Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jike Song | 3938 | 41.85% | 9 | 6.25% |
Changbin Du | 1106 | 11.75% | 14 | 9.72% |
Tina Zhang | 810 | 8.61% | 5 | 3.47% |
Zhi Wang | 806 | 8.57% | 16 | 11.11% |
Christoph Hellwig | 715 | 7.60% | 23 | 15.97% |
Hang Yuan | 713 | 7.58% | 4 | 2.78% |
Zhenyu Wang | 301 | 3.20% | 9 | 6.25% |
Chuanxiao Dong | 170 | 1.81% | 6 | 4.17% |
Kevin Tian | 103 | 1.09% | 1 | 0.69% |
Colin Xu | 75 | 0.80% | 4 | 2.78% |
Jason Gunthorpe | 70 | 0.74% | 8 | 5.56% |
Julian Stecklina | 70 | 0.74% | 2 | 1.39% |
Xiong Zhang | 57 | 0.61% | 2 | 1.39% |
Ping Gao | 56 | 0.60% | 5 | 3.47% |
Alex Williamson | 49 | 0.52% | 1 | 0.69% |
Jani Nikula | 39 | 0.41% | 3 | 2.08% |
Chris Wilson | 38 | 0.40% | 3 | 2.08% |
Nicolin Chen | 34 | 0.36% | 3 | 2.08% |
Gustavo A. R. Silva | 31 | 0.33% | 2 | 1.39% |
fred gao | 29 | 0.31% | 1 | 0.69% |
Yi L Liu | 29 | 0.31% | 1 | 0.69% |
Matthew Rosato | 28 | 0.30% | 1 | 0.69% |
Xiaolin Zhang | 23 | 0.24% | 2 | 1.39% |
Pei Zhang | 23 | 0.24% | 1 | 0.69% |
Yi Wang | 21 | 0.22% | 1 | 0.69% |
Sean Christopherson | 18 | 0.19% | 2 | 1.39% |
Pankaj Bharadiya | 10 | 0.11% | 1 | 0.69% |
Weinan Li | 8 | 0.09% | 1 | 0.69% |
Dan Carpenter | 7 | 0.07% | 1 | 0.69% |
Paolo Bonzini | 6 | 0.06% | 1 | 0.69% |
Thomas Zimmermann | 4 | 0.04% | 1 | 0.69% |
Michał Winiarski | 3 | 0.03% | 1 | 0.69% |
Dave Airlie | 3 | 0.03% | 1 | 0.69% |
Deepak R Varma | 3 | 0.03% | 1 | 0.69% |
Kirti Wankhede | 3 | 0.03% | 1 | 0.69% |
Zhao Yan | 3 | 0.03% | 1 | 0.69% |
Dong Jia Shi | 2 | 0.02% | 1 | 0.69% |
Gerd Hoffmann | 2 | 0.02% | 1 | 0.69% |
caihuoqing | 2 | 0.02% | 1 | 0.69% |
Greg Kroah-Hartman | 2 | 0.02% | 2 | 1.39% |
Total | 9410 | 144 |
/* * KVMGT - the implementation of Intel mediated pass-through framework for KVM * * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Kevin Tian <kevin.tian@intel.com> * Jike Song <jike.song@intel.com> * Xiaoguang Chen <xiaoguang.chen@intel.com> * Eddie Dong <eddie.dong@intel.com> * * Contributors: * Niu Bing <bing.niu@intel.com> * Zhi Wang <zhi.a.wang@intel.com> */ #include <linux/init.h> #include <linux/mm.h> #include <linux/kthread.h> #include <linux/sched/mm.h> #include <linux/types.h> #include <linux/list.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/eventfd.h> #include <linux/mdev.h> #include <linux/debugfs.h> #include <linux/nospec.h> #include <drm/drm_edid.h> #include "i915_drv.h" #include "intel_gvt.h" #include "gvt.h" MODULE_IMPORT_NS(DMA_BUF); MODULE_IMPORT_NS(I915_GVT); /* helper macros copied from vfio-pci */ #define VFIO_PCI_OFFSET_SHIFT 40 #define VFIO_PCI_OFFSET_TO_INDEX(off) (off >> VFIO_PCI_OFFSET_SHIFT) #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT) #define VFIO_PCI_OFFSET_MASK (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1) #define EDID_BLOB_OFFSET (PAGE_SIZE/2) #define OPREGION_SIGNATURE "IntelGraphicsMem" struct vfio_region; struct intel_vgpu_regops { size_t (*rw)(struct intel_vgpu *vgpu, char *buf, size_t count, loff_t *ppos, bool iswrite); void (*release)(struct intel_vgpu *vgpu, struct vfio_region *region); }; struct vfio_region { u32 type; u32 subtype; size_t size; u32 flags; const struct intel_vgpu_regops *ops; void *data; }; struct vfio_edid_region { struct vfio_region_gfx_edid vfio_edid_regs; void *edid_blob; }; struct kvmgt_pgfn { gfn_t gfn; struct hlist_node hnode; }; struct gvt_dma { struct intel_vgpu *vgpu; struct rb_node gfn_node; struct rb_node dma_addr_node; gfn_t gfn; dma_addr_t dma_addr; unsigned long size; struct kref ref; }; #define vfio_dev_to_vgpu(vfio_dev) \ container_of((vfio_dev), struct intel_vgpu, vfio_device) static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *val, int len, struct kvm_page_track_notifier_node *node); static void kvmgt_page_track_flush_slot(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_page_track_notifier_node *node); static ssize_t intel_vgpu_show_description(struct mdev_type *mtype, char *buf) { struct intel_vgpu_type *type = container_of(mtype, struct intel_vgpu_type, type); return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n" "fence: %d\nresolution: %s\n" "weight: %d\n", BYTES_TO_MB(type->conf->low_mm), BYTES_TO_MB(type->conf->high_mm), type->conf->fence, vgpu_edid_str(type->conf->edid), type->conf->weight); } static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn, unsigned long size) { vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT, DIV_ROUND_UP(size, PAGE_SIZE)); } /* Pin a normal or compound guest page for dma. */ static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn, unsigned long size, struct page **page) { int total_pages = DIV_ROUND_UP(size, PAGE_SIZE); struct page *base_page = NULL; int npage; int ret; /* * We pin the pages one-by-one to avoid allocating a big arrary * on stack to hold pfns. */ for (npage = 0; npage < total_pages; npage++) { dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT; struct page *cur_page; ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1, IOMMU_READ | IOMMU_WRITE, &cur_page); if (ret != 1) { gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n", &cur_iova, ret); goto err; } if (npage == 0) base_page = cur_page; else if (base_page + npage != cur_page) { gvt_vgpu_err("The pages are not continuous\n"); ret = -EINVAL; npage++; goto err; } } *page = base_page; return 0; err: gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE); return ret; } static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn, dma_addr_t *dma_addr, unsigned long size) { struct device *dev = vgpu->gvt->gt->i915->drm.dev; struct page *page = NULL; int ret; ret = gvt_pin_guest_page(vgpu, gfn, size, &page); if (ret) return ret; /* Setup DMA mapping. */ *dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, *dma_addr)) { gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n", page_to_pfn(page), ret); gvt_unpin_guest_page(vgpu, gfn, size); return -ENOMEM; } return 0; } static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn, dma_addr_t dma_addr, unsigned long size) { struct device *dev = vgpu->gvt->gt->i915->drm.dev; dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL); gvt_unpin_guest_page(vgpu, gfn, size); } static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu, dma_addr_t dma_addr) { struct rb_node *node = vgpu->dma_addr_cache.rb_node; struct gvt_dma *itr; while (node) { itr = rb_entry(node, struct gvt_dma, dma_addr_node); if (dma_addr < itr->dma_addr) node = node->rb_left; else if (dma_addr > itr->dma_addr) node = node->rb_right; else return itr; } return NULL; } static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn) { struct rb_node *node = vgpu->gfn_cache.rb_node; struct gvt_dma *itr; while (node) { itr = rb_entry(node, struct gvt_dma, gfn_node); if (gfn < itr->gfn) node = node->rb_left; else if (gfn > itr->gfn) node = node->rb_right; else return itr; } return NULL; } static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn, dma_addr_t dma_addr, unsigned long size) { struct gvt_dma *new, *itr; struct rb_node **link, *parent = NULL; new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL); if (!new) return -ENOMEM; new->vgpu = vgpu; new->gfn = gfn; new->dma_addr = dma_addr; new->size = size; kref_init(&new->ref); /* gfn_cache maps gfn to struct gvt_dma. */ link = &vgpu->gfn_cache.rb_node; while (*link) { parent = *link; itr = rb_entry(parent, struct gvt_dma, gfn_node); if (gfn < itr->gfn) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node(&new->gfn_node, parent, link); rb_insert_color(&new->gfn_node, &vgpu->gfn_cache); /* dma_addr_cache maps dma addr to struct gvt_dma. */ parent = NULL; link = &vgpu->dma_addr_cache.rb_node; while (*link) { parent = *link; itr = rb_entry(parent, struct gvt_dma, dma_addr_node); if (dma_addr < itr->dma_addr) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node(&new->dma_addr_node, parent, link); rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache); vgpu->nr_cache_entries++; return 0; } static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu, struct gvt_dma *entry) { rb_erase(&entry->gfn_node, &vgpu->gfn_cache); rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache); kfree(entry); vgpu->nr_cache_entries--; } static void gvt_cache_destroy(struct intel_vgpu *vgpu) { struct gvt_dma *dma; struct rb_node *node = NULL; for (;;) { mutex_lock(&vgpu->cache_lock); node = rb_first(&vgpu->gfn_cache); if (!node) { mutex_unlock(&vgpu->cache_lock); break; } dma = rb_entry(node, struct gvt_dma, gfn_node); gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size); __gvt_cache_remove_entry(vgpu, dma); mutex_unlock(&vgpu->cache_lock); } } static void gvt_cache_init(struct intel_vgpu *vgpu) { vgpu->gfn_cache = RB_ROOT; vgpu->dma_addr_cache = RB_ROOT; vgpu->nr_cache_entries = 0; mutex_init(&vgpu->cache_lock); } static void kvmgt_protect_table_init(struct intel_vgpu *info) { hash_init(info->ptable); } static void kvmgt_protect_table_destroy(struct intel_vgpu *info) { struct kvmgt_pgfn *p; struct hlist_node *tmp; int i; hash_for_each_safe(info->ptable, i, tmp, p, hnode) { hash_del(&p->hnode); kfree(p); } } static struct kvmgt_pgfn * __kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn) { struct kvmgt_pgfn *p, *res = NULL; hash_for_each_possible(info->ptable, p, hnode, gfn) { if (gfn == p->gfn) { res = p; break; } } return res; } static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn) { struct kvmgt_pgfn *p; p = __kvmgt_protect_table_find(info, gfn); return !!p; } static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn) { struct kvmgt_pgfn *p; if (kvmgt_gfn_is_write_protected(info, gfn)) return; p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC); if (WARN(!p, "gfn: 0x%llx\n", gfn)) return; p->gfn = gfn; hash_add(info->ptable, &p->hnode, gfn); } static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn) { struct kvmgt_pgfn *p; p = __kvmgt_protect_table_find(info, gfn); if (p) { hash_del(&p->hnode); kfree(p); } } static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf, size_t count, loff_t *ppos, bool iswrite) { unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS; void *base = vgpu->region[i].data; loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK; if (pos >= vgpu->region[i].size || iswrite) { gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n"); return -EINVAL; } count = min(count, (size_t)(vgpu->region[i].size - pos)); memcpy(buf, base + pos, count); return count; } static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu, struct vfio_region *region) { } static const struct intel_vgpu_regops intel_vgpu_regops_opregion = { .rw = intel_vgpu_reg_rw_opregion, .release = intel_vgpu_reg_release_opregion, }; static int handle_edid_regs(struct intel_vgpu *vgpu, struct vfio_edid_region *region, char *buf, size_t count, u16 offset, bool is_write) { struct vfio_region_gfx_edid *regs = ®ion->vfio_edid_regs; unsigned int data; if (offset + count > sizeof(*regs)) return -EINVAL; if (count != 4) return -EINVAL; if (is_write) { data = *((unsigned int *)buf); switch (offset) { case offsetof(struct vfio_region_gfx_edid, link_state): if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) { if (!drm_edid_block_valid( (u8 *)region->edid_blob, 0, true, NULL)) { gvt_vgpu_err("invalid EDID blob\n"); return -EINVAL; } intel_vgpu_emulate_hotplug(vgpu, true); } else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN) intel_vgpu_emulate_hotplug(vgpu, false); else { gvt_vgpu_err("invalid EDID link state %d\n", regs->link_state); return -EINVAL; } regs->link_state = data; break; case offsetof(struct vfio_region_gfx_edid, edid_size): if (data > regs->edid_max_size) { gvt_vgpu_err("EDID size is bigger than %d!