Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 1753 | 90.45% | 34 | 57.63% |
Umesh Nerlige Ramappa | 108 | 5.57% | 4 | 6.78% |
Tvrtko A. Ursulin | 27 | 1.39% | 8 | 13.56% |
Akash Goel | 9 | 0.46% | 1 | 1.69% |
Alex Dai | 9 | 0.46% | 2 | 3.39% |
Michal Wajdeczko | 6 | 0.31% | 2 | 3.39% |
Daniele Ceraolo Spurio | 6 | 0.31% | 1 | 1.69% |
Tejas Upadhyay | 4 | 0.21% | 1 | 1.69% |
Carl Worth | 4 | 0.21% | 1 | 1.69% |
Michał Winiarski | 4 | 0.21% | 1 | 1.69% |
Matt Roper | 3 | 0.15% | 1 | 1.69% |
Sagar Arun Kamble | 3 | 0.15% | 1 | 1.69% |
Lucas De Marchi | 1 | 0.05% | 1 | 1.69% |
Oscar Mateo | 1 | 0.05% | 1 | 1.69% |
Total | 1938 | 59 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright © 2018 Intel Corporation */ #include <linux/sort.h> #include "i915_selftest.h" #include "intel_engine_regs.h" #include "intel_gpu_commands.h" #include "intel_gt_clock_utils.h" #include "selftest_engine.h" #include "selftest_engine_heartbeat.h" #include "selftests/igt_atomic.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_spinner.h" #define COUNT 5 static int cmp_u64(const void *A, const void *B) { const u64 *a = A, *b = B; return *a - *b; } static u64 trifilter(u64 *a) { sort(a, COUNT, sizeof(*a), cmp_u64, NULL); return (a[1] + 2 * a[2] + a[3]) >> 2; } static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value) { *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT | MI_SEMAPHORE_POLL | op; *cs++ = value; *cs++ = offset; *cs++ = 0; return cs; } static u32 *emit_store(u32 *cs, u32 offset, u32 value) { *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *cs++ = offset; *cs++ = 0; *cs++ = value; return cs; } static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset) { *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; *cs++ = i915_mmio_reg_offset(reg); *cs++ = offset; *cs++ = 0; return cs; } static void write_semaphore(u32 *x, u32 value) { WRITE_ONCE(*x, value); wmb(); } static int __measure_timestamps(struct intel_context *ce, u64 *dt, u64 *d_ring, u64 *d_ctx) { struct intel_engine_cs *engine = ce->engine; u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5); u32 offset = i915_ggtt_offset(engine->status_page.vma); struct i915_request *rq; u32 *cs; rq = intel_context_create_request(ce); if (IS_ERR(rq)) return PTR_ERR(rq); cs = intel_ring_begin(rq, 28); if (IS_ERR(cs)) { i915_request_add(rq); return PTR_ERR(cs); } /* Signal & wait for start */ cs = emit_store(cs, offset + 4008, 1); cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1); cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000); cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004); /* Busy wait */ cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1); cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016); cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012); intel_ring_advance(rq, cs); i915_request_get(rq); i915_request_add(rq); intel_engine_flush_submission(engine); /* Wait for the request to start executing, that then waits for us */ while (READ_ONCE(sema[2]) == 0) cpu_relax(); /* Run the request for a 100us, sampling timestamps before/after */ local_irq_disable(); write_semaphore(&sema[2], 0); while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */ cpu_relax(); *dt = local_clock(); udelay(100); *dt = local_clock() - *dt; write_semaphore(&sema[2], 1); local_irq_enable(); if (i915_request_wait(rq, 0, HZ / 2) < 0) { i915_request_put(rq); return -ETIME; } i915_request_put(rq); pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n", engine->name, sema[1], sema[3], sema[0], sema[4]); *d_ctx = sema[3] - sema[1]; *d_ring = sema[4] - sema[0]; return 0; } static int __live_engine_timestamps(struct intel_engine_cs *engine) { u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt; struct intel_context *ce; int i, err = 0; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); for (i = 0; i < COUNT; i++) { err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]); if (err) break; } intel_context_put(ce); if (err) return err; dt = trifilter(st); d_ring = trifilter(s_ring); d_ctx = trifilter(s_ctx); pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n", engine->name, dt, intel_gt_clock_interval_to_ns(engine->gt, d_ctx), intel_gt_clock_interval_to_ns(engine->gt, d_ring)); d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring); if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) { pr_err("%s Mismatch between ring timestamp and walltime!\n", engine->name); return -EINVAL; } d_ring = trifilter(s_ring); d_ctx = trifilter(s_ctx); d_ctx *= engine->gt->clock_frequency; if (GRAPHICS_VER(engine->i915) == 11) d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */ else d_ring *= engine->gt->clock_frequency; if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) { pr_err("%s Mismatch between ring and context timestamps!