Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 3437 | 65.77% | 202 | 56.90% |
Maarten Lankhorst | 522 | 9.99% | 8 | 2.25% |
Ankitprasad Sharma | 258 | 4.94% | 2 | 0.56% |
Eric Anholt | 171 | 3.27% | 12 | 3.38% |
Tvrtko A. Ursulin | 135 | 2.58% | 7 | 1.97% |
Thomas Hellstrom | 85 | 1.63% | 6 | 1.69% |
Daniel Vetter | 78 | 1.49% | 13 | 3.66% |
Jani Nikula | 52 | 1.00% | 11 | 3.10% |
Joonas Lahtinen | 49 | 0.94% | 5 | 1.41% |
Matt Roper | 48 | 0.92% | 2 | 0.56% |
Ashutosh Dixit | 46 | 0.88% | 1 | 0.28% |
Michał Winiarski | 43 | 0.82% | 3 | 0.85% |
Matthew Auld | 40 | 0.77% | 9 | 2.54% |
Ville Syrjälä | 28 | 0.54% | 3 | 0.85% |
Dave Airlie | 23 | 0.44% | 6 | 1.69% |
Daniele Ceraolo Spurio | 20 | 0.38% | 6 | 1.69% |
Mika Kuoppala | 19 | 0.36% | 3 | 0.85% |
Dave Gordon | 16 | 0.31% | 2 | 0.56% |
Janusz Krzysztofik | 13 | 0.25% | 6 | 1.69% |
Jesse Barnes | 12 | 0.23% | 4 | 1.13% |
Pankaj Bharadiya | 12 | 0.23% | 1 | 0.28% |
Changbin Du | 11 | 0.21% | 2 | 0.56% |
Aravind Iddamsetty | 11 | 0.21% | 2 | 0.56% |
Ben Widawsky | 10 | 0.19% | 5 | 1.41% |
Anshuman Gupta | 9 | 0.17% | 2 | 0.56% |
Vivek Kasireddy | 9 | 0.17% | 1 | 0.28% |
Zhi Wang | 7 | 0.13% | 1 | 0.28% |
Paulo Zanoni | 6 | 0.11% | 1 | 0.28% |
Keith Packard | 5 | 0.10% | 1 | 0.28% |
Abdiel Janulgue | 4 | 0.08% | 1 | 0.28% |
Niranjana Vishwanathapura | 3 | 0.06% | 1 | 0.28% |
Gabriel Krisman Bertazi | 3 | 0.06% | 1 | 0.28% |
Gustavo Padovan | 3 | 0.06% | 1 | 0.28% |
Imre Deak | 3 | 0.06% | 2 | 0.56% |
Michal Wajdeczko | 3 | 0.06% | 2 | 0.56% |
Ramalingam C | 3 | 0.06% | 1 | 0.28% |
Linus Torvalds | 3 | 0.06% | 1 | 0.28% |
Oscar Mateo | 2 | 0.04% | 1 | 0.28% |
Yu Zhang | 2 | 0.04% | 1 | 0.28% |
Christian König | 2 | 0.04% | 2 | 0.56% |
Lucas De Marchi | 2 | 0.04% | 1 | 0.28% |
Kristian Högsberg | 2 | 0.04% | 1 | 0.28% |
Jason Ekstrand | 2 | 0.04% | 1 | 0.28% |
Matthew Wilcox | 2 | 0.04% | 1 | 0.28% |
Tejun Heo | 2 | 0.04% | 1 | 0.28% |
Peter Antoine | 2 | 0.04% | 1 | 0.28% |
Jon Bloomfield | 1 | 0.02% | 1 | 0.28% |
Zou Nan hai | 1 | 0.02% | 1 | 0.28% |
Linus Torvalds (pre-git) | 1 | 0.02% | 1 | 0.28% |
Weinan Li | 1 | 0.02% | 1 | 0.28% |
Damien Lespiau | 1 | 0.02% | 1 | 0.28% |
Tina Zhang | 1 | 0.02% | 1 | 0.28% |
Rodrigo Vivi | 1 | 0.02% | 1 | 0.28% |
Nirmoy Das | 1 | 0.02% | 1 | 0.28% |
Total | 5226 | 355 |
/* * Copyright © 2008-2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * */ #include <linux/dma-fence-array.h> #include <linux/kthread.h> #include <linux/dma-resv.h> #include <linux/shmem_fs.h> #include <linux/slab.h> #include <linux/stop_machine.h> #include <linux/swap.h> #include <linux/pci.h> #include <linux/dma-buf.h> #include <linux/mman.h> #include <drm/drm_cache.h> #include <drm/drm_vma_manager.h> #include "display/intel_display.h" #include "display/intel_frontbuffer.h" #include "gem/i915_gem_clflush.h" #include "gem/i915_gem_context.h" #include "gem/i915_gem_ioctls.h" #include "gem/i915_gem_mman.h" #include "gem/i915_gem_pm.h" #include "gem/i915_gem_region.h" #include "gem/i915_gem_userptr.h" #include "gt/intel_engine_user.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "gt/intel_workarounds.h" #include "i915_drv.h" #include "i915_file_private.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "intel_pm.h" static int insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) { int err; err = mutex_lock_interruptible(&ggtt->vm.mutex); if (err) return err; memset(node, 0, sizeof(*node)); err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node, size, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); mutex_unlock(&ggtt->vm.mutex); return err; } static void remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node) { mutex_lock(&ggtt->vm.mutex); drm_mm_remove_node(node); mutex_unlock(&ggtt->vm.mutex); } int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *i915 = to_i915(dev); struct i915_ggtt *ggtt = to_gt(i915)->ggtt; struct drm_i915_gem_get_aperture *args = data; struct i915_vma *vma; u64 pinned; if (mutex_lock_interruptible(&ggtt->vm.mutex)) return -EINTR; pinned = ggtt->vm.reserved; list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) if (i915_vma_is_pinned(vma)) pinned += vma->node.size; mutex_unlock(&ggtt->vm.mutex); args->aper_size = ggtt->vm.total; args->aper_available_size = args->aper_size - pinned; return 0; } int i915_gem_object_unbind(struct drm_i915_gem_object *obj, unsigned long flags) { struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm; bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK); LIST_HEAD(still_in_list); intel_wakeref_t wakeref; struct i915_vma *vma; int ret; assert_object_held(obj); if (list_empty(&obj->vma.list)) return 0; /* * As some machines use ACPI to handle runtime-resume callbacks, and * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex * as they are required by the shrinker. Ergo, we wake the device up * first just in case. */ wakeref = intel_runtime_pm_get(rpm); try_again: ret = 0; spin_lock(&obj->vma.lock); while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, struct i915_vma, obj_link))) { list_move_tail(&vma->obj_link, &still_in_list); if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) continue; if (flags & I915_GEM_OBJECT_UNBIND_TEST) { ret = -EBUSY; break; } /* * Requiring the vm destructor to take the object lock * before destroying a vma would help us eliminate the * i915_vm_tryget() here, AND thus also the barrier stuff * at the end. That's an easy fix, but sleeping locks in * a kthread should generally be avoided. */ ret = -EAGAIN; if (!i915_vm_tryget(vma->vm)) break; spin_unlock(&obj->vma.lock); /* * Since i915_vma_parked() takes the object lock * before vma destruction, it won't race us here, * and destroy the vma from under us. */ ret = -EBUSY; if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) { assert_object_held(vma->obj); ret = i915_vma_unbind_async(vma, vm_trylock); } if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || !i915_vma_is_active(vma))) { if (vm_trylock) { if (mutex_trylock(&vma->vm->mutex)) { ret = __i915_vma_unbind(vma); mutex_unlock(&vma->vm->mutex); } } else { ret = i915_vma_unbind(vma); } } i915_vm_put(vma->vm); spin_lock(&obj->vma.lock); } list_splice_init(&still_in_list, &obj->vma.list); spin_unlock(&obj->vma.lock); if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) { rcu_barrier(); /* flush the i915_vm_release() */ goto try_again; } intel_runtime_pm_put(rpm, wakeref); return ret; } static int shmem_pread(struct page *page, int offset, int len, char __user *user_data, bool needs_clflush) { char *vaddr; int ret; vaddr = kmap(page); if (needs_clflush) drm_clflush_virt_range(vaddr + offset, len); ret = __copy_to_user(user_data, vaddr + offset, len); kunmap(page); return ret ? -EFAULT : 0; } static int i915_gem_shmem_pread(struct drm_i915_gem_object *obj, struct drm_i915_gem_pread *args) { unsigned int needs_clflush; char __user *user_data; unsigned long offset; pgoff_t idx; u64 remain; int ret; ret = i915_gem_object_lock_interruptible(obj, NULL); if (ret) return ret; ret = i915_gem_object_pin_pages(obj); if (ret) goto err_unlock; ret = i915_gem_object_prepare_read(obj, &needs_clflush); if (ret) goto err_unpin; i915_gem_object_finish_access(obj); i915_gem_object_unlock(obj); remain = args->size; user_data = u64_to_user_ptr(args->data_ptr); offset = offset_in_page(args->offset); for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { struct page *page = i915_gem_object_get_page(obj, idx); unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); ret = shmem_pread(page, offset, length, user_data, needs_clflush); if (ret) break; remain -= length; user_data += length; offset = 0; } i915_gem_object_unpin_pages(obj); return ret; err_unpin: i915_gem_object_unpin_pages(obj); err_unlock: i915_gem_object_unlock(obj); return ret; } static inline bool gtt_user_read(struct io_mapping *mapping, loff_t base, int offset, char __user *user_data, int length) { void __iomem *vaddr; unsigned long unwritten; /* We can use the cpu mem copy function because this is X86. */ vaddr = io_mapping_map_atomic_wc(mapping, base); unwritten = __copy_to_user_inatomic(user_data, (void __force *)vaddr + offset, length); io_mapping_unmap_atomic(vaddr); if (unwritten) { vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); unwritten = copy_to_user(user_data, (void __force *)vaddr + offset, length); io_mapping_unmap(vaddr); } return unwritten; } static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj, struct drm_mm_node *node, bool write) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_ggtt *ggtt = to_gt(i915)->ggtt; struct i915_vma *vma; struct i915_gem_ww_ctx ww; int ret; i915_gem_ww_ctx_init(&ww, true); retry: vma = ERR_PTR(-ENODEV); ret = i915_gem_object_lock(obj, &ww); if (ret) goto err_ww; ret = i915_gem_object_set_to_gtt_domain(obj, write); if (ret) goto err_ww; if (!i915_gem_object_is_tiled(obj)) vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0, PIN_MAPPABLE | PIN_NONBLOCK /* NOWARN */ | PIN_NOEVICT); if (vma == ERR_PTR(-EDEADLK)) { ret = -EDEADLK; goto err_ww; } else if (!IS_ERR(vma)) { node->start = i915_ggtt_offset(vma); node->flags = 0; } else { ret = insert_mappable_node(ggtt, node, PAGE_SIZE); if (ret) goto err_ww; GEM_BUG_ON(!drm_mm_node_allocated(node)); vma = NULL; } ret = i915_gem_object_pin_pages(obj); if (ret) { if (drm_mm_node_allocated(node)) { ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); remove_mappable_node(ggtt, node); } else { i915_vma_unpin(vma); } } err_ww: if (ret == -EDEADLK) { ret = i915_gem_ww_ctx_backoff(&ww); if (!ret) goto retry; } i915_gem_ww_ctx_fini(&ww); return ret ? ERR_PTR(ret) : vma; } static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj, struct drm_mm_node *node, struct i915_vma *vma) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_ggtt *ggtt = to_gt(i915)->ggtt; i915_gem_object_unpin_pages(obj); if (drm_mm_node_allocated(node)) { ggtt->vm.clear_range(&ggtt->vm, node->start, node->size); remove_mappable_node(ggtt, node); } else { i915_vma_unpin(vma); } } static int i915_gem_gtt_pread(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pread *args) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_ggtt *ggtt = to_gt(i915)->ggtt; unsigned long remain, offset; intel_wakeref_t wakeref; struct drm_mm_node node; void __user *user_data; struct i915_vma *vma; int ret = 0; if (overflows_type(args->size, remain) || overflows_type(args->offset, offset)) return -EINVAL; wakeref = intel_runtime_pm_get(&i915->runtime_pm); vma = i915_gem_gtt_prepare(obj, &node, false); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto out_rpm; } user_data = u64_to_user_ptr(args->data_ptr); remain = args->size; offset = args->offset; while (remain > 0) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ u32 page_base = node.start; unsigned page_offset = offset_in_page(offset); unsigned page_length = PAGE_SIZE - page_offset; page_length = remain < page_length ? remain : page_length; if (drm_mm_node_allocated(&node)) { ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), node.start, I915_CACHE_NONE, 0); } else { page_base += offset & PAGE_MASK; } if (gtt_user_read(&ggtt->iomap, page_base, page_offset, user_data, page_length)) { ret = -EFAULT; break; } remain -= page_length; user_data += page_length; offset += page_length; } i915_gem_gtt_cleanup(obj, &node, vma); out_rpm: intel_runtime_pm_put(&i915->runtime_pm, wakeref); return ret; } /** * Reads data from the object referenced by handle. * @dev: drm device pointer * @data: ioctl data blob * @file: drm file pointer * * On error, the contents of *data are undefined. */ int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_pread *args = data; struct drm_i915_gem_object *obj; int ret; /* PREAD is disallowed for all platforms after TGL-LP. This also * covers all platforms with local memory. */ if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) return -EOPNOTSUPP; if (args->size == 0) return 0; if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) return -EFAULT; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Bounds check source. */ if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { ret = -EINVAL; goto out; } trace_i915_gem_object_pread(obj, args->offset, args->size); ret = -ENODEV; if (obj->ops->pread) ret = obj->ops->pread(obj, args); if (ret != -ENODEV) goto out; ret = i915_gem_object_wait(obj, I915_WAIT_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); if (ret) goto