\n", regs->edid_max_size); return -EINVAL; } regs->edid_size = data; break; default: /* read-only regs */ gvt_vgpu_err("write read-only EDID region at offset %d\n", offset); return -EPERM; } } else { memcpy(buf, (char *)regs + offset, count); } return count; } static int handle_edid_blob(struct vfio_edid_region *region, char *buf, size_t count, u16 offset, bool is_write) { if (offset + count > region->vfio_edid_regs.edid_size) return -EINVAL; if (is_write) memcpy(region->edid_blob + offset, buf, count); else memcpy(buf, region->edid_blob + offset, count); return count; } static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf, size_t count, loff_t *ppos, bool iswrite) { int ret; unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) - VFIO_PCI_NUM_REGIONS; struct vfio_edid_region *region = vgpu->region[i].data; loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK; if (pos < region->vfio_edid_regs.edid_offset) { ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite); } else { pos -= EDID_BLOB_OFFSET; ret = handle_edid_blob(region, buf, count, pos, iswrite); } if (ret < 0) gvt_vgpu_err("failed to access EDID region\n"); return ret; } static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu, struct vfio_region *region) { kfree(region->data); } static const struct intel_vgpu_regops intel_vgpu_regops_edid = { .rw = intel_vgpu_reg_rw_edid, .release = intel_vgpu_reg_release_edid, }; static int intel_vgpu_register_reg(struct intel_vgpu *vgpu, unsigned int type, unsigned int subtype, const struct intel_vgpu_regops *ops, size_t size, u32 flags, void *data) { struct vfio_region *region; region = krealloc(vgpu->region, (vgpu->num_regions + 1) * sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; vgpu->region = region; vgpu->region[vgpu->num_regions].type = type; vgpu->region[vgpu->num_regions].subtype = subtype; vgpu->region[vgpu->num_regions].ops = ops; vgpu->region[vgpu->num_regions].size = size; vgpu->region[vgpu->num_regions].flags = flags; vgpu->region[vgpu->num_regions].data = data; vgpu->num_regions++; return 0; } int intel_gvt_set_opregion(struct intel_vgpu *vgpu) { void *base; int ret; /* Each vgpu has its own opregion, although VFIO would create another * one later. This one is used to expose opregion to VFIO. And the * other one created by VFIO later, is used by guest actually. */ base = vgpu_opregion(vgpu)->va; if (!base) return -ENOMEM; if (memcmp(base, OPREGION_SIGNATURE, 16)) { memunmap(base); return -EINVAL; } ret = intel_vgpu_register_reg(vgpu, PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE, VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &intel_vgpu_regops_opregion, OPREGION_SIZE, VFIO_REGION_INFO_FLAG_READ, base); return ret; } int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num) { struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num); struct vfio_edid_region *base; int ret; base = kzalloc(sizeof(*base), GFP_KERNEL); if (!base) return -ENOMEM; /* TODO: Add multi-port and EDID extension block support */ base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET; base->vfio_edid_regs.edid_max_size = EDID_SIZE; base->vfio_edid_regs.edid_size = EDID_SIZE; base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id); base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id); base->edid_blob = port->edid->edid_block; ret = intel_vgpu_register_reg(vgpu, VFIO_REGION_TYPE_GFX, VFIO_REGION_SUBTYPE_GFX_EDID, &intel_vgpu_regops_edid, EDID_SIZE, VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE | VFIO_REGION_INFO_FLAG_CAPS, base); return ret; } static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova, u64 length) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); struct gvt_dma *entry; u64 iov_pfn = iova >> PAGE_SHIFT; u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE; mutex_lock(&vgpu->cache_lock); for (; iov_pfn < end_iov_pfn; iov_pfn++) { entry = __gvt_cache_find_gfn(vgpu, iov_pfn); if (!entry) continue; gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr, entry->size); __gvt_cache_remove_entry(vgpu, entry); } mutex_unlock(&vgpu->cache_lock); } static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu) { struct intel_vgpu *itr; int id; bool ret = false; mutex_lock(&vgpu->gvt->lock); for_each_active_vgpu(vgpu->gvt, itr, id) { if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, itr->status)) continue; if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) { ret = true; goto out; } } out: mutex_unlock(&vgpu->gvt->lock); return ret; } static int intel_vgpu_open_device(struct vfio_device *vfio_dev) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); if (!vgpu->vfio_device.kvm || vgpu->vfio_device.kvm->mm != current->mm) { gvt_vgpu_err("KVM is required to use Intel vGPU\n"); return -ESRCH; } if (__kvmgt_vgpu_exist(vgpu)) return -EEXIST; vgpu->track_node.track_write = kvmgt_page_track_write; vgpu->track_node.track_flush_slot = kvmgt_page_track_flush_slot; kvm_get_kvm(vgpu->vfio_device.kvm); kvm_page_track_register_notifier(vgpu->vfio_device.kvm, &vgpu->track_node); set_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status); debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs, &vgpu->nr_cache_entries); intel_gvt_activate_vgpu(vgpu); return 0; } static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu) { struct eventfd_ctx *trigger; trigger = vgpu->msi_trigger; if (trigger) { eventfd_ctx_put(trigger); vgpu->msi_trigger = NULL; } } static