Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 3353 | 68.41% | 12 | 30.00% |
Ramalingam C | 1053 | 21.49% | 8 | 20.00% |
Matthew Auld | 426 | 8.69% | 9 | 22.50% |
Thomas Hellstrom | 24 | 0.49% | 2 | 5.00% |
Lucas De Marchi | 13 | 0.27% | 1 | 2.50% |
Maarten Lankhorst | 10 | 0.20% | 1 | 2.50% |
Zou Nan hai | 6 | 0.12% | 1 | 2.50% |
Jason Ekstrand | 6 | 0.12% | 1 | 2.50% |
Oscar Mateo | 4 | 0.08% | 1 | 2.50% |
Jani Nikula | 3 | 0.06% | 2 | 5.00% |
Robert Bragg | 2 | 0.04% | 1 | 2.50% |
Tvrtko A. Ursulin | 1 | 0.02% | 1 | 2.50% |
Total | 4901 | 40 |
// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include "i915_drv.h" #include "intel_context.h" #include "intel_gpu_commands.h" #include "intel_gt.h" #include "intel_gtt.h" #include "intel_migrate.h" #include "intel_ring.h" #include "gem/i915_gem_lmem.h" struct insert_pte_data { u64 offset; }; #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */ #define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \ DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0) static bool engine_supports_migration(struct intel_engine_cs *engine) { if (!engine) return false; /* * We need the ability to prevent aribtration (MI_ARB_ON_OFF), * the ability to write PTE using inline data (MI_STORE_DATA) * and of course the ability to do the block transfer (blits). */ GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS); return true; } static void xehpsdv_toggle_pdes(struct i915_address_space *vm, struct i915_page_table *pt, void *data) { struct insert_pte_data *d = data; /* * Insert a dummy PTE into every PT that will map to LMEM to ensure * we have a correctly setup PDE structure for later use. */ vm->insert_page(vm, 0, d->offset, I915_CACHE_NONE, PTE_LM); GEM_BUG_ON(!pt->is_compact); d->offset += SZ_2M; } static void xehpsdv_insert_pte(struct i915_address_space *vm, struct i915_page_table *pt, void *data) { struct insert_pte_data *d = data; /* * We are playing tricks here, since the actual pt, from the hw * pov, is only 256bytes with 32 entries, or 4096bytes with 512 * entries, but we are still guaranteed that the physical * alignment is 64K underneath for the pt, and we are careful * not to access the space in the void. */ vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, PTE_LM); d->offset += SZ_64K; } static void insert_pte(struct i915_address_space *vm, struct i915_page_table *pt, void *data) { struct insert_pte_data *d = data; vm->insert_page(vm, px_dma(pt), d->offset, I915_CACHE_NONE, i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0); d->offset += PAGE_SIZE; } static struct i915_address_space *migrate_vm(struct intel_gt *gt) { struct i915_vm_pt_stash stash = {}; struct i915_ppgtt *vm; int err; int i; /* * We construct a very special VM for use by all migration contexts, * it is kept pinned so that it can be used at any time. As we need * to pre-allocate the page directories for the migration VM, this * limits us to only using a small number of prepared vma. * * To be able to pipeline and reschedule migration operations while * avoiding unnecessary contention on the vm itself, the PTE updates * are inline with the blits. All the blits use the same fixed * addresses, with the backing store redirection being updated on the * fly. Only 2 implicit vma are used for all migration operations. * * We lay the ppGTT out as: * * [0, CHUNK_SZ) -> first object * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE * * By exposing the dma addresses of the page directories themselves * within the ppGTT, we are then able to rewrite the PTE prior to use. * But the PTE update and subsequent migration operation must be atomic, * i.e. within the same non-preemptible window so that we do not switch * to another migration context that overwrites the PTE. * * This changes quite a bit on platforms with HAS_64K_PAGES support, * where we instead have three windows, each CHUNK_SIZE in size. The * first is reserved for mapping system-memory, and that just uses the * 512 entry layout using 4K GTT pages. The other two windows just map * lmem pages and must use the new compact 32 entry layout using 64K GTT * pages, which ensures we can address any lmem object that the user * throws at us. We then also use the xehpsdv_toggle_pdes as a way of * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the * compact layout for each of these page-tables, that fall within the * [CHUNK_SIZE, 3 * CHUNK_SIZE) range. * * We lay the