out; ret = i915_gem_shmem_pread(obj, args); if (ret == -EFAULT || ret == -ENODEV) ret = i915_gem_gtt_pread(obj, args); out: i915_gem_object_put(obj); return ret; } /* This is the fast write path which cannot handle * page faults in the source data */ static inline bool ggtt_write(struct io_mapping *mapping, loff_t base, int offset, char __user *user_data, int length) { void __iomem *vaddr; unsigned long unwritten; /* We can use the cpu mem copy function because this is X86. */ vaddr = io_mapping_map_atomic_wc(mapping, base); unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, user_data, length); io_mapping_unmap_atomic(vaddr); if (unwritten) { vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); unwritten = copy_from_user((void __force *)vaddr + offset, user_data, length); io_mapping_unmap(vaddr); } return unwritten; } /** * This is the fast pwrite path, where we copy the data directly from the * user into the GTT, uncached. * @obj: i915 GEM object * @args: pwrite arguments structure */ static int i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pwrite *args) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_ggtt *ggtt = to_gt(i915)->ggtt; struct intel_runtime_pm *rpm = &i915->runtime_pm; unsigned long remain, offset; intel_wakeref_t wakeref; struct drm_mm_node node; struct i915_vma *vma; void __user *user_data; int ret = 0; if (overflows_type(args->size, remain) || overflows_type(args->offset, offset)) return -EINVAL; if (i915_gem_object_has_struct_page(obj)) { /* * Avoid waking the device up if we can fallback, as * waking/resuming is very slow (worst-case 10-100 ms * depending on PCI sleeps and our own resume time). * This easily dwarfs any performance advantage from * using the cache bypass of indirect GGTT access. */ wakeref = intel_runtime_pm_get_if_in_use(rpm); if (!wakeref) return -EFAULT; } else { /* No backing pages, no fallback, we must force GGTT access */ wakeref = intel_runtime_pm_get(rpm); } vma = i915_gem_gtt_prepare(obj, &node, true); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto out_rpm; } i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); user_data = u64_to_user_ptr(args->data_ptr); offset = args->offset; remain = args->size; while (remain) { /* Operation in this page * * page_base = page offset within aperture * page_offset = offset within page * page_length = bytes to copy for this page */ u32 page_base = node.start; unsigned int page_offset = offset_in_page(offset); unsigned int page_length = PAGE_SIZE - page_offset; page_length = remain < page_length ? remain : page_length; if (drm_mm_node_allocated(&node)) { /* flush the write before we modify the GGTT */ intel_gt_flush_ggtt_writes(ggtt->vm.gt); ggtt->vm.insert_page(&ggtt->vm, i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), node.start, I915_CACHE_NONE, 0); wmb(); /* flush modifications to the GGTT (insert_page) */ } else { page_base += offset & PAGE_MASK; } /* If we get a fault while copying data, then (presumably) our * source page isn't available. Return the error and we'll * retry in the slow path. * If the object is non-shmem backed, we retry again with the * path that handles page fault. */ if (ggtt_write(&ggtt->iomap, page_base, page_offset, user_data, page_length)) { ret = -EFAULT; break; } remain -= page_length; user_data += page_length; offset += page_length; } intel_gt_flush_ggtt_writes(ggtt->vm.gt); i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); i915_gem_gtt_cleanup(obj, &node, vma); out_rpm: intel_runtime_pm_put(rpm, wakeref); return ret; } /* Per-page copy function for the shmem pwrite fastpath. * Flushes invalid cachelines before writing to the target if * needs_clflush_before is set and flushes out any written cachelines after * writing if needs_clflush is set. */ static int shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, bool needs_clflush_before, bool needs_clflush_after) { char *vaddr; int ret; vaddr = kmap(page); if (needs_clflush_before) drm_clflush_virt_range(vaddr + offset, len); ret = __copy_from_user(vaddr + offset, user_data, len); if (!ret && needs_clflush_after) drm_clflush_virt_range(vaddr + offset, len); kunmap(page); return ret ? -EFAULT : 0; } static int i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pwrite *args) { unsigned int partial_cacheline_write; unsigned int needs_clflush; void __user *user_data; unsigned long offset; pgoff_t idx; u64 remain; int ret; ret = i915_gem_object_lock_interruptible(obj, NULL); if (ret) return ret; ret = i915_gem_object_pin_pages(obj); if (ret) goto err_unlock; ret = i915_gem_object_prepare_write(obj, &needs_clflush); if (ret) goto err_unpin; i915_gem_object_finish_access(obj); i915_gem_object_unlock(obj); /* If we don't overwrite a cacheline completely we need to be * careful to have up-to-date data by first clflushing. Don't * overcomplicate things and flush the entire patch. */ partial_cacheline_write = 0; if (needs_clflush & CLFLUSH_BEFORE) partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; user_data = u64_to_user_ptr(args->data_ptr); remain = args->size; offset = offset_in_page(args->offset); for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { struct page *page = i915_gem_object_get_page(obj, idx); unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); ret = shmem_pwrite(page, offset, length, user_data, (offset | length) & partial_cacheline_write, needs_clflush & CLFLUSH_AFTER); if (ret) break; remain -= length; user_data += length; offset = 0; } i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); i915_gem_object_unpin_pages(obj); return ret; err_unpin: i915_gem_object_unpin_pages(obj); err_unlock: i915_gem_object_unlock(obj); return ret; } /** * Writes data to the object referenced by handle. * @dev: drm device * @data: ioctl data blob * @file: drm file * * On error, the contents of the buffer that were to be modified are undefined. */ int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_pwrite *args = data; struct drm_i915_gem_object *obj; int ret; /* PWRITE is disallowed for all platforms after TGL-LP. This also * covers all platforms with local memory. */ if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915)) return -EOPNOTSUPP; if (args->size == 0) return 0; if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) return -EFAULT; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* Bounds check destination. */ if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { ret = -EINVAL; goto err; } /* Writes not allowed into this read-only object */ if (i915_gem_object_is_readonly(obj)) { ret = -EINVAL; goto err; } trace_i915_gem_object_pwrite(obj, args->offset, args->size); ret = -ENODEV; if (obj->ops->pwrite) ret = obj->ops->pwrite(obj, args); if (ret != -ENODEV) goto err; ret = i915_gem_object_wait(obj, I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, MAX_SCHEDULE_TIMEOUT); if (ret) goto err; ret = -EFAULT; /* We can only do the GTT pwrite on untiled buffers, as otherwise * it would end up going through the fenced access, and we'll get * different detiling behavior between reading and writing. * pread/pwrite currently are reading and writing from the CPU * perspective, requiring manual detiling by the client. */ if (!i915_gem_object_has_struct_page(obj) || i915_gem_cpu_write_needs_clflush(obj)) /* Note that the gtt paths might fail with non-page-backed user * pointers (e.g. gtt mappings when moving data between * textures). Fallback to the shmem path in that case. */ ret = i915_gem_gtt_pwrite_fast(obj, args); if (ret == -EFAULT || ret == -ENOSPC) { if (i915_gem_object_has_struct_page(obj)) ret = i915_gem_shmem_pwrite(obj, args); } err: i915_gem_object_put(obj); return ret; } /** * Called when user space has done writes to this buffer * @dev: drm device * @data: ioctl data blob * @file: drm file */ int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_sw_finish *args = data; struct drm_i915_gem_object *obj; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* * Proxy objects are barred from CPU access, so there is no * need to ban sw_finish as it is a nop. */ /* Pinned buffers may be scanout, so flush the cache */ i915_gem_object_flush_if_display(obj); i915_gem_object_put(obj); return 0; } void i915_gem_runtime_suspend(struct drm_i915_private *i915) { struct