\n", engine->name); return -EINVAL; } return 0; } static int live_engine_timestamps(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share * the same CS clock. */ if (GRAPHICS_VER(gt->i915) < 8) return 0; for_each_engine(engine, gt, id) { int err; st_engine_heartbeat_disable(engine); err = __live_engine_timestamps(engine); st_engine_heartbeat_enable(engine); if (err) return err; } return 0; } static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness) { ktime_t start, unused, dt; if (!intel_engine_uses_guc(engine)) return 0; /* * In GuC mode of submission, the busyness stats may get updated after * the batch starts running. Poll for a change in busyness and timeout * after 500 us. */ start = ktime_get(); while (intel_engine_get_busy_time(engine, &unused) == busyness) { dt = ktime_get() - start; if (dt > 10000000) { pr_err("active wait timed out %lld\n", dt); ENGINE_TRACE(engine, "active wait time out %lld\n", dt); return -ETIME; } } return 0; } static int live_engine_busy_stats(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; struct igt_spinner spin; int err = 0; /* * Check that if an engine supports busy-stats, they tell the truth. */ if (igt_spinner_init(&spin, gt)) return -ENOMEM; GEM_BUG_ON(intel_gt_pm_is_awake(gt)); for_each_engine(engine, gt, id) { struct i915_request *rq; ktime_t busyness, dummy; ktime_t de, dt; ktime_t t[2]; if (!intel_engine_supports_stats(engine)) continue; if (!intel_engine_can_store_dword(engine)) continue; if (intel_gt_pm_wait_for_idle(gt)) { err = -EBUSY; break; } st_engine_heartbeat_disable(engine); ENGINE_TRACE(engine, "measuring idle time\n"); preempt_disable(); de = intel_engine_get_busy_time(engine, &t[0]); udelay(100); de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); preempt_enable(); dt = ktime_sub(t[1], t[0]); if (de < 0 || de > 10) { pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n", engine->name, de, (int)div64_u64(100 * de, dt), dt); GEM_TRACE_DUMP(); err = -EINVAL; goto end; } /* 100% busy */ rq = igt_spinner_create_request(&spin, engine->kernel_context, MI_NOOP); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto end; } i915_request_add(rq); busyness = intel_engine_get_busy_time(engine, &dummy); if (!igt_wait_for_spinner(&spin, rq)) { intel_gt_set_wedged(engine->gt); err = -ETIME; goto end; } err = __spin_until_busier(engine, busyness); if (err) { GEM_TRACE_DUMP(); goto end; } ENGINE_TRACE(engine, "measuring busy time\n"); preempt_disable(); de = intel_engine_get_busy_time(engine, &t[0]); mdelay(100); de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); preempt_enable(); dt = ktime_sub(t[1], t[0]); if (100 * de < 95 * dt || 95 * de > 100 * dt) { pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n", engine->name, de, (int)div64_u64(100 * de, dt), dt); GEM_TRACE_DUMP(); err = -EINVAL; goto end; } end: st_engine_heartbeat_enable(engine); igt_spinner_end(&spin); if (igt_flush_test(gt->i915)) err = -EIO; if (err) break; } igt_spinner_fini(&spin); if (igt_flush_test(gt->i915)) err = -EIO; return err; } static int live_engine_pm(void *arg) { struct intel_gt *gt = arg; struct intel_engine_cs *engine; enum intel_engine_id id; /* * Check we can call intel_engine_pm_put from any context. No * failures are reported directly, but if we mess up lockdep should * tell us. */ if (intel_gt_pm_wait_for_idle(gt)) { pr_err("Unable to flush GT pm before test\n"); return -EBUSY; } GEM_BUG_ON(intel_gt_pm_is_awake(gt)); for_each_engine(engine, gt, id) { const typeof(*igt_atomic_phases) *p; for (p = igt_atomic_phases; p->name; p++) { /* * Acquisition is always synchronous, except if we * know that the engine is already awake, in which * case we should use intel_engine_pm_get_if_awake() * to atomically grab the wakeref. * * In practice, * intel_engine_pm_get(); * intel_engine_pm_put(); * occurs in one thread, while simultaneously * intel_engine_pm_get_if_awake(); * intel_engine_pm_put(); * occurs from atomic context in another. */ GEM_BUG_ON(intel_engine_pm_is_awake(engine)); intel_engine_pm_get(engine); p->critical_section_begin(); if (!intel_engine_pm_get_if_awake(engine)) pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n", engine->name, p->name); else intel_engine_pm_put_async(engine); intel_engine_pm_put_async(engine); p->critical_section_end(); intel_engine_pm_flush(engine); if (intel_engine_pm_is_awake(engine)) { pr_err("%s is still awake after flushing pm\n", engine->name); return -EINVAL; } /* gt wakeref is async (deferred to workqueue) */ if (intel_gt_pm_wait_for_idle(gt)) { pr_err("GT failed to idle\n"); return -EINVAL; } } } return 0; } int live_engine_pm_selftests(struct intel_gt *gt) { static const struct i915_subtest tests[] = { SUBTEST(live_engine_timestamps), SUBTEST(live_engine_busy_stats), SUBTEST(live_engine_pm), }; return intel_gt_live_subtests(tests, gt); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1