void intel_vgpu_close_device(struct vfio_device *vfio_dev) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); intel_gvt_release_vgpu(vgpu); clear_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status); debugfs_lookup_and_remove(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs); kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm, &vgpu->track_node); kvm_put_kvm(vgpu->vfio_device.kvm); kvmgt_protect_table_destroy(vgpu); gvt_cache_destroy(vgpu); WARN_ON(vgpu->nr_cache_entries); vgpu->gfn_cache = RB_ROOT; vgpu->dma_addr_cache = RB_ROOT; intel_vgpu_release_msi_eventfd_ctx(vgpu); } static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar) { u32 start_lo, start_hi; u32 mem_type; start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) & PCI_BASE_ADDRESS_MEM_MASK; mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) & PCI_BASE_ADDRESS_MEM_TYPE_MASK; switch (mem_type) { case PCI_BASE_ADDRESS_MEM_TYPE_64: start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar + 4)); break; case PCI_BASE_ADDRESS_MEM_TYPE_32: case PCI_BASE_ADDRESS_MEM_TYPE_1M: /* 1M mem BAR treated as 32-bit BAR */ default: /* mem unknown type treated as 32-bit BAR */ start_hi = 0; break; } return ((u64)start_hi << 32) | start_lo; } static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off, void *buf, unsigned int count, bool is_write) { u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar); int ret; if (is_write) ret = intel_vgpu_emulate_mmio_write(vgpu, bar_start + off, buf, count); else ret = intel_vgpu_emulate_mmio_read(vgpu, bar_start + off, buf, count); return ret; } static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off) { return off >= vgpu_aperture_offset(vgpu) && off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu); } static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off, void *buf, unsigned long count, bool is_write) { void __iomem *aperture_va; if (!intel_vgpu_in_aperture(vgpu, off) || !intel_vgpu_in_aperture(vgpu, off + count)) { gvt_vgpu_err("Invalid aperture offset %llu\n", off); return -EINVAL; } aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap, ALIGN_DOWN(off, PAGE_SIZE), count + offset_in_page(off)); if (!aperture_va) return -EIO; if (is_write) memcpy_toio(aperture_va + offset_in_page(off), buf, count); else memcpy_fromio(buf, aperture_va + offset_in_page(off), count); io_mapping_unmap(aperture_va); return 0; } static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf, size_t count, loff_t *ppos, bool is_write) { unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); u64 pos = *ppos & VFIO_PCI_OFFSET_MASK; int ret = -EINVAL; if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) { gvt_vgpu_err("invalid index: %u\n", index); return -EINVAL; } switch (index) { case VFIO_PCI_CONFIG_REGION_INDEX: if (is_write) ret = intel_vgpu_emulate_cfg_write(vgpu, pos, buf, count); else ret = intel_vgpu_emulate_cfg_read(vgpu, pos, buf, count); break; case VFIO_PCI_BAR0_REGION_INDEX: ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos, buf, count, is_write); break; case VFIO_PCI_BAR2_REGION_INDEX: ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write); break; case VFIO_PCI_BAR1_REGION_INDEX: case VFIO_PCI_BAR3_REGION_INDEX: case VFIO_PCI_BAR4_REGION_INDEX: case VFIO_PCI_BAR5_REGION_INDEX: case VFIO_PCI_VGA_REGION_INDEX: case VFIO_PCI_ROM_REGION_INDEX: break; default: if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) return -EINVAL; index -= VFIO_PCI_NUM_REGIONS; return vgpu->region[index].ops->rw(vgpu, buf, count, ppos, is_write); } return ret == 0 ? count : ret; } static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos) { unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos); struct intel_gvt *gvt = vgpu->gvt; int offset; /* Only allow MMIO GGTT entry access */ if (index != PCI_BASE_ADDRESS_0) return false; offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) - intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0); return (offset >= gvt->device_info.gtt_start_offset && offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ? true : false; } static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf, size_t count, loff_t *ppos) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); unsigned int done = 0; int ret; while (count) { size_t filled; /* Only support GGTT entry 8 bytes read */ if (count >= 8 && !(*ppos % 8) && gtt_entry(vgpu, ppos)) { u64 val; ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 8; } else if (count >= 4 && !(*ppos % 4)) { u32 val; ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 4; } else if (count >= 2 && !(*ppos % 2)) { u16 val; ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 2; } else { u8 val; ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos, false); if (ret <= 0) goto read_err; if (copy_to_user(buf, &val, sizeof(val))) goto read_err; filled = 1; } count -= filled; done += filled; *ppos += filled; buf += filled; } return done; read_err: return -EFAULT; } static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev, const char __user *buf, size_t count, loff_t *ppos) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); unsigned int done = 0; int ret; while (count) { size_t filled; /* Only support GGTT entry 8 bytes write */ if (count >= 8 && !(*ppos % 8) && gtt_entry(vgpu, ppos)) { u64 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 8; } else if (count >= 4 && !(*ppos % 4)) { u32 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 4; } else if (count >= 2 && !