ppGTT out as: * * [0, CHUNK_SZ) -> first window/object, maps smem * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst * * For the PTE window it's also quite different, since each PTE must * point to some 64K page, one for each PT(since it's in lmem), and yet * each is only <= 4096bytes, but since the unused space within that PTE * range is never touched, this should be fine. * * So basically each PT now needs 64K of virtual memory, instead of 4K, * which looks like: * * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE */ vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY); if (IS_ERR(vm)) return ERR_CAST(vm); if (!vm->vm.allocate_va_range || !vm->vm.foreach) { err = -ENODEV; goto err_vm; } if (HAS_64K_PAGES(gt->i915)) stash.pt_sz = I915_GTT_PAGE_SIZE_64K; /* * Each engine instance is assigned its own chunk in the VM, so * that we can run multiple instances concurrently */ for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { struct intel_engine_cs *engine; u64 base = (u64)i << 32; struct insert_pte_data d = {}; struct i915_gem_ww_ctx ww; u64 sz; engine = gt->engine_class[COPY_ENGINE_CLASS][i]; if (!engine_supports_migration(engine)) continue; /* * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need * 4x2 page directories for source/destination. */ if (HAS_64K_PAGES(gt->i915)) sz = 3 * CHUNK_SZ; else sz = 2 * CHUNK_SZ; d.offset = base + sz; /* * We need another page directory setup so that we can write * the 8x512 PTE in each chunk. */ if (HAS_64K_PAGES(gt->i915)) sz += (sz / SZ_2M) * SZ_64K; else sz += (sz >> 12) * sizeof(u64); err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz); if (err) goto err_vm; for_i915_gem_ww(&ww, err, true) { err = i915_vm_lock_objects(&vm->vm, &ww); if (err) continue; err = i915_vm_map_pt_stash(&vm->vm, &stash); if (err) continue; vm->vm.allocate_va_range(&vm->vm, &stash, base, sz); } i915_vm_free_pt_stash(&vm->vm, &stash); if (err) goto err_vm; /* Now allow the GPU to rewrite the PTE via its own ppGTT */ if (HAS_64K_PAGES(gt->i915)) { vm->vm.foreach(&vm->vm, base, d.offset - base, xehpsdv_insert_pte, &d); d.offset = base + CHUNK_SZ; vm->vm.foreach(&vm->vm, d.offset, 2 * CHUNK_SZ, xehpsdv_toggle_pdes, &d); } else { vm->vm.foreach(&vm->vm, base, d.offset - base, insert_pte, &d); } } return &vm->vm; err_vm: i915_vm_put(&vm->vm); return ERR_PTR(err); } static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt) { struct intel_engine_cs *engine; int i; for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { engine = gt->engine_class[COPY_ENGINE_CLASS][i]; if (engine_supports_migration(engine)) return engine; } return NULL; } static struct intel_context *pinned_context(struct intel_gt *gt) { static struct lock_class_key key; struct intel_engine_cs *engine; struct i915_address_space *vm; struct intel_context *ce; engine = first_copy_engine(gt); if (!engine) return ERR_PTR(-ENODEV); vm = migrate_vm(gt); if (IS_ERR(vm)) return ERR_CAST(vm); ce = intel_engine_create_pinned_context(engine, vm, SZ_512K, I915_GEM_HWS_MIGRATE, &key, "migrate"); i915_vm_put(vm); return ce; } int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt) { struct intel_context *ce; memset(m, 0, sizeof(*m)); ce = pinned_context(gt); if (IS_ERR(ce)) return PTR_ERR(ce); m->context = ce; return 0; } static int random_index(unsigned int max) { return upper_32_bits(mul_u32_u32(get_random_u32(), max)); } static struct intel_context *__migrate_engines(struct intel_gt *gt) { struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE]; struct intel_engine_cs *engine; unsigned int count, i; count = 0; for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) { engine = gt->engine_class[COPY_ENGINE_CLASS][i]; if (engine_supports_migration(engine)) engines[count++] = engine; } return intel_context_create(engines[random_index(count)]); } struct intel_context *intel_migrate_create_context(struct intel_migrate *m) { struct intel_context *ce; /* * We randomly distribute contexts across the engines upon constrction, * as they all share the same pinned vm, and so in order to allow * multiple blits to run in parallel, we must construct each blit * to use a different range of the vm for its GTT. This has to be * known at construction, so we can not use the late greedy load * balancing of the virtual-engine. */ ce = __migrate_engines(m->context->engine->gt); if (IS_ERR(ce)) return ce; ce->ring = NULL; ce->ring_size = SZ_256K; i915_vm_put(ce->vm); ce->vm = i915_vm_get(m->context->vm); return ce; } static inline struct sgt_dma sg_sgt(struct scatterlist *sg) { dma_addr_t addr = sg_dma_address(sg); return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) }; } static int emit_no_arbitration(struct i915_request *rq) { u32 *cs; cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); /* Explicitly disable preemption for this request. */ *cs++ = MI_ARB_ON_OFF; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int max_pte_pkt_size(struct i915_request *rq, int pkt) { struct intel_ring *ring = rq->ring; pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5); pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5); return pkt; } #define I915_EMIT_PTE_NUM_DWORDS 6 static int emit_pte(struct i915_request *rq, struct sgt_dma *it, enum i915_cache_level cache_level, bool is_lmem, u64 offset, int length) { bool has_64K_pages = HAS_64K_PAGES(rq->engine->i915); const u64 encode = rq->context->vm->pte_encode(0, cache_level, is_lmem ? PTE_LM : 0); struct intel_ring *ring = rq->ring; int pkt, dword_length; u32 total = 0; u32 page_size; u32 *hdr, *cs; GEM_BUG_ON(GRAPHICS_VER(rq->engine->i915) < 8); page_size = I915_GTT_PAGE_SIZE; dword_length = 0x400; /* Compute the page directory offset for the target address range */ if (has_64K_pages) { GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M)); offset /= SZ_2M; offset *= SZ_64K; offset += 3 * CHUNK_SZ; if (is_lmem) { page_size = I915_GTT_PAGE_SIZE_64K; dword_length = 0x40; } } else { offset >>= 12; offset *= sizeof(u64); offset += 2 * CHUNK_SZ; } offset += (u64)rq->engine->instance << 32; cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS); if (IS_ERR(cs)) return PTR_ERR(cs); /* Pack as many PTE updates as possible into a single MI command */ pkt = max_pte_pkt_size(rq, dword_length); hdr = cs; *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */ *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); do { if (cs - hdr >= pkt) { int dword_rem; *hdr += cs - hdr - 2; *cs++ = MI_NOOP; ring->emit = (void *)cs - ring->vaddr; intel_ring_advance(rq, cs); intel_ring_update_space(ring); cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS); if (IS_ERR(cs)) return PTR_ERR(cs); dword_rem = dword_length; if (has_64K_pages) { if (IS_ALIGNED(total, SZ_2M)) { offset = round_up(offset, SZ_64K); } else { dword_rem = SZ_2M - (total & (SZ_2M - 1)); dword_rem /= page_size; dword_rem *= 2; } } pkt = max_pte_pkt_size(rq, dword_rem); hdr = cs; *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); *cs++ = lower_32_bits(offset); *cs++ = upper_32_bits(offset); } GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size)); *cs++ = lower_32_bits(encode | it->dma); *cs++ = upper_32_bits(encode | it->dma); offset += 8; total += page_size; it->dma += page_size; if (it->dma >= it->max) { it->sg = __sg_next(it->sg); if (!it->sg || sg_dma_len(it->sg) == 0) break; it->dma = sg_dma_address(it->sg); it->max = it->dma + sg_dma_len(it->sg); } } while (total < length); *hdr += cs - hdr - 2; *cs++ = MI_NOOP; ring->emit = (void *)cs - ring->vaddr; intel_ring_advance(rq, cs); intel_ring_update_space(ring); return total; } static bool wa_1209644611_applies(int ver, u32 size) { u32 height = size >> PAGE_SHIFT; if (ver != 11) return false; return height % 4 == 3 && height <= 8; } /** * DOC: Flat-CCS - Memory compression for Local memory * * On Xe-HP and later devices, we use dedicated compression control state (CCS) * stored in local memory for each surface, to support the 3D and media * compression formats. * * The memory required for the CCS of the entire local memory is 1/256 of the * local memory size. So before the kernel boot, the required memory is reserved * for the CCS data and a secure register will be programmed with the CCS base * address. * * Flat CCS data needs to be cleared when a lmem object is allocated. * And CCS data can be copied in and out of CCS region through * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly. * * I915 supports Flat-CCS on lmem only objects. When an objects has smem in * its preference list, on memory pressure, i915 needs to migrate the lmem * content into smem. If the lmem object is Flat-CCS compressed by userspace, * then i915 needs to decompress it. But I915 lack the required information * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects. * * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can * be temporarily evicted