Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 822 | 31.93% | 91 | 46.43% |
Matthew Auld | 789 | 30.65% | 17 | 8.67% |
Ben Widawsky | 230 | 8.94% | 16 | 8.16% |
Joonas Lahtinen | 172 | 6.68% | 4 | 2.04% |
Thomas Hellstrom | 137 | 5.32% | 6 | 3.06% |
Mika Kuoppala | 95 | 3.69% | 10 | 5.10% |
Daniel Vetter | 55 | 2.14% | 9 | 4.59% |
Maarten Lankhorst | 43 | 1.67% | 3 | 1.53% |
Ville Syrjälä | 30 | 1.17% | 3 | 1.53% |
Michel Thierry | 30 | 1.17% | 3 | 1.53% |
Tvrtko A. Ursulin | 25 | 0.97% | 7 | 3.57% |
Daniele Ceraolo Spurio | 20 | 0.78% | 1 | 0.51% |
Akash Goel | 20 | 0.78% | 1 | 0.51% |
Nirmoy Das | 15 | 0.58% | 1 | 0.51% |
Imre Deak | 12 | 0.47% | 2 | 1.02% |
Aravind Iddamsetty | 10 | 0.39% | 1 | 0.51% |
Michael Cheng | 8 | 0.31% | 1 | 0.51% |
Eric Anholt | 8 | 0.31% | 2 | 1.02% |
Zhi Wang | 7 | 0.27% | 3 | 1.53% |
Ankitprasad Sharma | 6 | 0.23% | 1 | 0.51% |
Kenneth Graunke | 6 | 0.23% | 1 | 0.51% |
Jon Bloomfield | 5 | 0.19% | 1 | 0.51% |
Weinan Li | 4 | 0.16% | 1 | 0.51% |
Fernando Pacheco | 4 | 0.16% | 1 | 0.51% |
Vandana Kannan | 3 | 0.12% | 1 | 0.51% |
Jakub Bartmiński | 3 | 0.12% | 1 | 0.51% |
Casey Bowman | 3 | 0.12% | 1 | 0.51% |
Zou Nan hai | 2 | 0.08% | 1 | 0.51% |
Shaohua Li | 2 | 0.08% | 1 | 0.51% |
Jesse Barnes | 2 | 0.08% | 1 | 0.51% |
Matt Roper | 2 | 0.08% | 1 | 0.51% |
Jani Nikula | 2 | 0.08% | 1 | 0.51% |
Pradeep Bhat | 1 | 0.04% | 1 | 0.51% |
Janusz Krzysztofik | 1 | 0.04% | 1 | 0.51% |
Total | 2574 | 196 |
/* SPDX-License-Identifier: MIT */ /* * Copyright © 2020 Intel Corporation * * Please try to maintain the following order within this file unless it makes * sense to do otherwise. From top to bottom: * 1. typedefs * 2. #defines, and macros * 3. structure definitions * 4. function prototypes * * Within each section, please try to order by generation in ascending order, * from top to bottom (ie. gen6 on the top, gen8 on the bottom). */ #ifndef __INTEL_GTT_H__ #define __INTEL_GTT_H__ #include <linux/io-mapping.h> #include <linux/kref.h> #include <linux/mm.h> #include <linux/pagevec.h> #include <linux/scatterlist.h> #include <linux/workqueue.h> #include <drm/drm_mm.h> #include "gt/intel_reset.h" #include "i915_selftest.h" #include "i915_vma_resource.h" #include "i915_vma_types.h" #include "i915_params.h" #include "intel_memory_region.h" #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT) #define DBG(...) trace_printk(__VA_ARGS__) #else #define DBG(...) #endif #define NALLOC 3 /* 1 normal, 1 for concurrent threads, 1 for preallocation */ #define I915_GTT_PAGE_SIZE_4K BIT_ULL(12) #define I915_GTT_PAGE_SIZE_64K BIT_ULL(16) #define I915_GTT_PAGE_SIZE_2M BIT_ULL(21) #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M #define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE #define I915_FENCE_REG_NONE -1 #define I915_MAX_NUM_FENCES 32 /* 32 fences + sign bit for FENCE_REG_NONE */ #define I915_MAX_NUM_FENCE_BITS 6 typedef u32 gen6_pte_t; typedef u64 gen8_pte_t; #define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT) #define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len))) #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) #define I915_PDES 512 #define I915_PDE_MASK (I915_PDES - 1) /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PTE_CACHE_LLC (2 << 1) #define GEN6_PTE_UNCACHED (1 << 1) #define GEN6_PTE_VALID REG_BIT(0) #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) #define GEN6_PD_ALIGN (PAGE_SIZE * 16) #define GEN6_PDE_SHIFT 22 #define GEN6_PDE_VALID REG_BIT(0) #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) #define GEN7_PTE_CACHE_L3_LLC (3 << 1) #define BYT_PTE_SNOOPED_BY_CPU_CACHES REG_BIT(2) #define BYT_PTE_WRITEABLE REG_BIT(1) #define GEN12_PPGTT_PTE_LM BIT_ULL(11) #define GEN12_GGTT_PTE_LM BIT_ULL(1) #define GEN12_PDE_64K BIT(6) #define GEN12_PTE_PS64 BIT(8) /* * Cacheability Control is a 4-bit value. The low three bits are stored in bits * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. */ #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ (((bits) & 0x8) << (11 - 3))) #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) #define HSW_PTE_UNCACHED (0) #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) /* * GEN8 32b style address is defined as a 3 level page table: * 31:30 | 29:21 | 20:12 | 11:0 * PDPE | PDE | PTE | offset * The difference as compared to normal x86 3 level page table is the PDPEs are * programmed via register. * * GEN8 48b style address is defined as a 4 level page table: * 47:39 | 38:30 | 29:21 | 20:12 | 11:0 * PML4E | PDPE | PDE | PTE | offset */ #define GEN8_3LVL_PDPES 4 #define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD) #define PPAT_CACHED_PDE 0 /* WB LLC */ #define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */ #define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */ #define CHV_PPAT_SNOOP REG_BIT(6) #define GEN8_PPAT_AGE(x) ((x)<<4) #define GEN8_PPAT_LLCeLLC (3<<2) #define GEN8_PPAT_LLCELLC (2<<2) #define GEN8_PPAT_LLC (1<<2) #define GEN8_PPAT_WB (3<<0) #define GEN8_PPAT_WT (2<<0) #define GEN8_PPAT_WC (1<<0) #define GEN8_PPAT_UC (0<<0) #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) #define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8)) #define GEN8_PAGE_PRESENT BIT_ULL(0) #define GEN8_PAGE_RW BIT_ULL(1) #define GEN8_PDE_IPS_64K BIT(11) #define GEN8_PDE_PS_2M BIT(7) enum i915_cache_level; struct drm_i915_gem_object; struct i915_fence_reg; struct i915_vma; struct intel_gt; #define for_each_sgt_daddr(__dp, __iter, __sgt) \ __for_each_sgt_daddr(__dp, __iter, __sgt, I915_GTT_PAGE_SIZE) struct i915_page_table { struct drm_i915_gem_object *base; union { atomic_t used; struct i915_page_table *stash; }; bool is_compact; }; struct i915_page_directory { struct i915_page_table pt; spinlock_t lock; void **entry; }; #define __px_choose_expr(x, type, expr, other) \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), type) || \ __builtin_types_compatible_p(typeof(x), const type), \ ({ type __x = (type)(x); expr; }), \ other) #define px_base(px) \ __px_choose_expr(px, struct drm_i915_gem_object *, __x, \ __px_choose_expr(px, struct i915_page_table *, __x->base, \ __px_choose_expr(px, struct i915_page_directory *, __x->pt.base, \ (void)0))) struct page *__px_page(struct drm_i915_gem_object *p); dma_addr_t __px_dma(struct drm_i915_gem_object *p); #define px_dma(px) (__px_dma(px_base(px))) void *__px_vaddr(struct drm_i915_gem_object *p); #define px_vaddr(px) (__px_vaddr(px_base(px))) #define px_pt(px) \ __px_choose_expr(px, struct i915_page_table *, __x, \ __px_choose_expr(px, struct i915_page_directory *, &__x->pt, \ (void)0)) #define px_used(px) (&px_pt(px)->used) struct i915_vm_pt_stash { /* preallocated chains of page tables/directories */ struct i915_page_table *pt[2]; /* * Optionally override the alignment/size of the physical page that * contains each PT. If not set defaults back to the usual * I915_GTT_PAGE_SIZE_4K. This does not influence the other paging * structures. MUST be a power-of-two. ONLY applicable on discrete * platforms. */ int pt_sz; }; struct i915_vma_ops { /* Map an object into an address space with the given cache flags. */ void (*bind_vma)(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, enum i915_cache_level cache_level, u32 flags); /* * Unmap an object from an address space. This usually consists of * setting the valid PTE entries to a reserved scratch page. */ void (*unbind_vma)(struct i915_address_space *vm, struct i915_vma_resource *vma_res); }; struct i915_address_space { struct kref ref; struct work_struct release_work; struct drm_mm mm; struct intel_gt *gt; struct drm_i915_private *i915; struct device *dma; u64 total; /* size addr space maps (ex. 2GB for ggtt) */ u64 reserved; /* size addr space reserved */ u64 min_alignment[INTEL_MEMORY_STOLEN_LOCAL + 1]; unsigned int