Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Clark | 950 | 64.36% | 17 | 42.50% |
Jordan Crouse | 231 | 15.65% | 6 | 15.00% |
Doug Anderson | 125 | 8.47% | 1 | 2.50% |
Chia-I Wu | 56 | 3.79% | 2 | 5.00% |
Sharat Masetty | 38 | 2.57% | 4 | 10.00% |
Akhil P Oommen | 36 | 2.44% | 1 | 2.50% |
Jonathan Marek | 13 | 0.88% | 1 | 2.50% |
Sean Paul | 11 | 0.75% | 2 | 5.00% |
Stephan Gerhold | 5 | 0.34% | 1 | 2.50% |
Wan Jiabing | 3 | 0.20% | 1 | 2.50% |
Björn Andersson | 3 | 0.20% | 1 | 2.50% |
Mamta Shukla | 2 | 0.14% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.14% | 1 | 2.50% |
Yue Hu | 1 | 0.07% | 1 | 2.50% |
Total | 1476 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Red Hat * Author: Rob Clark <robdclark@gmail.com> */ #include "msm_gpu.h" #include "msm_gpu_trace.h" #include <linux/devfreq.h> #include <linux/devfreq_cooling.h> #include <linux/math64.h> #include <linux/units.h> /* * Power Management: */ static int msm_devfreq_target(struct device *dev, unsigned long *freq, u32 flags) { struct msm_gpu *gpu = dev_to_gpu(dev); struct msm_gpu_devfreq *df = &gpu->devfreq; struct dev_pm_opp *opp; /* * Note that devfreq_recommended_opp() can modify the freq * to something that actually is in the opp table: */ opp = devfreq_recommended_opp(dev, freq, flags); if (IS_ERR(opp)) return PTR_ERR(opp); trace_msm_gpu_freq_change(dev_pm_opp_get_freq(opp)); /* * If the GPU is idle, devfreq is not aware, so just stash * the new target freq (to use when we return to active) */ if (df->idle_freq) { df->idle_freq = *freq; dev_pm_opp_put(opp); return 0; } if (gpu->funcs->gpu_set_freq) { mutex_lock(&df->lock); gpu->funcs->gpu_set_freq(gpu, opp, df->suspended); mutex_unlock(&df->lock); } else { clk_set_rate(gpu->core_clk, *freq); } dev_pm_opp_put(opp); return 0; } static unsigned long get_freq(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; /* * If the GPU is idle, use the shadow/saved freq to avoid * confusing devfreq (which is unaware that we are switching * to lowest freq until the device is active again) */ if (df->idle_freq) return df->idle_freq; if (gpu->funcs->gpu_get_freq) return gpu->funcs->gpu_get_freq(gpu); return clk_get_rate(gpu->core_clk); } static int msm_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *status) { struct msm_gpu *gpu = dev_to_gpu(dev); struct msm_gpu_devfreq *df = &gpu->devfreq; u64 busy_cycles, busy_time; unsigned long sample_rate; ktime_t time; mutex_lock(&df->lock); status->current_frequency = get_freq(gpu); time = ktime_get(); status->total_time = ktime_us_delta(time, df->time); df->time = time; if (df->suspended) { mutex_unlock(&df->lock); status->busy_time = 0; return 0; } busy_cycles = gpu->funcs->gpu_busy(gpu, &sample_rate); busy_time = busy_cycles - df->busy_cycles; df->busy_cycles = busy_cycles; mutex_unlock(&df->lock); busy_time *= USEC_PER_SEC; busy_time = div64_ul(busy_time, sample_rate); if (WARN_ON(busy_time > ~0LU)) busy_time = ~0LU; status->busy_time = busy_time; return 0; } static int msm_devfreq_get_cur_freq(struct device *dev, unsigned long *freq) { *freq = get_freq(dev_to_gpu(dev)); return 0; } static struct devfreq_dev_profile msm_devfreq_profile = { .timer = DEVFREQ_TIMER_DELAYED, .polling_ms = 50, .target = msm_devfreq_target, .get_dev_status = msm_devfreq_get_dev_status, .get_cur_freq = msm_devfreq_get_cur_freq, }; static void msm_devfreq_boost_work(struct kthread_work *work); static void msm_devfreq_idle_work(struct kthread_work *work); static bool has_devfreq(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; return !!df->devfreq; } void msm_devfreq_init(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; struct msm_drm_private *priv = gpu->dev->dev_private; /* We need target support to do devfreq */ if (!gpu->funcs->gpu_busy) return; /* * Setup default values for simple_ondemand governor tuning. We * want to throttle up at 50% load for the double-buffer case, * where due to stalling waiting for vblank we could get stuck * at (for ex) 30fps at 50% utilization. */ priv->gpu_devfreq_config.upthreshold = 50; priv->gpu_devfreq_config.downdifferential = 10; mutex_init(&df->lock); dev_pm_qos_add_request(&gpu->pdev->dev, &df->boost_freq, DEV_PM_QOS_MIN_FREQUENCY, 0); msm_devfreq_profile.initial_freq = gpu->fast_rate; /* * Don't set the freq_table or max_state and let devfreq build the table * from OPP * After a deferred probe, these may have be left to non-zero values, * so set them back to zero before creating the devfreq device */ msm_devfreq_profile.freq_table = NULL; msm_devfreq_profile.max_state = 0; df->devfreq = devm_devfreq_add_device(&gpu->pdev->dev, &msm_devfreq_profile, DEVFREQ_GOV_SIMPLE_ONDEMAND, &priv->gpu_devfreq_config); if (IS_ERR(df->devfreq)) { DRM_DEV_ERROR(&gpu->pdev->dev, "Couldn't initialize GPU devfreq\n"); dev_pm_qos_remove_request(&df->boost_freq); df->devfreq = NULL; return; } devfreq_suspend_device(df->devfreq); gpu->cooling = of_devfreq_cooling_register(gpu->pdev->dev.of_node, df->devfreq); if (IS_ERR(gpu->cooling)) { DRM_DEV_ERROR(&gpu->pdev->dev, "Couldn't register GPU cooling device\n"); gpu->cooling = NULL; } msm_hrtimer_work_init(&df->boost_work, gpu->worker, msm_devfreq_boost_work, CLOCK_MONOTONIC, HRTIMER_MODE_REL); msm_hrtimer_work_init(&df->idle_work, gpu->worker, msm_devfreq_idle_work, CLOCK_MONOTONIC, HRTIMER_MODE_REL); } static void cancel_idle_work(struct msm_gpu_devfreq *df) { hrtimer_cancel(&df->idle_work.timer); kthread_cancel_work_sync(&df->idle_work.work); } static void cancel_boost_work(struct msm_gpu_devfreq *df) { hrtimer_cancel(&df->boost_work.timer); kthread_cancel_work_sync(&df->boost_work.work); } void msm_devfreq_cleanup(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; if (!has_devfreq(gpu)) return; devfreq_cooling_unregister(gpu->cooling); dev_pm_qos_remove_request(&df->boost_freq); } void msm_devfreq_resume(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; unsigned long sample_rate; if (!has_devfreq(gpu)) return; mutex_lock(&df->lock); df->busy_cycles = gpu->funcs->gpu_busy(gpu, &sample_rate); df->time = ktime_get(); df->suspended = false; mutex_unlock(&df->lock); devfreq_resume_device(df->devfreq); } void msm_devfreq_suspend(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; if (!has_devfreq(gpu)) return; mutex_lock(&df->lock); df->suspended = true; mutex_unlock(&df->lock); devfreq_suspend_device(df->devfreq); cancel_idle_work(df); cancel_boost_work(df); } static void msm_devfreq_boost_work(struct kthread_work *work) { struct msm_gpu_devfreq *df = container_of(work, struct msm_gpu_devfreq, boost_work.work); dev_pm_qos_update_request(&df->boost_freq, 0); } void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor) { struct msm_gpu_devfreq *df = &gpu->devfreq; uint64_t freq; if (!has_devfreq(gpu)) return; freq = get_freq(gpu); freq *= factor; /* * A nice little trap is that PM QoS operates in terms of KHz, * while devfreq operates in terms of Hz: */ do_div(freq, HZ_PER_KHZ); dev_pm_qos_update_request(&df->boost_freq, freq); msm_hrtimer_queue_work(&df->boost_work, ms_to_ktime(msm_devfreq_profile.polling_ms), HRTIMER_MODE_REL); } void msm_devfreq_active(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; unsigned int idle_time; unsigned long target_freq; if (!has_devfreq(gpu)) return; /* * Cancel any pending transition to idle frequency: */ cancel_idle_work(df); /* * Hold devfreq lock to synchronize with get_dev_status()/ * target() callbacks */ mutex_lock(&df->devfreq->lock); target_freq = df->idle_freq; idle_time = ktime_to_ms(ktime_sub(ktime_get(), df->idle_time)); df->idle_freq = 0; /* * We could have become active again before the idle work had a * chance to run, in which case the df->idle_freq would have * still been zero. In this case, no need to change freq. */ if (target_freq) msm_devfreq_target(&gpu->pdev->dev, &target_freq, 0); mutex_unlock(&df->devfreq->lock); /* * If we've been idle for a significant fraction of a polling * interval, then we won't meet the threshold of busyness for * the governor to ramp up the freq.. so give some boost */ if (idle_time > msm_devfreq_profile.polling_ms) { msm_devfreq_boost(gpu, 2); } } static void msm_devfreq_idle_work(struct kthread_work *work) { struct msm_gpu_devfreq *df = container_of(work, struct msm_gpu_devfreq, idle_work.work); struct msm_gpu *gpu = container_of(df, struct msm_gpu, devfreq); struct msm_drm_private *priv = gpu->dev->dev_private; unsigned long idle_freq, target_freq = 0; /* * Hold devfreq lock to synchronize with get_dev_status()/ * target() callbacks */ mutex_lock(&df->devfreq->lock); idle_freq = get_freq(gpu); if (priv->gpu_clamp_to_idle) msm_devfreq_target(&gpu->pdev->dev, &target_freq, 0); df->idle_time = ktime_get(); df->idle_freq = idle_freq; mutex_unlock(&df->devfreq->lock); } void msm_devfreq_idle(struct msm_gpu *gpu) { struct msm_gpu_devfreq *df = &gpu->devfreq; if (!has_devfreq(gpu)) return; msm_hrtimer_queue_work(&df->idle_work, ms_to_ktime(1), HRTIMER_MODE_REL); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1