to smem, along with the auxiliary CCS state, where * it can be potentially swapped-out at a later point, if required. * If userspace later touches the evicted pages, then we always move * the backing memory back to lmem, which includes restoring the saved CCS state, * and potentially performing any required swap-in. * * For the migration of the lmem objects with smem in placement list, such as * {lmem, smem}, objects are treated as non Flat-CCS capable objects. */ static inline u32 *i915_flush_dw(u32 *cmd, u32 flags) { *cmd++ = MI_FLUSH_DW | flags; *cmd++ = 0; *cmd++ = 0; return cmd; } static int emit_copy_ccs(struct i915_request *rq, u32 dst_offset, u8 dst_access, u32 src_offset, u8 src_access, int size) { struct drm_i915_private *i915 = rq->engine->i915; int mocs = rq->engine->gt->mocs.uc_index << 1; u32 num_ccs_blks; u32 *cs; cs = intel_ring_begin(rq, 12); if (IS_ERR(cs)) return PTR_ERR(cs); num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size), NUM_CCS_BYTES_PER_BLOCK); GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER); cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); /* * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS * data in and out of the CCS region. * * We can copy at most 1024 blocks of 256 bytes using one * XY_CTRL_SURF_COPY_BLT instruction. * * In case we need to copy more than 1024 blocks, we need to add * another instruction to the same batch buffer. * * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS. * * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM. */ *cs++ = XY_CTRL_SURF_COPY_BLT | src_access << SRC_ACCESS_TYPE_SHIFT | dst_access << DST_ACCESS_TYPE_SHIFT | ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT; *cs++ = src_offset; *cs++ = rq->engine->instance | FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); *cs++ = dst_offset; *cs++ = rq->engine->instance | FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs); cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS); *cs++ = MI_NOOP; intel_ring_advance(rq, cs); return 0; } static int emit_copy(struct i915_request *rq, u32 dst_offset, u32 src_offset, int size) { const int ver = GRAPHICS_VER(rq->engine->i915); u32 instance = rq->engine->instance; u32 *cs; cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6); if (IS_ERR(cs)) return PTR_ERR(cs); if (ver >= 9 && !wa_1209644611_applies(ver, size)) { *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2); *cs++ = BLT_DEPTH_32 | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = dst_offset; *cs++ = instance; *cs++ = 0; *cs++ = PAGE_SIZE; *cs++ = src_offset; *cs++ = instance; } else if (ver >= 8) { *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = dst_offset; *cs++ = instance; *cs++ = 0; *cs++ = PAGE_SIZE; *cs++ = src_offset; *cs++ = instance; } else { GEM_BUG_ON(instance); *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE; *cs++ = dst_offset; *cs++ = PAGE_SIZE; *cs++ = src_offset; } intel_ring_advance(rq, cs); return 0; } static u64 scatter_list_length(struct scatterlist *sg) { u64 len = 0; while (sg && sg_dma_len(sg)) { len += sg_dma_len(sg); sg = sg_next(sg); } return len; } static int calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem, u64 bytes_to_cpy, u64 ccs_bytes_to_cpy) { if (ccs_bytes_to_cpy && !src_is_lmem) /* * When CHUNK_SZ is passed all the pages upto CHUNK_SZ * will be taken for the blt. in Flat-ccs supported * platform Smem obj will have more pages than required * for main meory hence limit it to the required size * for main memory */ return min_t(u64, bytes_to_cpy, CHUNK_SZ); else return CHUNK_SZ; } static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy) { u64 len; do { GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg)); len = it->max - it->dma; if (len > bytes_to_cpy) { it->dma += bytes_to_cpy; break; } bytes_to_cpy -= len; it->sg = __sg_next(it->sg); it->dma = sg_dma_address(it->sg); it->max = it->dma + sg_dma_len(it->sg); } while (bytes_to_cpy); } int intel_context_migrate_copy(struct intel_context *ce, const struct i915_deps *deps, struct scatterlist *src, enum i915_cache_level src_cache_level, bool src_is_lmem, struct scatterlist *dst, enum i915_cache_level dst_cache_level, bool dst_is_lmem, struct i915_request **out) { struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs; struct drm_i915_private *i915 = ce->engine->i915; u64 ccs_bytes_to_cpy = 0, bytes_to_cpy; enum i915_cache_level ccs_cache_level; u32 