Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 908 | 82.47% | 53 | 72.60% |
Vinay Belgaumkar | 73 | 6.63% | 1 | 1.37% |
Tvrtko A. Ursulin | 26 | 2.36% | 3 | 4.11% |
Thomas Hellstrom | 25 | 2.27% | 1 | 1.37% |
Maarten Lankhorst | 16 | 1.45% | 2 | 2.74% |
Matthew Brost | 13 | 1.18% | 2 | 2.74% |
Venkata Sandeep Dhanalakota | 11 | 1.00% | 2 | 2.74% |
Sebastian Andrzej Siewior | 11 | 1.00% | 1 | 1.37% |
Ben Widawsky | 9 | 0.82% | 3 | 4.11% |
Andi Shyti | 3 | 0.27% | 1 | 1.37% |
Mika Kuoppala | 2 | 0.18% | 1 | 1.37% |
Eric Anholt | 2 | 0.18% | 1 | 1.37% |
Chen Zhou | 1 | 0.09% | 1 | 1.37% |
Daniele Ceraolo Spurio | 1 | 0.09% | 1 | 1.37% |
Total | 1101 | 73 |
// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include "i915_drv.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_rc6.h" #include "intel_ring.h" #include "shmem_utils.h" #include "intel_gt_regs.h" static void intel_gsc_idle_msg_enable(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; if (IS_METEORLAKE(i915) && engine->id == GSC0) { intel_uncore_write(engine->gt->uncore, RC_PSMI_CTRL_GSCCS, _MASKED_BIT_DISABLE(IDLE_MSG_DISABLE)); /* hysteresis 0xA=5us as recommended in spec*/ intel_uncore_write(engine->gt->uncore, PWRCTX_MAXCNT_GSCCS, 0xA); } } static void dbg_poison_ce(struct intel_context *ce) { if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) return; if (ce->state) { struct drm_i915_gem_object *obj = ce->state->obj; int type = i915_coherent_map_type(ce->engine->i915, obj, true); void *map; if (!i915_gem_object_trylock(obj, NULL)) return; map = i915_gem_object_pin_map(obj, type); if (!IS_ERR(map)) { memset(map, CONTEXT_REDZONE, obj->base.size); i915_gem_object_flush_map(obj); i915_gem_object_unpin_map(obj); } i915_gem_object_unlock(obj); } } static int __engine_unpark(struct intel_wakeref *wf) { struct intel_engine_cs *engine = container_of(wf, typeof(*engine), wakeref); struct intel_context *ce; ENGINE_TRACE(engine, "\n"); intel_gt_pm_get(engine->gt); /* Discard stale context state from across idling */ ce = engine->kernel_context; if (ce) { GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags)); /* Flush all pending HW writes before we touch the context */ while (unlikely(intel_context_inflight(ce))) intel_engine_flush_submission(engine); /* First poison the image to verify we never fully trust it */ dbg_poison_ce(ce); /* Scrub the context image after our loss of control */ ce->ops->reset(ce); CE_TRACE(ce, "reset { seqno:%x, *hwsp:%x, ring:%x }\n", ce->timeline->seqno, READ_ONCE(*ce->timeline->hwsp_seqno), ce->ring->emit); GEM_BUG_ON(ce->timeline->seqno != READ_ONCE(*ce->timeline->hwsp_seqno)); } if (engine->unpark) engine->unpark(engine); intel_breadcrumbs_unpark(engine->breadcrumbs); intel_engine_unpark_heartbeat(engine); return 0; } static void duration(struct dma_fence *fence, struct dma_fence_cb *cb) { struct i915_request *rq = to_request(fence); ewma__engine_latency_add(&rq->engine->latency, ktime_us_delta(rq->fence.timestamp, rq->duration.emitted)); } static void __queue_and_release_pm(struct i915_request *rq, struct intel_timeline *tl, struct intel_engine_cs *engine) { struct intel_gt_timelines *timelines = &engine->gt->timelines; ENGINE_TRACE(engine, "parking\n"); /* * We have to serialise all potential retirement paths with our * submission, as we don't want to underflow either the * engine->wakeref.counter or our timeline->active_count. * * Equally, we cannot allow a new submission to start until * after we finish queueing, nor could we allow that submitter * to retire us before we are ready! */ spin_lock(&timelines->lock); /* Let intel_gt_retire_requests() retire us (acquired under lock) */ if (!atomic_fetch_inc(&tl->active_count)) list_add_tail(&tl->link, &timelines->active_list); /* Hand the request over to HW and so engine_retire() */ __i915_request_queue_bh(rq); /* Let new submissions commence (and maybe retire this timeline) */ __intel_wakeref_defer_park(&engine->wakeref); spin_unlock(&timelines->lock); } static bool switch_to_kernel_context(struct intel_engine_cs *engine) { struct intel_context *ce = engine->kernel_context; struct i915_request *rq; bool result = true; /* * This is execlist specific behaviour intended to ensure the GPU is * idle by switching to a known 'safe' context. With GuC submission, the * same idle guarantee is achieved by other means (disabling * scheduling). Further, switching to a 'safe' context has no effect * with GuC submission as the scheduler can just switch back again. * * FIXME: Move this backend scheduler specific behaviour into the * scheduler backend. */ if (intel_engine_uses_guc(engine)) return true; /* GPU is pointing to the void, as good as in the kernel context. */ if (intel_gt_is_wedged(engine->gt)) return true; GEM_BUG_ON(!intel_context_is_barrier(ce)); GEM_BUG_ON(ce->timeline->hwsp_ggtt != engine->status_page.vma); /* Already