drm_i915_gem_object *obj, *on; int i; /* * Only called during RPM suspend. All users of the userfault_list * must be holding an RPM wakeref to ensure that this can not * run concurrently with themselves (and use the struct_mutex for * protection between themselves). */ list_for_each_entry_safe(obj, on, &to_gt(i915)->ggtt->userfault_list, userfault_link) __i915_gem_object_release_mmap_gtt(obj); list_for_each_entry_safe(obj, on, &i915->runtime_pm.lmem_userfault_list, userfault_link) i915_gem_object_runtime_pm_release_mmap_offset(obj); /* * The fence will be lost when the device powers down. If any were * in use by hardware (i.e. they are pinned), we should not be powering * down! All other fences will be reacquired by the user upon waking. */ for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) { struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i]; /* * Ideally we want to assert that the fence register is not * live at this point (i.e. that no piece of code will be * trying to write through fence + GTT, as that both violates * our tracking of activity and associated locking/barriers, * but also is illegal given that the hw is powered down). * * Previously we used reg->pin_count as a "liveness" indicator. * That is not sufficient, and we need a more fine-grained * tool if we want to have a sanity check here. */ if (!reg->vma) continue; GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); reg->dirty = true; } } static void discard_ggtt_vma(struct i915_vma *vma) { struct drm_i915_gem_object *obj = vma->obj; spin_lock(&obj->vma.lock); if (!RB_EMPTY_NODE(&vma->obj_node)) { rb_erase(&vma->obj_node, &obj->vma.tree); RB_CLEAR_NODE(&vma->obj_node); } spin_unlock(&obj->vma.lock); } struct i915_vma * i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj, struct i915_gem_ww_ctx *ww, const struct i915_gtt_view *view, u64 size, u64 alignment, u64 flags) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_ggtt *ggtt = to_gt(i915)->ggtt; struct i915_vma *vma; int ret; GEM_WARN_ON(!ww); if (flags & PIN_MAPPABLE && (!view || view->type == I915_GTT_VIEW_NORMAL)) { /* * If the required space is larger than the available * aperture, we will not able to find a slot for the * object and unbinding the object now will be in * vain. Worse, doing so may cause us to ping-pong * the object in and out of the Global GTT and * waste a lot of cycles under the mutex. */ if (obj->base.size > ggtt->mappable_end) return ERR_PTR(-E2BIG); /* * If NONBLOCK is set the caller is optimistically * trying to cache the full object within the mappable * aperture, and *must* have a fallback in place for * situations where we cannot bind the object. We * can be a little more lax here and use the fallback * more often to avoid costly migrations of ourselves * and other objects within the aperture. * * Half-the-aperture is used as a simple heuristic. * More interesting would to do search for a free * block prior to making the commitment to unbind. * That caters for the self-harm case, and with a * little more heuristics (e.g. NOFAULT, NOEVICT) * we could try to minimise harm to others. */ if (flags & PIN_NONBLOCK && obj->base.size > ggtt->mappable_end / 2) return ERR_PTR(-ENOSPC); } new_vma: vma = i915_vma_instance(obj, &ggtt->vm, view); if (IS_ERR(vma)) return vma; if (i915_vma_misplaced(vma, size, alignment, flags)) { if (flags & PIN_NONBLOCK) { if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) return ERR_PTR(-ENOSPC); /* * If this misplaced vma is too big (i.e, at-least * half the size of aperture) or hasn't been pinned * mappable before, we ignore the misplacement when * PIN_NONBLOCK is set in order to avoid the ping-pong * issue described above. In other words, we try to * avoid the costly operation of unbinding this vma * from the GGTT and rebinding it back because there * may not be enough space for this vma in the aperture. */ if (flags & PIN_MAPPABLE && (vma->fence_size > ggtt->mappable_end / 2 || !i915_vma_is_map_and_fenceable(vma))) return ERR_PTR(-ENOSPC); } if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) { discard_ggtt_vma(vma); goto new_vma; } ret = i915_vma_unbind(vma); if (ret) return ERR_PTR(ret); } ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL); if (ret) return ERR_PTR(ret); if (vma->fence && !i915_gem_object_is_tiled(obj)) { mutex_lock(&ggtt->vm.mutex); i915_vma_revoke_fence(vma); mutex_unlock(&ggtt->vm.mutex); } ret = i915_vma_wait_for_bind(vma); if (ret) { i915_vma_unpin(vma); return ERR_PTR(ret); } return vma; } struct i915_vma * __must_check i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, const struct i915_gtt_view *view, u64 size, u64 alignment, u64 flags) { struct i915_gem_ww_ctx ww; struct i915_vma *ret; int err; for_i915_gem_ww(&ww, err, true) { err = i915_gem_object_lock(obj, &ww); if (err) continue; ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size, alignment, flags); if (IS_ERR(ret)) err = PTR_ERR(ret); } return err ? ERR_PTR(err) : ret; } int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_private *i915 = to_i915(dev); struct drm_i915_gem_madvise *args = data; struct drm_i915_gem_object *obj; int err; switch (args->madv) { case I915_MADV_DONTNEED: case I915_MADV_WILLNEED: break; default: return -EINVAL; } obj = i915_gem_object_lookup(file_priv, args->handle); if (!obj) return -ENOENT; err = i915_gem_object_lock_interruptible(obj, NULL); if (err) goto out; if (i915_gem_object_has_pages(obj) && i915_gem_object_is_tiled(obj) && i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) { if (obj->mm.madv == I915_MADV_WILLNEED) { GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj)); i915_gem_object_clear_tiling_quirk(obj); i915_gem_object_make_shrinkable(obj); } if (args->madv == I915_MADV_WILLNEED) { GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); i915_gem_object_make_unshrinkable(obj); i915_gem_object_set_tiling_quirk(obj); } } if (obj->mm.madv != __I915_MADV_PURGED) { obj->mm.madv = args->madv; if (obj->ops->adjust_lru) obj->ops->adjust_lru(obj); } if (i915_gem_object_has_pages(obj) || i915_gem_object_has_self_managed_shrink_list(obj)) { unsigned long flags; spin_lock_irqsave(&i915->mm.obj_lock, flags); if (!list_empty(&obj->mm.link)) { struct list_head *list; if (obj->mm.madv != I915_MADV_WILLNEED) list = &i915->mm.purge_list; else list = &i915->mm.shrink_list; list_move_tail(&obj->mm.link, list); } spin_unlock_irqrestore(&i915->mm.obj_lock, flags); } /* if the object is no longer attached, discard its backing storage */ if (obj->mm.madv == I915_MADV_DONTNEED && !i915_gem_object_has_pages(obj)) i915_gem_object_truncate(obj); args->retained = obj->mm.madv != __I915_MADV_PURGED; i915_gem_object_unlock(obj); out: i915_gem_object_put(obj); return err; } /* * A single pass should suffice to release all the freed objects (along most * call paths), but be a little more paranoid in that freeing the objects does * take a little amount of time, during which the rcu callbacks could have added * new objects into the freed list, and armed the work again. */ void i915_gem_drain_freed_objects(struct drm_i915_private *i915) { while (atomic_read(&i915->mm.free_count)) { flush_work(&i915->mm.free_work); drain_workqueue(i915->bdev.wq); rcu_barrier(); } } /* * Similar to objects above (see i915_gem_drain_freed-objects), in general we * have workers that are armed by RCU and then rearm themselves in their * callbacks. To be paranoid, we need to drain the workqueue a second time after * waiting for the RCU grace period so that we catch work queued via RCU from * the first pass. As neither drain_workqueue() nor flush_workqueue() report a * result, we make an assumption that we only don't require more than 3 passes * to catch all _recursive_ RCU delayed work. */ void i915_gem_drain_workqueue(struct drm_i915_private *i915) { int i; for (i = 0; i < 3; i++) { flush_workqueue(i915->wq); rcu_barrier(); i915_gem_drain_freed_objects(i915); } drain_workqueue(i915->wq); } int i915_gem_init(struct drm_i915_private *dev_priv) { struct intel_gt *gt; unsigned int i; int ret; /* We need to fallback to 4K pages if host doesn't support huge gtt. */ if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K; ret = i915_gem_init_userptr(dev_priv); if (ret) return