(*ppos % 2)) { u16 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 2; } else { u8 val; if (copy_from_user(&val, buf, sizeof(val))) goto write_err; ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos, true); if (ret <= 0) goto write_err; filled = 1; } count -= filled; done += filled; *ppos += filled; buf += filled; } return done; write_err: return -EFAULT; } static int intel_vgpu_mmap(struct vfio_device *vfio_dev, struct vm_area_struct *vma) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); unsigned int index; u64 virtaddr; unsigned long req_size, pgoff, req_start; pgprot_t pg_prot; index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT); if (index >= VFIO_PCI_ROM_REGION_INDEX) return -EINVAL; if (vma->vm_end < vma->vm_start) return -EINVAL; if ((vma->vm_flags & VM_SHARED) == 0) return -EINVAL; if (index != VFIO_PCI_BAR2_REGION_INDEX) return -EINVAL; pg_prot = vma->vm_page_prot; virtaddr = vma->vm_start; req_size = vma->vm_end - vma->vm_start; pgoff = vma->vm_pgoff & ((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1); req_start = pgoff << PAGE_SHIFT; if (!intel_vgpu_in_aperture(vgpu, req_start)) return -EINVAL; if (req_start + req_size > vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu)) return -EINVAL; pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff; return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot); } static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type) { if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX) return 1; return 0; } static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, u32 flags, void *data) { return 0; } static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, u32 flags, void *data) { return 0; } static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, u32 flags, void *data) { return 0; } static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, u32 flags, void *data) { struct eventfd_ctx *trigger; if (flags & VFIO_IRQ_SET_DATA_EVENTFD) { int fd = *(int *)data; trigger = eventfd_ctx_fdget(fd); if (IS_ERR(trigger)) { gvt_vgpu_err("eventfd_ctx_fdget failed\n"); return PTR_ERR(trigger); } vgpu->msi_trigger = trigger; } else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count) intel_vgpu_release_msi_eventfd_ctx(vgpu); return 0; } static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags, unsigned int index, unsigned int start, unsigned int count, void *data) { int (*func)(struct intel_vgpu *vgpu, unsigned int index, unsigned int start, unsigned int count, u32 flags, void *data) = NULL; switch (index) { case VFIO_PCI_INTX_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_MASK: func = intel_vgpu_set_intx_mask; break; case VFIO_IRQ_SET_ACTION_UNMASK: func = intel_vgpu_set_intx_unmask; break; case VFIO_IRQ_SET_ACTION_TRIGGER: func = intel_vgpu_set_intx_trigger; break; } break; case VFIO_PCI_MSI_IRQ_INDEX: switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) { case VFIO_IRQ_SET_ACTION_MASK: case VFIO_IRQ_SET_ACTION_UNMASK: /* XXX Need masking support exported */ break; case VFIO_IRQ_SET_ACTION_TRIGGER: func = intel_vgpu_set_msi_trigger; break; } break; } if (!func) return -ENOTTY; return func(vgpu, index, start, count, flags, data); } static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd, unsigned long arg) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); unsigned long minsz; gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd); if (cmd == VFIO_DEVICE_GET_INFO) { struct vfio_device_info info; minsz = offsetofend(struct vfio_device_info, num_irqs); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; info.flags = VFIO_DEVICE_FLAGS_PCI; info.flags |= VFIO_DEVICE_FLAGS_RESET; info.num_regions = VFIO_PCI_NUM_REGIONS + vgpu->num_regions; info.num_irqs = VFIO_PCI_NUM_IRQS; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_GET_REGION_INFO) { struct vfio_region_info info; struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; unsigned int i; int ret; struct vfio_region_info_cap_sparse_mmap *sparse = NULL; int nr_areas = 1; int cap_type_id; minsz = offsetofend(struct vfio_region_info, offset); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; switch (info.index) { case VFIO_PCI_CONFIG_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = vgpu->gvt->device_info.cfg_space_size; info.flags = VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE; break; case VFIO_PCI_BAR0_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = vgpu->cfg_space.bar[info.index].size; if (!info.size) { info.flags = 0; break; } info.flags = VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE; break; case VFIO_PCI_BAR1_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = 0; info.flags = 0; break; case VFIO_PCI_BAR2_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.flags = VFIO_REGION_INFO_FLAG_CAPS | VFIO_REGION_INFO_FLAG_MMAP | VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE; info.size = gvt_aperture_sz(vgpu->gvt); sparse = kzalloc(struct_size(sparse, areas, nr_areas), GFP_KERNEL); if (!sparse) return -ENOMEM; sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; sparse->header.version = 1; sparse->nr_areas = nr_areas; cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP; sparse->areas[0].offset = PAGE_ALIGN(vgpu_aperture_offset(vgpu)); sparse->areas[0].size = vgpu_aperture_sz(vgpu); break; case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = 0; info.flags = 0; gvt_dbg_core("get region info bar:%d\n", info.index); break; case VFIO_PCI_ROM_REGION_INDEX: case VFIO_PCI_VGA_REGION_INDEX: info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = 0; info.flags = 0; gvt_dbg_core("get region info index:%d\n", info.index); break; default: { struct vfio_region_info_cap_type cap_type = { .header.id = VFIO_REGION_INFO_CAP_TYPE, .header.version = 1 }; if (info.index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) return -EINVAL; info.index = array_index_nospec(info.index, VFIO_PCI_NUM_REGIONS + vgpu->num_regions); i = info.index - VFIO_PCI_NUM_REGIONS; info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index); info.size = vgpu->region[i].size; info.flags = vgpu->region[i].flags; cap_type.type = vgpu->region[i].type; cap_type.subtype = vgpu->region[i].subtype; ret = vfio_info_add_capability(&caps, &cap_type.header, sizeof(cap_type)); if (ret) return ret; } } if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) { switch (cap_type_id) { case VFIO_REGION_INFO_CAP_SPARSE_MMAP: ret = vfio_info_add_capability(&caps, &sparse->header, struct_size(sparse, areas, sparse->nr_areas)); if (ret) { kfree(sparse); return ret; } break; default: kfree(sparse); return -EINVAL; } } if (caps.size) { info.flags |= VFIO_REGION_INFO_FLAG_CAPS; if (info.argsz < sizeof(info) + caps.size) { info.argsz = sizeof(info) + caps.size; info.cap_offset = 0; } else { vfio_info_cap_shift(&caps, sizeof(info)); if (copy_to_user((void __user *)arg + sizeof(info), caps.buf, caps.size)) { kfree(caps.buf); kfree(sparse); return -EFAULT; } info.cap_offset = sizeof(info); } kfree(caps.buf); } kfree(sparse); return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) { struct vfio_irq_info info; minsz = offsetofend(struct vfio_irq_info, count); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS) return -EINVAL; switch (info.index) { case VFIO_PCI_INTX_IRQ_INDEX: case VFIO_PCI_MSI_IRQ_INDEX: break; default: return -EINVAL; } info.flags = VFIO_IRQ_INFO_EVENTFD; info.count = intel_vgpu_get_irq_count(vgpu, info.index); if (info.index == VFIO_PCI_INTX_IRQ_INDEX) info.flags |= (VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED); else info.flags |= VFIO_IRQ_INFO_NORESIZE; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_SET_IRQS) { struct vfio_irq_set hdr; u8 *data = NULL; int ret = 0; size_t data_size = 0; minsz = offsetofend(struct vfio_irq_set, count); if (copy_from_user(&hdr, (void __user *)arg, minsz)) return -EFAULT; if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) { int max = intel_vgpu_get_irq_count(vgpu, hdr.index); ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS, &data_size); if (ret) { gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n"); return -EINVAL; } if (data_size) { data = memdup_user((void __user *)(arg + minsz), data_size); if (IS_ERR(data)) return PTR_ERR(data); } } ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index, hdr.start, hdr.count, data); kfree(data); return ret; } else if (cmd == VFIO_DEVICE_RESET) { intel_gvt_reset_vgpu(vgpu); return 0; } else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) { struct vfio_device_gfx_plane_info dmabuf; int ret = 0; minsz = offsetofend(struct vfio_device_gfx_plane_info, dmabuf_id); if (copy_from_user(&dmabuf, (void __user *)arg, minsz)) return -EFAULT; if (dmabuf.argsz < minsz) return -EINVAL; ret = intel_vgpu_query_plane(vgpu, &dmabuf); if (ret != 0) return ret; return copy_to_user((void __user *)arg, &dmabuf, minsz) ? -EFAULT : 0; } else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) { __u32 dmabuf_id; if (get_user(dmabuf_id, (__u32 __user *)arg)) return -EFAULT; return intel_vgpu_get_dmabuf(vgpu, dmabuf_id); } return -ENOTTY; } static ssize_t vgpu_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct intel_vgpu *vgpu = dev_get_drvdata(dev); return sprintf(buf, "%d\n", vgpu->id); } static DEVICE_ATTR_RO(vgpu_id); static struct attribute *intel_vgpu_attrs[] = { &dev_attr_vgpu_id.attr, NULL }; static const struct attribute_group intel_vgpu_group = { .name = "intel_vgpu", .attrs = intel_vgpu_attrs, }; static const struct attribute_group *intel_vgpu_groups[] = { &intel_vgpu_group, NULL, }; static int intel_vgpu_init_dev(struct vfio_device *vfio_dev) { struct mdev_device *mdev = to_mdev_device(vfio_dev->dev); struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); struct intel_vgpu_type *type = container_of(mdev->type, struct intel_vgpu_type, type); int ret; vgpu->gvt = kdev_to_i915(mdev->type->parent->dev)->gvt; ret = intel_gvt_create_vgpu(vgpu, type->conf); if (ret) return ret; kvmgt_protect_table_init(vgpu); gvt_cache_init(vgpu); return 0; } static void intel_vgpu_release_dev(struct vfio_device *vfio_dev) { struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev); intel_gvt_destroy_vgpu(vgpu); } static const struct vfio_device_ops intel_vgpu_dev_ops = { .init = intel_vgpu_init_dev, .release = intel_vgpu_release_dev, .open_device = intel_vgpu_open_device, .close_device = intel_vgpu_close_device, .read = intel_vgpu_read, .write = intel_vgpu_write, .mmap = intel_vgpu_mmap, .ioctl = intel_vgpu_ioctl, .dma_unmap = intel_vgpu_dma_unmap, .bind_iommufd = vfio_iommufd_emulated_bind, .unbind_iommufd = vfio_iommufd_emulated_unbind, .attach_ioas = vfio_iommufd_emulated_attach_ioas, }; static int intel_vgpu_probe(struct mdev_device *mdev) { struct intel_vgpu *vgpu; int ret; vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev, &intel_vgpu_dev_ops); if (IS_ERR(vgpu)) { gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu)); return PTR_ERR(vgpu); } dev_set_drvdata(&mdev->dev, vgpu); ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device); if (ret) goto out_put_vdev; gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n", dev_name(mdev_dev(mdev))); return 0; out_put_vdev: vfio_put_device(&vgpu->vfio_device); return ret; } static void intel_vgpu_remove(struct mdev_device *mdev) { struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev); vfio_unregister_group_dev(&vgpu->vfio_device); vfio_put_device(&vgpu->vfio_device); } static unsigned int intel_vgpu_get_available(struct mdev_type *mtype) { struct intel_vgpu_type *type = container_of(mtype, struct intel_vgpu_type, type); struct intel_gvt *gvt = kdev_to_i915(mtype->parent->dev)->gvt; unsigned int low_gm_avail, high_gm_avail, fence_avail; mutex_lock(&gvt->lock); low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE - gvt->gm.vgpu_allocated_low_gm_size; high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE - gvt->gm.vgpu_allocated_high_gm_size; fence_avail = gvt_fence_sz(gvt) - HOST_FENCE - gvt->fence.vgpu_allocated_fence_num; mutex_unlock(&gvt->lock); return min3(low_gm_avail / type->conf->low_mm, high_gm_avail / type->conf->high_mm, fence_avail / type->conf->fence); } static struct mdev_driver intel_vgpu_mdev_driver = { .device_api = VFIO_DEVICE_API_PCI_STRING, .driver = { .name = "intel_vgpu_mdev", .owner = THIS_MODULE, .dev_groups = intel_vgpu_groups, }, .probe = intel_vgpu_probe, .remove = intel_vgpu_remove, .get_available = intel_vgpu_get_available, .show_description = intel_vgpu_show_description, }; int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn) { struct kvm *kvm = info->vfio_device.kvm; struct kvm_memory_slot *slot; int idx; if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status)) return -ESRCH; idx = srcu_read_lock(&kvm->srcu); slot = gfn_to_memslot(kvm, gfn); if (!slot) { srcu_read_unlock(&kvm->srcu, idx); return -EINVAL; } write_lock(&kvm->mmu_lock); if (kvmgt_gfn_is_write_protected(info, gfn)) goto out; kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE); kvmgt_protect_table_add(info, gfn); out: write_unlock(&kvm->mmu_lock); srcu_read_unlock(&kvm->srcu, idx); return 0; } int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn) { struct kvm *kvm = info->vfio_device.kvm; struct kvm_memory_slot *slot; int idx; if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status)) return -ESRCH; idx = srcu_read_lock(&kvm->srcu); slot = gfn_to_memslot(kvm, gfn); if (!slot) { srcu_read_unlock(&kvm->srcu, idx); return -EINVAL; } write_lock(&kvm->mmu_lock); if (!kvmgt_gfn_is_write_protected(info, gfn)) goto out; kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE); kvmgt_protect_table_del(info, gfn); out: write_unlock(&kvm->mmu_lock); srcu_read_unlock(&kvm->srcu, idx); return 0; } static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *val, int len, struct kvm_page_track_notifier_node *node) { struct intel_vgpu *info = container_of(node, struct intel_vgpu, track_node); if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa))) intel_vgpu_page_track_handler(info, gpa, (void *)val, len); } static void kvmgt_page_track_flush_slot(struct kvm *kvm, struct kvm_memory_slot *slot, struct kvm_page_track_notifier_node *node) { int i; gfn_t gfn; struct intel_vgpu *info = container_of(node, struct intel_vgpu, track_node); write_lock(&kvm->mmu_lock); for (i = 0; i < slot->npages; i++) { gfn = slot->base_gfn + i; if (kvmgt_gfn_is_write_protected(info, gfn)) { kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE); kvmgt_protect_table_del(info, gfn); } } write_unlock(&kvm->mmu_lock); } void intel_vgpu_detach_regions(struct intel_vgpu *vgpu) { int i; if (!vgpu->region) return; for (i = 0; i < vgpu->num_regions; i++) if (vgpu->region[i].ops->release) vgpu->region[i].ops->release(vgpu, &vgpu->region[i]); vgpu->num_regions = 0; kfree(vgpu->region); vgpu->region = NULL; } int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn, unsigned long size, dma_addr_t *dma_addr) { struct gvt_dma *entry; int ret; if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status)) return -EINVAL; mutex_lock(&vgpu->cache_lock); entry = __gvt_cache_find_gfn(vgpu, gfn); if (!entry) { ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size); if (ret) goto err_unlock; ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size); if (ret) goto err_unmap; } else if (entry->size != size) { /* the same gfn with different size: unmap and re-map */ gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size); __gvt_cache_remove_entry(vgpu, entry); ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size); if (ret) goto err_unlock; ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size); if (ret) goto err_unmap; } else { kref_get(&entry->ref); *dma_addr = entry->dma_addr; } mutex_unlock(&vgpu->cache_lock); return 0; err_unmap: gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size); err_unlock: mutex_unlock(&vgpu->cache_lock); return ret; } int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr) { struct gvt_dma *entry; int ret = 0; if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status)) return -EINVAL; mutex_lock(&vgpu->cache_lock); entry = __gvt_cache_find_dma_addr(vgpu, dma_addr); if (entry) kref_get(&entry->ref); else ret = -ENOMEM; mutex_unlock(&vgpu->cache_lock); return ret; } static void __gvt_dma_release(struct kref *ref) { struct gvt_dma *entry = container_of(ref, typeof(*entry), ref); gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr, entry->size); __gvt_cache_remove_entry(entry->vgpu, entry); } void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr) { struct gvt_dma *entry; if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status)) return; mutex_lock(&vgpu->cache_lock); entry = __gvt_cache_find_dma_addr(vgpu, dma_addr); if (entry) kref_put(&entry->ref, __gvt_dma_release); mutex_unlock(&vgpu->cache_lock); } static void init_device_info(struct intel_gvt *gvt) { struct intel_gvt_device_info *info = &gvt->device_info; struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev); info->max_support_vgpus = 8; info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE; info->mmio_size = 2 * 1024 * 1024; info->mmio_bar = 0; info->gtt_start_offset = 8 * 1024 * 1024; info->gtt_entry_size = 8; info->gtt_entry_size_shift = 