bind_async_flags; struct mutex mutex; /* protects vma and our lists */ struct kref resv_ref; /* kref to keep the reservation lock alive. */ struct dma_resv _resv; /* reservation lock for all pd objects, and buffer pool */ #define VM_CLASS_GGTT 0 #define VM_CLASS_PPGTT 1 #define VM_CLASS_DPT 2 struct drm_i915_gem_object *scratch[4]; /** * List of vma currently bound. */ struct list_head bound_list; /** * List of vmas not yet bound or evicted. */ struct list_head unbound_list; /* Global GTT */ bool is_ggtt:1; /* Display page table */ bool is_dpt:1; /* Some systems support read-only mappings for GGTT and/or PPGTT */ bool has_read_only:1; /* Skip pte rewrite on unbind for suspend. Protected by @mutex */ bool skip_pte_rewrite:1; u8 top; u8 pd_shift; u8 scratch_order; /* Flags used when creating page-table objects for this vm */ unsigned long lmem_pt_obj_flags; /* Interval tree for pending unbind vma resources */ struct rb_root_cached pending_unbind; struct drm_i915_gem_object * (*alloc_pt_dma)(struct i915_address_space *vm, int sz); struct drm_i915_gem_object * (*alloc_scratch_dma)(struct i915_address_space *vm, int sz); u64 (*pte_encode)(dma_addr_t addr, enum i915_cache_level level, u32 flags); /* Create a valid PTE */ #define PTE_READ_ONLY BIT(0) #define PTE_LM BIT(1) void (*allocate_va_range)(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, u64 start, u64 length); void (*clear_range)(struct i915_address_space *vm, u64 start, u64 length); void (*insert_page)(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level cache_level, u32 flags); void (*insert_entries)(struct i915_address_space *vm, struct i915_vma_resource *vma_res, enum i915_cache_level cache_level, u32 flags); void (*raw_insert_page)(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level cache_level, u32 flags); void (*raw_insert_entries)(struct i915_address_space *vm, struct i915_vma_resource *vma_res, enum i915_cache_level cache_level, u32 flags); void (*cleanup)(struct i915_address_space *vm); void (*foreach)(struct i915_address_space *vm, u64 start, u64 length, void (*fn)(struct i915_address_space *vm, struct i915_page_table *pt, void *data), void *data); struct i915_vma_ops vma_ops; I915_SELFTEST_DECLARE(struct fault_attr fault_attr); I915_SELFTEST_DECLARE(bool scrub_64K); }; /* * The Graphics Translation Table is the way in which GEN hardware translates a * Graphics Virtual Address into a Physical Address. In addition to the normal * collateral associated with any va->pa translations GEN hardware also has a * portion of the GTT which can be mapped by the CPU and remain both coherent * and correct (in cases like swizzling). That region is referred to as GMADR in * the spec. */ struct i915_ggtt { struct i915_address_space vm; struct io_mapping iomap; /* Mapping to our CPU mappable region */ struct resource gmadr; /* GMADR resource */ resource_size_t mappable_end; /* End offset that we can CPU map */ /** "Graphics Stolen Memory" holds the global PTEs */ void __iomem *gsm; void (*invalidate)(struct i915_ggtt *ggtt); /** PPGTT used for aliasing the PPGTT with the GTT */ struct i915_ppgtt *alias; bool do_idle_maps; int mtrr; /** Bit 6 swizzling required for X tiling */ u32 bit_6_swizzle_x; /** Bit 6 swizzling required for Y tiling */ u32 bit_6_swizzle_y; u32 pin_bias; unsigned int num_fences; struct i915_fence_reg *fence_regs; struct list_head fence_list; /** * List of all objects in gtt_space, currently mmaped by userspace. * All objects within this list must also be on bound_list. */ struct list_head userfault_list; struct mutex error_mutex; struct drm_mm_node error_capture; struct drm_mm_node uc_fw; /** List of GTs mapping this GGTT */ struct list_head gt_list; }; struct i915_ppgtt { struct i915_address_space vm; struct i915_page_directory *pd; }; #define i915_is_ggtt(vm) ((vm)->is_ggtt) #define i915_is_dpt(vm) ((vm)->is_dpt) #define