src_offset, dst_offset; u8 src_access, dst_access; struct i915_request *rq; u64 src_sz, dst_sz; bool ccs_is_src, overwrite_ccs; int err; GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem)); *out = NULL; GEM_BUG_ON(ce->ring->size < SZ_64K); src_sz = scatter_list_length(src); bytes_to_cpy = src_sz; if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) { src_access = !src_is_lmem && dst_is_lmem; dst_access = !src_access; dst_sz = scatter_list_length(dst); if (src_is_lmem) { it_ccs = it_dst; ccs_cache_level = dst_cache_level; ccs_is_src = false; } else if (dst_is_lmem) { bytes_to_cpy = dst_sz; it_ccs = it_src; ccs_cache_level = src_cache_level; ccs_is_src = true; } /* * When there is a eviction of ccs needed smem will have the * extra pages for the ccs data * * TO-DO: Want to move the size mismatch check to a WARN_ON, * but still we have some requests of smem->lmem with same size. * Need to fix it. */ ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0; if (ccs_bytes_to_cpy) get_ccs_sg_sgt(&it_ccs, bytes_to_cpy); } overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem; src_offset = 0; dst_offset = CHUNK_SZ; if (HAS_64K_PAGES(ce->engine->i915)) { src_offset = 0; dst_offset = 0; if (src_is_lmem) src_offset = CHUNK_SZ; if (dst_is_lmem) dst_offset = 2 * CHUNK_SZ; } do { int len; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ce; } if (deps) { err = i915_request_await_deps(rq, deps); if (err) goto out_rq; if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } deps = NULL; } /* The PTE updates + copy must not be interrupted. */ err = emit_no_arbitration(rq); if (err) goto out_rq; src_sz = calculate_chunk_sz(i915, src_is_lmem, bytes_to_cpy, ccs_bytes_to_cpy); len = emit_pte(rq, &it_src, src_cache_level, src_is_lmem, src_offset, src_sz); if (!len) { err = -EINVAL; goto out_rq; } if (len < 0) { err = len; goto out_rq; } err = emit_pte(rq, &it_dst, dst_cache_level, dst_is_lmem, dst_offset, len); if (err < 0) goto out_rq; if (err < len) { err = -EINVAL; goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; err = emit_copy(rq, dst_offset, src_offset, len); if (err) goto out_rq; bytes_to_cpy -= len; if (ccs_bytes_to_cpy) { int ccs_sz; err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; ccs_sz = GET_CCS_BYTES(i915, len); err = emit_pte(rq, &it_ccs, ccs_cache_level, false, ccs_is_src ? src_offset : dst_offset, ccs_sz); if (err < 0) goto out_rq; if (err < ccs_sz) { err = -EINVAL; goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; err = emit_copy_ccs(rq, dst_offset, dst_access, src_offset, src_access, len); if (err) goto out_rq; err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; ccs_bytes_to_cpy -= ccs_sz; } else if (overwrite_ccs) { err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; if (src_is_lmem) { /* * If the src is already in lmem, then we must * be doing an lmem -> lmem transfer, and so * should be safe to directly copy the CCS * state. In this case we have either * initialised the CCS aux state when first * clearing the pages (since it is already * allocated in lmem), or the user has * potentially populated it, in which case we * need to copy the CCS state as-is. */ err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS, src_offset, INDIRECT_ACCESS, len); } else { /* * While we can't always restore/manage the CCS * state, we still need to ensure we don't leak * the CCS state from the previous user, so make * sure we overwrite it with something. */ err = emit_copy_ccs(rq, dst_offset, INDIRECT_ACCESS, dst_offset, DIRECT_ACCESS, len); } if (err) goto out_rq; err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; } /* Arbitration is re-enabled between requests. */ out_rq: if (*out) i915_request_put(*out); *out = i915_request_get(rq); i915_request_add(rq); if (err) break; if (!bytes_to_cpy && !ccs_bytes_to_cpy) { if (src_is_lmem) WARN_ON(it_src.sg && sg_dma_len(it_src.sg)); else WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg)); break; } if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) || !it_dst.sg || !sg_dma_len(it_dst.sg) || (ccs_bytes_to_cpy && (!it_ccs.sg || !sg_dma_len(it_ccs.sg))))) { err = -EINVAL; break; } cond_resched(); } while (1); out_ce: return err; } static int emit_clear(struct i915_request *rq, u32 offset, int size, u32 value, bool is_lmem) { struct drm_i915_private *i915 = rq->engine->i915; int mocs = rq->engine->gt->mocs.uc_index << 1; const int ver = GRAPHICS_VER(i915); int