inside the kernel context, safe to power down. */ if (engine->wakeref_serial == engine->serial) return true; /* * Note, we do this without taking the timeline->mutex. We cannot * as we may be called while retiring the kernel context and so * already underneath the timeline->mutex. Instead we rely on the * exclusive property of the __engine_park that prevents anyone * else from creating a request on this engine. This also requires * that the ring is empty and we avoid any waits while constructing * the context, as they assume protection by the timeline->mutex. * This should hold true as we can only park the engine after * retiring the last request, thus all rings should be empty and * all timelines idle. * * For unlocking, there are 2 other parties and the GPU who have a * stake here. * * A new gpu user will be waiting on the engine-pm to start their * engine_unpark. New waiters are predicated on engine->wakeref.count * and so intel_wakeref_defer_park() acts like a mutex_unlock of the * engine->wakeref. * * The other party is intel_gt_retire_requests(), which is walking the * list of active timelines looking for completions. Meanwhile as soon * as we call __i915_request_queue(), the GPU may complete our request. * Ergo, if we put ourselves on the timelines.active_list * (se intel_timeline_enter()) before we increment the * engine->wakeref.count, we may see the request completion and retire * it causing an underflow of the engine->wakeref. */ set_bit(CONTEXT_IS_PARKING, &ce->flags); GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0); rq = __i915_request_create(ce, GFP_NOWAIT); if (IS_ERR(rq)) /* Context switch failed, hope for the best! Maybe reset? */ goto out_unlock; /* Check again on the next retirement. */ engine->wakeref_serial = engine->serial + 1; i915_request_add_active_barriers(rq); /* Install ourselves as a preemption barrier */ rq->sched.attr.priority = I915_PRIORITY_BARRIER; if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */ /* * Use an interrupt for precise measurement of duration, * otherwise we rely on someone else retiring all the requests * which may delay the signaling (i.e. we will likely wait * until the background request retirement running every * second or two). */ BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq)); dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration); rq->duration.emitted = ktime_get(); } /* Expose ourselves to the world */ __queue_and_release_pm(rq, ce->timeline, engine); result = false; out_unlock: clear_bit(CONTEXT_IS_PARKING, &ce->flags); return result; } static void call_idle_barriers(struct intel_engine_cs *engine) { struct llist_node *node, *next; llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) { struct dma_fence_cb *cb = container_of((struct list_head *)node, typeof(*cb), node); cb->func(ERR_PTR(-EAGAIN), cb); } } static int __engine_park(struct intel_wakeref *wf) { struct intel_engine_cs *engine = container_of(wf, typeof(*engine), wakeref); engine->saturated = 0; /* * If one and only one request is completed between pm events, * we know that we are inside the kernel context and it is * safe to power down. (We are paranoid in case that runtime * suspend causes corruption to the active context image, and * want to avoid that impacting userspace.) */ if (!switch_to_kernel_context(engine)) return -EBUSY; ENGINE_TRACE(engine, "parked\n"); call_idle_barriers(engine); /* cleanup after wedging */ intel_engine_park_heartbeat(engine); intel_breadcrumbs_park(engine->breadcrumbs); /* Must be reset upon idling, or we may miss the busy wakeup. */ GEM_BUG_ON(engine->sched_engine->queue_priority_hint != INT_MIN); if (engine->park) engine->park(engine); /* While gt calls i915_vma_parked(), we have to break the lock cycle */ intel_gt_pm_put_async(engine->gt); return 0; } static const struct intel_wakeref_ops wf_ops = { .get = __engine_unpark, .put = __engine_park, }; void intel_engine_init__pm(struct intel_engine_cs *engine) { struct intel_runtime_pm *rpm = engine->uncore->rpm; intel_wakeref_init(&engine->wakeref, rpm, &wf_ops); intel_engine_init_heartbeat(engine); intel_gsc_idle_msg_enable(engine); } /** * intel_engine_reset_pinned_contexts - Reset the pinned contexts of * an engine. * @engine: The engine whose pinned contexts we want to reset. * * Typically the pinned context LMEM images lose or get their content * corrupted on suspend. This function resets their images. */ void intel_engine_reset_pinned_contexts(struct intel_engine_cs *engine) { struct intel_context *ce; list_for_each_entry(ce, &engine->pinned_contexts_list, pinned_contexts_link) { /* kernel context gets reset at __engine_unpark() */ if (ce == engine->kernel_context) continue; dbg_poison_ce(ce); ce->ops->reset(ce); } } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_engine_pm.c" #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1