (915-class) * 0x10-0x1b: Context status DWords (GM45) * 0x1f: Last written status offset. (GM45) * 0x20-0x2f: Reserved (Gen6+) * * The area from dword 0x30 to 0x3ff is available for driver usage. */ #define I915_GEM_HWS_PREEMPT 0x32 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32)) #define I915_GEM_HWS_SEQNO 0x40 #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32)) #define I915_GEM_HWS_MIGRATE (0x42 * sizeof(u32)) #define I915_GEM_HWS_PXP 0x60 #define I915_GEM_HWS_PXP_ADDR (I915_GEM_HWS_PXP * sizeof(u32)) #define I915_GEM_HWS_GSC 0x62 #define I915_GEM_HWS_GSC_ADDR (I915_GEM_HWS_GSC * sizeof(u32)) #define I915_GEM_HWS_SCRATCH 0x80 #define I915_HWS_CSB_BUF0_INDEX 0x10 #define I915_HWS_CSB_WRITE_INDEX 0x1f #define ICL_HWS_CSB_WRITE_INDEX 0x2f #define INTEL_HWS_CSB_WRITE_INDEX(__i915) \ (GRAPHICS_VER(__i915) >= 11 ? ICL_HWS_CSB_WRITE_INDEX : I915_HWS_CSB_WRITE_INDEX) void intel_engine_stop(struct intel_engine_cs *engine); void intel_engine_cleanup(struct intel_engine_cs *engine); int intel_engines_init_mmio(struct intel_gt *gt); int intel_engines_init(struct intel_gt *gt); void intel_engine_free_request_pool(struct intel_engine_cs *engine); void intel_engines_release(struct intel_gt *gt); void intel_engines_free(struct intel_gt *gt); int intel_engine_init_common(struct intel_engine_cs *engine); void intel_engine_cleanup_common(struct intel_engine_cs *engine); int intel_engine_resume(struct intel_engine_cs *engine); int intel_ring_submission_setup(struct intel_engine_cs *engine); int intel_engine_stop_cs(struct intel_engine_cs *engine); void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine); void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine); void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask); u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); void intel_engine_get_instdone(const struct intel_engine_cs *engine, struct intel_instdone *instdone); void intel_engine_init_execlists(struct intel_engine_cs *engine); bool intel_engine_irq_enable(struct intel_engine_cs *engine); void intel_engine_irq_disable(struct intel_engine_cs *engine); static inline void __intel_engine_reset(struct intel_engine_cs *engine, bool stalled) { if (engine->reset.rewind) engine->reset.rewind(engine, stalled); engine->serial++; /* contexts lost */ } bool intel_engines_are_idle(struct intel_gt *gt); bool intel_engine_is_idle(struct intel_engine_cs *engine); void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync); static inline void intel_engine_flush_submission(struct intel_engine_cs *engine) { __intel_engine_flush_submission(engine, true); } void intel_engines_reset_default_submission(struct intel_gt *gt); bool intel_engine_can_store_dword(struct intel_engine_cs *engine); __printf(3, 4) void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...); void intel_engine_dump_active_requests(struct list_head *requests, struct i915_request *hung_rq, struct drm_printer *m); ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now); void intel_engine_get_hung_entity(struct intel_engine_cs *engine, struct intel_context **ce, struct i915_request **rq); u32 intel_engine_context_size(struct intel_gt *gt, u8 class); struct intel_context * intel_engine_create_pinned_context(struct intel_engine_cs *engine, struct i915_address_space *vm, unsigned int ring_size, unsigned int hwsp, struct lock_class_key *key, const char *name); void intel_engine_destroy_pinned_context(struct intel_context *ce); void xehp_enable_ccs_engines(struct intel_engine_cs *engine); #define ENGINE_PHYSICAL 0 #define ENGINE_MOCK 1 #define ENGINE_VIRTUAL 2 static inline bool intel_engine_uses_guc(const struct intel_engine_cs *engine) { return engine->gt->submission_method >= INTEL_SUBMISSION_GUC; } static inline bool intel_engine_has_preempt_reset(const struct intel_engine_cs *engine) { if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) return false; return intel_engine_has_preemption(engine); } #define FORCE_VIRTUAL BIT(0) struct intel_context * intel_engine_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags); static inline struct intel_context * intel_engine_create_parallel(struct intel_engine_cs **engines, unsigned int num_engines, unsigned int width) { GEM_BUG_ON(!engines[0]->cops->create_parallel); return engines[0]->cops->create_parallel(engines, num_engines, width); } static inline bool intel_virtual_engine_has_heartbeat(const struct intel_engine_cs *engine) { /* * For non-GuC submission we expect the back-end to look at the * heartbeat status of the actual physical engine that the work * has been (or is being) scheduled on, so we should only reach * here with GuC submission enabled. */ GEM_BUG_ON(!intel_engine_uses_guc(engine)); return intel_guc_virtual_engine_has_heartbeat(engine); } static inline bool intel_engine_has_heartbeat(const struct intel_engine_cs *engine) { if (!CONFIG_DRM_I915_HEARTBEAT_INTERVAL) return false; if (intel_engine_is_virtual(engine)) return intel_virtual_engine_has_heartbeat(engine); else return READ_ONCE(engine->props.heartbeat_interval_ms); } static inline struct intel_engine_cs * intel_engine_get_sibling(struct intel_engine_cs *engine, unsigned int sibling) { GEM_BUG_ON(!intel_engine_is_virtual(engine)); return engine->cops->get_sibling(engine, sibling); } static inline void intel_engine_set_hung_context(struct intel_engine_cs *engine, struct intel_context *ce) { engine->hung_ce = ce; } static inline void intel_engine_clear_hung_context(struct intel_engine_cs *engine) { intel_engine_set_hung_context(engine, NULL); } static inline struct intel_context * intel_engine_get_hung_context(struct intel_engine_cs *engine) { return engine->hung_ce; } u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value); u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value); u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value); u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value); u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value); #endif /* _INTEL_RINGBUFFER_H_ */