i915_is_ggtt_or_dpt(vm) (i915_is_ggtt(vm) || i915_is_dpt(vm)) bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915); int __must_check i915_vm_lock_objects(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww); static inline bool i915_vm_is_4lvl(const struct i915_address_space *vm) { return (vm->total - 1) >> 32; } static inline bool i915_vm_has_scratch_64K(struct i915_address_space *vm) { return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K); } static inline u64 i915_vm_min_alignment(struct i915_address_space *vm, enum intel_memory_type type) { /* avoid INTEL_MEMORY_MOCK overflow */ if ((int)type >= ARRAY_SIZE(vm->min_alignment)) type = INTEL_MEMORY_SYSTEM; return vm->min_alignment[type]; } static inline u64 i915_vm_obj_min_alignment(struct i915_address_space *vm, struct drm_i915_gem_object *obj) { struct intel_memory_region *mr = READ_ONCE(obj->mm.region); enum intel_memory_type type = mr ? mr->type : INTEL_MEMORY_SYSTEM; return i915_vm_min_alignment(vm, type); } static inline bool i915_vm_has_cache_coloring(struct i915_address_space *vm) { return i915_is_ggtt(vm) && vm->mm.color_adjust; } static inline struct i915_ggtt * i915_vm_to_ggtt(struct i915_address_space *vm) { BUILD_BUG_ON(offsetof(struct i915_ggtt, vm)); GEM_BUG_ON(!i915_is_ggtt(vm)); return container_of(vm, struct i915_ggtt, vm); } static inline struct i915_ppgtt * i915_vm_to_ppgtt(struct i915_address_space *vm) { BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm)); GEM_BUG_ON(i915_is_ggtt_or_dpt(vm)); return container_of(vm, struct i915_ppgtt, vm); } static inline struct i915_address_space * i915_vm_get(struct i915_address_space *vm) { kref_get(&vm->ref); return vm; } static inline struct i915_address_space * i915_vm_tryget(struct i915_address_space *vm) { return kref_get_unless_zero(&vm->ref) ? vm : NULL; } static inline void assert_vm_alive(struct i915_address_space *vm) { GEM_BUG_ON(!kref_read(&vm->ref)); } /** * i915_vm_resv_get - Obtain a reference on the vm's reservation lock * @vm: The vm whose reservation lock we want to share. * * Return: A pointer to the vm's reservation lock. */ static inline struct dma_resv *i915_vm_resv_get(struct i915_address_space *vm) { kref_get(&vm->resv_ref); return &vm->_resv; } void i915_vm_release(struct kref *kref); void i915_vm_resv_release(struct kref *kref); static inline void i915_vm_put(struct i915_address_space *vm) { kref_put(&vm->ref, i915_vm_release); } /** * i915_vm_resv_put - Release a reference on the vm's reservation lock * @resv: Pointer to a reservation lock obtained from i915_vm_resv_get() */ static inline void i915_vm_resv_put(struct i915_address_space *vm) { kref_put(&vm->resv_ref, i915_vm_resv_release); } void i915_address_space_init(struct i915_address_space *vm, int subclass); void i915_address_space_fini(struct i915_address_space *vm); static inline u32 i915_pte_index(u64 address, unsigned int pde_shift) { const u32 mask = NUM_PTE(pde_shift) - 1; return (address >> PAGE_SHIFT) & mask; } /* * Helper to counts the number of PTEs within the given length. This count * does not cross a page table boundary, so the max value would be * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. */ static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift) { const u64 mask = ~((1ULL << pde_shift) - 1); u64 end; GEM_BUG_ON(length == 0); GEM_BUG_ON(offset_in_page(addr | length)); end = addr + length; if ((addr & mask) != (end & mask)) return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); } static inline u32 i915_pde_index(u64 addr, u32 shift) { return (addr >> shift) & I915_PDE_MASK; } static inline struct i915_page_table * i915_pt_entry(const struct i915_page_directory * const pd, const unsigned short n) { return pd->entry[n]; } static inline struct i915_page_directory * i915_pd_entry(const struct i915_page_directory * const pdp, const unsigned short n) { return pdp->entry[n]; } static inline dma_addr_t