ring_sz; u32 *cs; GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX); if (HAS_FLAT_CCS(i915) && ver >= 12) ring_sz = XY_FAST_COLOR_BLT_DW; else if (ver >= 8) ring_sz = 8; else ring_sz = 6; cs = intel_ring_begin(rq, ring_sz); if (IS_ERR(cs)) return PTR_ERR(cs); if (HAS_FLAT_CCS(i915) && ver >= 12) { *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 | (XY_FAST_COLOR_BLT_DW - 2); *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) | (PAGE_SIZE - 1); *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = offset; *cs++ = rq->engine->instance; *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT; /* BG7 */ *cs++ = value; *cs++ = 0; *cs++ = 0; *cs++ = 0; /* BG11 */ *cs++ = 0; *cs++ = 0; /* BG13 */ *cs++ = 0; *cs++ = 0; *cs++ = 0; } else if (ver >= 8) { *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = offset; *cs++ = rq->engine->instance; *cs++ = value; *cs++ = MI_NOOP; } else { *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2); *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE; *cs++ = 0; *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cs++ = offset; *cs++ = value; } intel_ring_advance(rq, cs); return 0; } int intel_context_migrate_clear(struct intel_context *ce, const struct i915_deps *deps, struct scatterlist *sg, enum i915_cache_level cache_level, bool is_lmem, u32 value, struct i915_request **out) { struct drm_i915_private *i915 = ce->engine->i915; struct sgt_dma it = sg_sgt(sg); struct i915_request *rq; u32 offset; int err; GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm); *out = NULL; GEM_BUG_ON(ce->ring->size < SZ_64K); offset = 0; if (HAS_64K_PAGES(i915) && is_lmem) offset = CHUNK_SZ; do { int len; rq = i915_request_create(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_ce; } if (deps) { err = i915_request_await_deps(rq, deps); if (err) goto out_rq; if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) goto out_rq; } deps = NULL; } /* The PTE updates + clear must not be interrupted. */ err = emit_no_arbitration(rq); if (err) goto out_rq; len = emit_pte(rq, &it, cache_level, is_lmem, offset, CHUNK_SZ); if (len <= 0) { err = len; goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); if (err) goto out_rq; err = emit_clear(rq, offset, len, value, is_lmem); if (err) goto out_rq; if (HAS_FLAT_CCS(i915) && is_lmem && !value) { /* * copy the content of memory into corresponding * ccs surface */ err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset, DIRECT_ACCESS, len); if (err) goto out_rq; } err = rq->engine->emit_flush(rq, EMIT_INVALIDATE); /* Arbitration is re-enabled between requests. */ out_rq: if (*out) i915_request_put(*out); *out = i915_request_get(rq); i915_request_add(rq); if (err || !it.sg || !sg_dma_len(it.sg)) break; cond_resched(); } while (1); out_ce: return err; } int intel_migrate_copy(struct intel_migrate *m, struct i915_gem_ww_ctx *ww, const struct i915_deps *deps, struct scatterlist *src, enum i915_cache_level src_cache_level, bool src_is_lmem, struct scatterlist *dst, enum i915_cache_level dst_cache_level, bool dst_is_lmem, struct i915_request **out) { struct intel_context *ce; int err; *out = NULL; if (!m->context) return -ENODEV; ce = intel_migrate_create_context(m); if (IS_ERR(ce)) ce = intel_context_get(m->context); GEM_BUG_ON(IS_ERR(ce)); err = intel_context_pin_ww(ce, ww); if (err) goto out; err = intel_context_migrate_copy(ce, deps, src, src_cache_level, src_is_lmem, dst, dst_cache_level, dst_is_lmem, out); intel_context_unpin(ce); out: intel_context_put(ce); return err; } int intel_migrate_clear(struct intel_migrate *m, struct i915_gem_ww_ctx *ww, const struct i915_deps *deps, struct scatterlist *sg, enum i915_cache_level cache_level, bool is_lmem, u32 value, struct i915_request **out) { struct intel_context *ce; int err; *out = NULL; if (!m->context) return -ENODEV; ce = intel_migrate_create_context(m); if (IS_ERR(ce)) ce = intel_context_get(m->context); GEM_BUG_ON(IS_ERR(ce)); err = intel_context_pin_ww(ce, ww); if (err) goto out; err = intel_context_migrate_clear(ce, deps, sg, cache_level, is_lmem, value, out); intel_context_unpin(ce); out: intel_context_put(ce); return err; } void intel_migrate_fini(struct intel_migrate *m) { struct intel_context *ce; ce = fetch_and_zero(&m->context); if (!ce) return; intel_engine_destroy_pinned_context(ce); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_migrate.c" #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1