Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 6300 | 55.69% | 116 | 63.74% |
Jérôme Glisse | 3763 | 33.26% | 7 | 3.85% |
Dave Airlie | 177 | 1.56% | 14 | 7.69% |
Chris Ball | 170 | 1.50% | 1 | 0.55% |
Fredrik Höglund | 169 | 1.49% | 1 | 0.55% |
Marek Olšák | 126 | 1.11% | 2 | 1.10% |
Mauro Rossi | 97 | 0.86% | 1 | 0.55% |
Mario Kleiner | 90 | 0.80% | 4 | 2.20% |
Michel Dänzer | 86 | 0.76% | 7 | 3.85% |
Ilija Hadzic | 59 | 0.52% | 1 | 0.55% |
Ville Syrjälä | 56 | 0.50% | 4 | 2.20% |
Cédric Cano | 54 | 0.48% | 1 | 0.55% |
Lucas Stach | 42 | 0.37% | 1 | 0.55% |
Christian König | 33 | 0.29% | 3 | 1.65% |
Daniel Stone | 21 | 0.19% | 2 | 1.10% |
Matt Roper | 16 | 0.14% | 1 | 0.55% |
Daniel Vetter | 15 | 0.13% | 3 | 1.65% |
Benjamin Herrenschmidt | 6 | 0.05% | 1 | 0.55% |
Eric Engestrom | 6 | 0.05% | 1 | 0.55% |
Rafał Miłecki | 5 | 0.04% | 1 | 0.55% |
Sakari Ailus | 4 | 0.04% | 1 | 0.55% |
Thomas Zimmermann | 4 | 0.04% | 1 | 0.55% |
Jason Wessel | 4 | 0.04% | 2 | 1.10% |
Gustavo Padovan | 4 | 0.04% | 1 | 0.55% |
Samuel Li | 2 | 0.02% | 1 | 0.55% |
Linus Torvalds | 1 | 0.01% | 1 | 0.55% |
Laurent Pinchart | 1 | 0.01% | 1 | 0.55% |
Sam Ravnborg | 1 | 0.01% | 1 | 0.55% |
Lee Jones | 1 | 0.01% | 1 | 0.55% |
Total | 11313 | 182 |
/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include <drm/drm_fixed.h> #include <drm/drm_fourcc.h> #include <drm/drm_framebuffer.h> #include <drm/drm_modeset_helper_vtables.h> #include <drm/drm_vblank.h> #include <drm/radeon_drm.h> #include "radeon.h" #include "atom.h" #include "atom-bits.h" static void atombios_overscan_setup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); SET_CRTC_OVERSCAN_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_OverScan); int a1, a2; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; switch (radeon_crtc->rmx_type) { case RMX_CENTER: args.usOverscanTop = cpu_to_le16((adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2); args.usOverscanBottom = cpu_to_le16((adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2); args.usOverscanLeft = cpu_to_le16((adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2); args.usOverscanRight = cpu_to_le16((adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2); break; case RMX_ASPECT: a1 = mode->crtc_vdisplay * adjusted_mode->crtc_hdisplay; a2 = adjusted_mode->crtc_vdisplay * mode->crtc_hdisplay; if (a1 > a2) { args.usOverscanLeft = cpu_to_le16((adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2); args.usOverscanRight = cpu_to_le16((adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2); } else if (a2 > a1) { args.usOverscanTop = cpu_to_le16((adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2); args.usOverscanBottom = cpu_to_le16((adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2); } break; case RMX_FULL: default: args.usOverscanRight = cpu_to_le16(radeon_crtc->h_border); args.usOverscanLeft = cpu_to_le16(radeon_crtc->h_border); args.usOverscanBottom = cpu_to_le16(radeon_crtc->v_border); args.usOverscanTop = cpu_to_le16(radeon_crtc->v_border); break; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_scaler_setup(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); ENABLE_SCALER_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, EnableScaler); struct radeon_encoder *radeon_encoder = to_radeon_encoder(radeon_crtc->encoder); /* fixme - fill in enc_priv for atom dac */ enum radeon_tv_std tv_std = TV_STD_NTSC; bool is_tv = false, is_cv = false; if (!ASIC_IS_AVIVO(rdev) && radeon_crtc->crtc_id) return; if (radeon_encoder->active_device & ATOM_DEVICE_TV_SUPPORT) { struct radeon_encoder_atom_dac *tv_dac = radeon_encoder->enc_priv; tv_std = tv_dac->tv_std; is_tv = true; } memset(&args, 0, sizeof(args)); args.ucScaler = radeon_crtc->crtc_id; if (is_tv) { switch (tv_std) { case TV_STD_NTSC: default: args.ucTVStandard = ATOM_TV_NTSC; break; case TV_STD_PAL: args.ucTVStandard = ATOM_TV_PAL; break; case TV_STD_PAL_M: args.ucTVStandard = ATOM_TV_PALM; break; case TV_STD_PAL_60: args.ucTVStandard = ATOM_TV_PAL60; break; case TV_STD_NTSC_J: args.ucTVStandard = ATOM_TV_NTSCJ; break; case TV_STD_SCART_PAL: args.ucTVStandard = ATOM_TV_PAL; /* ??? */ break; case TV_STD_SECAM: args.ucTVStandard = ATOM_TV_SECAM; break; case TV_STD_PAL_CN: args.ucTVStandard = ATOM_TV_PALCN; break; } args.ucEnable = SCALER_ENABLE_MULTITAP_MODE; } else if (is_cv) { args.ucTVStandard = ATOM_TV_CV; args.ucEnable = SCALER_ENABLE_MULTITAP_MODE; } else { switch (radeon_crtc->rmx_type) { case RMX_FULL: args.ucEnable = ATOM_SCALER_EXPANSION; break; case RMX_CENTER: args.ucEnable = ATOM_SCALER_CENTER; break; case RMX_ASPECT: args.ucEnable = ATOM_SCALER_EXPANSION; break; default: if (ASIC_IS_AVIVO(rdev)) args.ucEnable = ATOM_SCALER_DISABLE; else args.ucEnable = ATOM_SCALER_CENTER; break; } } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); if ((is_tv || is_cv) && rdev->family >= CHIP_RV515 && rdev->family <= CHIP_R580) { atom_rv515_force_tv_scaler(rdev, radeon_crtc); } } static void atombios_lock_crtc(struct drm_crtc *crtc, int lock) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = lock; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_enable_crtc(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_enable_crtc_memreq(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableCRTCMemReq); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static const u32 vga_control_regs[6] = { AVIVO_D1VGA_CONTROL, AVIVO_D2VGA_CONTROL, EVERGREEN_D3VGA_CONTROL, EVERGREEN_D4VGA_CONTROL, EVERGREEN_D5VGA_CONTROL, EVERGREEN_D6VGA_CONTROL, }; static void atombios_blank_crtc(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC); BLANK_CRTC_PS_ALLOCATION args; u32 vga_control = 0; memset(&args, 0, sizeof(args)); if (ASIC_IS_DCE8(rdev)) { vga_control = RREG32(vga_control_regs[radeon_crtc->crtc_id]); WREG32(vga_control_regs[radeon_crtc->crtc_id], vga_control | 1); } args.ucCRTC = radeon_crtc->crtc_id; args.ucBlanking = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); if (ASIC_IS_DCE8(rdev)) WREG32(vga_control_regs[radeon_crtc->crtc_id], vga_control); } static void atombios_powergate_crtc(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableDispPowerGating); ENABLE_DISP_POWER_GATING_PARAMETERS_V2_1 args; memset(&args, 0, sizeof(args)); args.ucDispPipeId = radeon_crtc->crtc_id; args.ucEnable = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void atombios_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); switch (mode) { case DRM_MODE_DPMS_ON: radeon_crtc->enabled = true; atombios_enable_crtc(crtc, ATOM_ENABLE); if (ASIC_IS_DCE3(rdev) && !ASIC_IS_DCE6(rdev)) atombios_enable_crtc_memreq(crtc, ATOM_ENABLE); atombios_blank_crtc(crtc, ATOM_DISABLE); if (dev->num_crtcs > radeon_crtc->crtc_id) drm_crtc_vblank_on(crtc); radeon_crtc_load_lut(crtc); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: if (dev->num_crtcs > radeon_crtc->crtc_id) drm_crtc_vblank_off(crtc); if (radeon_crtc->enabled) atombios_blank_crtc(crtc, ATOM_ENABLE); if (ASIC_IS_DCE3(rdev) && !ASIC_IS_DCE6(rdev)) atombios_enable_crtc_memreq(crtc, ATOM_DISABLE); atombios_enable_crtc(crtc, ATOM_DISABLE); radeon_crtc->enabled = false; break; } /* adjust pm to dpms */ radeon_pm_compute_clocks(rdev); } static void atombios_set_crtc_dtd_timing(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; SET_CRTC_USING_DTD_TIMING_PARAMETERS args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming); u16 misc = 0; memset(&args, 0, sizeof(args)); args.usH_Size = cpu_to_le16(mode->crtc_hdisplay - (radeon_crtc->h_border * 2)); args.usH_Blanking_Time = cpu_to_le16(mode->crtc_hblank_end - mode->crtc_hdisplay + (radeon_crtc->h_border * 2)); args.usV_Size = cpu_to_le16(mode->crtc_vdisplay - (radeon_crtc->v_border * 2)); args.usV_Blanking_Time = cpu_to_le16(mode->crtc_vblank_end - mode->crtc_vdisplay + (radeon_crtc->v_border * 2)); args.usH_SyncOffset = cpu_to_le16(mode->crtc_hsync_start - mode->crtc_hdisplay + radeon_crtc->h_border); args.usH_SyncWidth = cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start); args.usV_SyncOffset = cpu_to_le16(mode->crtc_vsync_start - mode->crtc_vdisplay + radeon_crtc->v_border); args.usV_SyncWidth = cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start); args.ucH_Border = radeon_crtc->h_border; args.ucV_Border = radeon_crtc->v_border; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= ATOM_VSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= ATOM_HSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_CSYNC) misc |= ATOM_COMPOSITESYNC; if (mode->flags & DRM_MODE_FLAG_INTERLACE) misc |= ATOM_INTERLACE; if (mode->flags & DRM_MODE_FLAG_DBLCLK) misc |= ATOM_DOUBLE_CLOCK_MODE; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) misc |= ATOM_H_REPLICATIONBY2 | ATOM_V_REPLICATIONBY2; args.susModeMiscInfo.usAccess = cpu_to_le16(misc); args.ucCRTC = radeon_crtc->crtc_id; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_crtc_set_timing(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_Timing); u16 misc = 0; memset(&args, 0, sizeof(args)); args.usH_Total = cpu_to_le16(mode->crtc_htotal); args.usH_Disp = cpu_to_le16(mode->crtc_hdisplay); args.usH_SyncStart = cpu_to_le16(mode->crtc_hsync_start); args.usH_SyncWidth = cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start); args.usV_Total = cpu_to_le16(mode->crtc_vtotal); args.usV_Disp = cpu_to_le16(mode->crtc_vdisplay); args.usV_SyncStart = cpu_to_le16(mode->crtc_vsync_start); args.usV_SyncWidth = cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start); args.ucOverscanRight = radeon_crtc->h_border; args.ucOverscanLeft = radeon_crtc->h_border; args.ucOverscanBottom = radeon_crtc->v_border; args.ucOverscanTop = radeon_crtc->v_border; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= ATOM_VSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= ATOM_HSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_CSYNC) misc |= ATOM_COMPOSITESYNC; if (mode->flags & DRM_MODE_FLAG_INTERLACE) misc |= ATOM_INTERLACE; if (mode->flags & DRM_MODE_FLAG_DBLCLK) misc |= ATOM_DOUBLE_CLOCK_MODE; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) misc |= ATOM_H_REPLICATIONBY2 | ATOM_V_REPLICATIONBY2; args.susModeMiscInfo.usAccess = cpu_to_le16(misc); args.ucCRTC = radeon_crtc->crtc_id; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_disable_ss(struct radeon_device *rdev, int pll_id) { u32 ss_cntl; if (ASIC_IS_DCE4(rdev)) { switch (pll_id) { case ATOM_PPLL1: ss_cntl = RREG32(EVERGREEN_P1PLL_SS_CNTL); ss_cntl &= ~EVERGREEN_PxPLL_SS_EN; WREG32(EVERGREEN_P1PLL_SS_CNTL, ss_cntl); break; case ATOM_PPLL2: ss_cntl = RREG32(EVERGREEN_P2PLL_SS_CNTL); ss_cntl &= ~EVERGREEN_PxPLL_SS_EN; WREG32(EVERGREEN_P2PLL_SS_CNTL, ss_cntl); break; case ATOM_DCPLL: case ATOM_PPLL_INVALID: return; } } else if (ASIC_IS_AVIVO(rdev)) { switch (pll_id) { case ATOM_PPLL1: ss_cntl = RREG32(AVIVO_P1PLL_INT_SS_CNTL); ss_cntl &= ~1; WREG32(AVIVO_P1PLL_INT_SS_CNTL, ss_cntl); break; case ATOM_PPLL2: ss_cntl = RREG32(AVIVO_P2PLL_INT_SS_CNTL); ss_cntl &= ~1; WREG32(AVIVO_P2PLL_INT_SS_CNTL, ss_cntl); break; case ATOM_DCPLL: case ATOM_PPLL_INVALID: return; } } } union atom_enable_ss { ENABLE_LVDS_SS_PARAMETERS lvds_ss; ENABLE_LVDS_SS_PARAMETERS_V2 