i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n) { struct i915_page_table *pt = ppgtt->pd->entry[n]; return __px_dma(pt ? px_base(pt) : ppgtt->vm.scratch[ppgtt->vm.top]); } void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt, unsigned long lmem_pt_obj_flags); void intel_ggtt_bind_vma(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, enum i915_cache_level cache_level, u32 flags); void intel_ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma_resource *vma_res); int i915_ggtt_probe_hw(struct drm_i915_private *i915); int i915_ggtt_init_hw(struct drm_i915_private *i915); int i915_ggtt_enable_hw(struct drm_i915_private *i915); int i915_init_ggtt(struct drm_i915_private *i915); void i915_ggtt_driver_release(struct drm_i915_private *i915); void i915_ggtt_driver_late_release(struct drm_i915_private *i915); struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915); static inline bool i915_ggtt_has_aperture(const struct i915_ggtt *ggtt) { return ggtt->mappable_end > 0; } int i915_ppgtt_init_hw(struct intel_gt *gt); struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt, unsigned long lmem_pt_obj_flags); void i915_ggtt_suspend_vm(struct i915_address_space *vm); bool i915_ggtt_resume_vm(struct i915_address_space *vm); void i915_ggtt_suspend(struct i915_ggtt *gtt); void i915_ggtt_resume(struct i915_ggtt *ggtt); void fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count); #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64)) #define fill32_px(px, v) do { \ u64 v__ = lower_32_bits(v); \ fill_px((px), v__ << 32 | v__); \ } while (0) int setup_scratch_page(struct i915_address_space *vm); void free_scratch(struct i915_address_space *vm); struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz); struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz); struct i915_page_table *alloc_pt(struct i915_address_space *vm, int sz); struct i915_page_directory *alloc_pd(struct i915_address_space *vm); struct i915_page_directory *__alloc_pd(int npde); int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj); int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj); void free_px(struct i915_address_space *vm, struct i915_page_table *pt, int lvl); #define free_pt(vm, px) free_px(vm, px, 0) #define free_pd(vm, px) free_px(vm, px_pt(px), 1) void __set_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, struct i915_page_table *pt, u64 (*encode)(const dma_addr_t, const enum i915_cache_level)); #define set_pd_entry(pd, idx, to) \ __set_pd_entry((pd), (idx), px_pt(to), gen8_pde_encode) void clear_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, const struct drm_i915_gem_object * const scratch); bool release_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, struct i915_page_table * const pt, const struct drm_i915_gem_object * const scratch); void gen6_ggtt_invalidate(struct i915_ggtt *ggtt); void ppgtt_bind_vma(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, struct i915_vma_resource *vma_res, enum i915_cache_level cache_level, u32 flags); void ppgtt_unbind_vma(struct i915_address_space *vm, struct i915_vma_resource *vma_res); void gtt_write_workarounds(struct intel_gt *gt); void setup_private_pat(struct intel_gt *gt); int i915_vm_alloc_pt_stash(struct i915_address_space *vm, struct i915_vm_pt_stash *stash, u64 size); int i915_vm_map_pt_stash(struct i915_address_space *vm, struct i915_vm_pt_stash *stash); void i915_vm_free_pt_stash(struct i915_address_space *vm, struct i915_vm_pt_stash *stash); struct i915_vma * __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size); struct i915_vma * __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size); static inline struct sgt_dma { struct scatterlist *sg; dma_addr_t dma, max; } sgt_dma(struct i915_vma_resource *vma_res) { struct scatterlist *sg = vma_res->bi.pages->sgl; dma_addr_t addr = sg_dma_address(sg); return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1