ret; for_each_gt(gt, dev_priv, i) { intel_uc_fetch_firmwares(>->uc); intel_wopcm_init(>->wopcm); if (GRAPHICS_VER(dev_priv) >= 8) setup_private_pat(gt); } ret = i915_init_ggtt(dev_priv); if (ret) { GEM_BUG_ON(ret == -EIO); goto err_unlock; } /* * Despite its name intel_init_clock_gating applies both display * clock gating workarounds; GT mmio workarounds and the occasional * GT power context workaround. Worse, sometimes it includes a context * register workaround which we need to apply before we record the * default HW state for all contexts. * * FIXME: break up the workarounds and apply them at the right time! */ intel_init_clock_gating(dev_priv); for_each_gt(gt, dev_priv, i) { ret = intel_gt_init(gt); if (ret) goto err_unlock; } return 0; /* * Unwinding is complicated by that we want to handle -EIO to mean * disable GPU submission but keep KMS alive. We want to mark the * HW as irrevisibly wedged, but keep enough state around that the * driver doesn't explode during runtime. */ err_unlock: i915_gem_drain_workqueue(dev_priv); if (ret != -EIO) { for_each_gt(gt, dev_priv, i) { intel_gt_driver_remove(gt); intel_gt_driver_release(gt); intel_uc_cleanup_firmwares(>->uc); } } if (ret == -EIO) { /* * Allow engines or uC initialisation to fail by marking the GPU * as wedged. But we only want to do this when the GPU is angry, * for all other failure, such as an allocation failure, bail. */ for_each_gt(gt, dev_priv, i) { if (!intel_gt_is_wedged(gt)) { i915_probe_error(dev_priv, "Failed to initialize GPU, declaring it wedged!\n"); intel_gt_set_wedged(gt); } } /* Minimal basic recovery for KMS */ ret = i915_ggtt_enable_hw(dev_priv); i915_ggtt_resume(to_gt(dev_priv)->ggtt); intel_init_clock_gating(dev_priv); } i915_gem_drain_freed_objects(dev_priv); return ret; } void i915_gem_driver_register(struct drm_i915_private *i915) { i915_gem_driver_register__shrinker(i915); intel_engines_driver_register(i915); } void i915_gem_driver_unregister(struct drm_i915_private *i915) { i915_gem_driver_unregister__shrinker(i915); } void i915_gem_driver_remove(struct drm_i915_private *dev_priv) { struct intel_gt *gt; unsigned int i; i915_gem_suspend_late(dev_priv); for_each_gt(gt, dev_priv, i) intel_gt_driver_remove(gt); dev_priv->uabi_engines = RB_ROOT; /* Flush any outstanding unpin_work. */ i915_gem_drain_workqueue(dev_priv); } void i915_gem_driver_release(struct drm_i915_private *dev_priv) { struct intel_gt *gt; unsigned int i; for_each_gt(gt, dev_priv, i) { intel_gt_driver_release(gt); intel_uc_cleanup_firmwares(>->uc); } /* Flush any outstanding work, including i915_gem_context.release_work. */ i915_gem_drain_workqueue(dev_priv); drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list)); } static void i915_gem_init__mm(struct drm_i915_private *i915) { spin_lock_init(&i915->mm.obj_lock); init_llist_head(&i915->mm.free_list); INIT_LIST_HEAD(&i915->mm.purge_list); INIT_LIST_HEAD(&i915->mm.shrink_list); i915_gem_init__objects(i915); } void i915_gem_init_early(struct drm_i915_private *dev_priv) { i915_gem_init__mm(dev_priv); i915_gem_init__contexts(dev_priv); spin_lock_init(&dev_priv->display.fb_tracking.lock); } void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) { i915_gem_drain_workqueue(dev_priv); GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count); } int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) { struct drm_i915_file_private *file_priv; struct i915_drm_client *client; int ret = -ENOMEM; drm_dbg(&i915->drm, "\n"); file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); if (!file_priv) goto err_alloc; client = i915_drm_client_add(&i915->clients); if (IS_ERR(client)) { ret = PTR_ERR(client); goto err_client; } file->driver_priv = file_priv; file_priv->dev_priv = i915; file_priv->file = file; file_priv->client = client; file_priv->bsd_engine = -1; file_priv->hang_timestamp = jiffies; ret = i915_gem_context_open(i915, file); if (ret) goto err_context; return 0; err_context: i915_drm_client_put(client); err_client: kfree(file_priv); err_alloc: return ret; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_gem_device.c" #include "selftests/i915_gem.c" #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1