3; info->gmadr_bytes_in_cmd = 8; info->max_surface_size = 36 * 1024 * 1024; info->msi_cap_offset = pdev->msi_cap; } static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt) { struct intel_vgpu *vgpu; int id; mutex_lock(&gvt->lock); idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) { if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id, (void *)&gvt->service_request)) { if (test_bit(INTEL_VGPU_STATUS_ACTIVE, vgpu->status)) intel_vgpu_emulate_vblank(vgpu); } } mutex_unlock(&gvt->lock); } static int gvt_service_thread(void *data) { struct intel_gvt *gvt = (struct intel_gvt *)data; int ret; gvt_dbg_core("service thread start\n"); while (!kthread_should_stop()) { ret = wait_event_interruptible(gvt->service_thread_wq, kthread_should_stop() || gvt->service_request); if (kthread_should_stop()) break; if (WARN_ONCE(ret, "service thread is waken up by signal.\n")) continue; intel_gvt_test_and_emulate_vblank(gvt); if (test_bit(INTEL_GVT_REQUEST_SCHED, (void *)&gvt->service_request) || test_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request)) { intel_gvt_schedule(gvt); } } return 0; } static void clean_service_thread(struct intel_gvt *gvt) { kthread_stop(gvt->service_thread); } static int init_service_thread(struct intel_gvt *gvt) { init_waitqueue_head(&gvt->service_thread_wq); gvt->service_thread = kthread_run(gvt_service_thread, gvt, "gvt_service_thread"); if (IS_ERR(gvt->service_thread)) { gvt_err("fail to start service thread.\n"); return PTR_ERR(gvt->service_thread); } return 0; } /** * intel_gvt_clean_device - clean a GVT device * @i915: i915 private * * This function is called at the driver unloading stage, to free the * resources owned by a GVT device. * */ static void intel_gvt_clean_device(struct drm_i915_private *i915) { struct intel_gvt *gvt = fetch_and_zero(&i915->gvt); if (drm_WARN_ON(&i915->drm, !gvt)) return; mdev_unregister_parent(&gvt->parent); intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu); intel_gvt_clean_vgpu_types(gvt); intel_gvt_debugfs_clean(gvt); clean_service_thread(gvt); intel_gvt_clean_cmd_parser(gvt); intel_gvt_clean_sched_policy(gvt); intel_gvt_clean_workload_scheduler(gvt); intel_gvt_clean_gtt(gvt); intel_gvt_free_firmware(gvt); intel_gvt_clean_mmio_info(gvt); idr_destroy(&gvt->vgpu_idr); kfree(i915->gvt); } /** * intel_gvt_init_device - initialize a GVT device * @i915: drm i915 private data * * This function is called at the initialization stage, to initialize * necessary GVT components. * * Returns: * Zero on success, negative error code if failed. * */ static int intel_gvt_init_device(struct drm_i915_private *i915) { struct intel_gvt *gvt; struct intel_vgpu *vgpu; int ret; if (drm_WARN_ON(&i915->drm, i915->gvt)) return -EEXIST; gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL); if (!gvt) return -ENOMEM; gvt_dbg_core("init gvt device\n"); idr_init_base(&gvt->vgpu_idr, 1); spin_lock_init(&gvt->scheduler.mmio_context_lock); mutex_init(&gvt->lock); mutex_init(&gvt->sched_lock); gvt->gt = to_gt(i915); i915->gvt = gvt; init_device_info(gvt); ret = intel_gvt_setup_mmio_info(gvt); if (ret) goto out_clean_idr; intel_gvt_init_engine_mmio_context(gvt); ret = intel_gvt_load_firmware(gvt); if (ret) goto out_clean_mmio_info; ret = intel_gvt_init_irq(gvt); if (ret) goto out_free_firmware; ret = intel_gvt_init_gtt(gvt); if (ret) goto out_free_firmware; ret = intel_gvt_init_workload_scheduler(gvt); if (ret) goto out_clean_gtt; ret = intel_gvt_init_sched_policy(gvt); if (ret) goto out_clean_workload_scheduler; ret = intel_gvt_init_cmd_parser(gvt); if (ret) goto out_clean_sched_policy; ret = init_service_thread(gvt); if (ret) goto out_clean_cmd_parser; ret = intel_gvt_init_vgpu_types(gvt); if (ret) goto out_clean_thread; vgpu = intel_gvt_create_idle_vgpu(gvt); if (IS_ERR(vgpu)) { ret = PTR_ERR(vgpu); gvt_err("failed to create idle vgpu\n"); goto out_clean_types; } gvt->idle_vgpu = vgpu; intel_gvt_debugfs_init(gvt); ret = mdev_register_parent(&gvt->parent, i915->drm.dev, &intel_vgpu_mdev_driver, gvt->mdev_types, gvt->num_types); if (ret) goto out_destroy_idle_vgpu; gvt_dbg_core("gvt device initialization is done\n"); return 0; out_destroy_idle_vgpu: intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu); intel_gvt_debugfs_clean(gvt); out_clean_types: intel_gvt_clean_vgpu_types(gvt); out_clean_thread: clean_service_thread(gvt); out_clean_cmd_parser: intel_gvt_clean_cmd_parser(gvt); out_clean_sched_policy: intel_gvt_clean_sched_policy(gvt); out_clean_workload_scheduler: intel_gvt_clean_workload_scheduler(gvt); out_clean_gtt: intel_gvt_clean_gtt(gvt); out_free_firmware: intel_gvt_free_firmware(gvt); out_clean_mmio_info: intel_gvt_clean_mmio_info(gvt); out_clean_idr: idr_destroy(&gvt->vgpu_idr); kfree(gvt); i915->gvt = NULL; return ret; } static void intel_gvt_pm_resume(struct drm_i915_private *i915) { struct intel_gvt *gvt = i915->gvt; intel_gvt_restore_fence(gvt); intel_gvt_restore_mmio(gvt); intel_gvt_restore_ggtt(gvt); } static const struct intel_vgpu_ops intel_gvt_vgpu_ops = { .init_device = intel_gvt_init_device, .clean_device = intel_gvt_clean_device, .pm_resume = intel_gvt_pm_resume, }; static int __init kvmgt_init(void) { int ret; ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops); if (ret) return ret; ret = mdev_register_driver(&intel_vgpu_mdev_driver); if (ret) intel_gvt_clear_ops(&intel_gvt_vgpu_ops); return ret; } static void __exit kvmgt_exit(void) { mdev_unregister_driver(&intel_vgpu_mdev_driver); intel_gvt_clear_ops(&intel_gvt_vgpu_ops); } module_init(kvmgt_init); module_exit(kvmgt_exit); MODULE_LICENSE("GPL and additional rights"); MODULE_AUTHOR("Intel Corporation");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1