lvds_ss_2; ENABLE_SPREAD_SPECTRUM_ON_PPLL_PS_ALLOCATION v1; ENABLE_SPREAD_SPECTRUM_ON_PPLL_V2 v2; ENABLE_SPREAD_SPECTRUM_ON_PPLL_V3 v3; }; static void atombios_crtc_program_ss(struct radeon_device *rdev, int enable, int pll_id, int crtc_id, struct radeon_atom_ss *ss) { unsigned i; int index = GetIndexIntoMasterTable(COMMAND, EnableSpreadSpectrumOnPPLL); union atom_enable_ss args; if (enable) { /* Don't mess with SS if percentage is 0 or external ss. * SS is already disabled previously, and disabling it * again can cause display problems if the pll is already * programmed. */ if (ss->percentage == 0) return; if (ss->type & ATOM_EXTERNAL_SS_MASK) return; } else { for (i = 0; i < rdev->num_crtc; i++) { if (rdev->mode_info.crtcs[i] && rdev->mode_info.crtcs[i]->enabled && i != crtc_id && pll_id == rdev->mode_info.crtcs[i]->pll_id) { /* one other crtc is using this pll don't turn * off spread spectrum as it might turn off * display on active crtc */ return; } } } memset(&args, 0, sizeof(args)); if (ASIC_IS_DCE5(rdev)) { args.v3.usSpreadSpectrumAmountFrac = cpu_to_le16(0); args.v3.ucSpreadSpectrumType = ss->type & ATOM_SS_CENTRE_SPREAD_MODE_MASK; switch (pll_id) { case ATOM_PPLL1: args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P1PLL; break; case ATOM_PPLL2: args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P2PLL; break; case ATOM_DCPLL: args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_DCPLL; break; case ATOM_PPLL_INVALID: return; } args.v3.usSpreadSpectrumAmount = cpu_to_le16(ss->amount); args.v3.usSpreadSpectrumStep = cpu_to_le16(ss->step); args.v3.ucEnable = enable; } else if (ASIC_IS_DCE4(rdev)) { args.v2.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.v2.ucSpreadSpectrumType = ss->type & ATOM_SS_CENTRE_SPREAD_MODE_MASK; switch (pll_id) { case ATOM_PPLL1: args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V2_P1PLL; break; case ATOM_PPLL2: args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V2_P2PLL; break; case ATOM_DCPLL: args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V2_DCPLL; break; case ATOM_PPLL_INVALID: return; } args.v2.usSpreadSpectrumAmount = cpu_to_le16(ss->amount); args.v2.usSpreadSpectrumStep = cpu_to_le16(ss->step); args.v2.ucEnable = enable; } else if (ASIC_IS_DCE3(rdev)) { args.v1.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.v1.ucSpreadSpectrumType = ss->type & ATOM_SS_CENTRE_SPREAD_MODE_MASK; args.v1.ucSpreadSpectrumStep = ss->step; args.v1.ucSpreadSpectrumDelay = ss->delay; args.v1.ucSpreadSpectrumRange = ss->range; args.v1.ucPpll = pll_id; args.v1.ucEnable = enable; } else if (ASIC_IS_AVIVO(rdev)) { if ((enable == ATOM_DISABLE) || (ss->percentage == 0) || (ss->type & ATOM_EXTERNAL_SS_MASK)) { atombios_disable_ss(rdev, pll_id); return; } args.lvds_ss_2.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.lvds_ss_2.ucSpreadSpectrumType = ss->type & ATOM_SS_CENTRE_SPREAD_MODE_MASK; args.lvds_ss_2.ucSpreadSpectrumStep = ss->step; args.lvds_ss_2.ucSpreadSpectrumDelay = ss->delay; args.lvds_ss_2.ucSpreadSpectrumRange = ss->range; args.lvds_ss_2.ucEnable = enable; } else { if (enable == ATOM_DISABLE) { atombios_disable_ss(rdev, pll_id); return; } args.lvds_ss.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.lvds_ss.ucSpreadSpectrumType = ss->type & ATOM_SS_CENTRE_SPREAD_MODE_MASK; args.lvds_ss.ucSpreadSpectrumStepSize_Delay = (ss->step & 3) << 2; args.lvds_ss.ucSpreadSpectrumStepSize_Delay |= (ss->delay & 7) << 4; args.lvds_ss.ucEnable = enable; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } union adjust_pixel_clock { ADJUST_DISPLAY_PLL_PS_ALLOCATION v1; ADJUST_DISPLAY_PLL_PS_ALLOCATION_V3 v3; }; static u32 atombios_adjust_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *encoder = radeon_crtc->encoder; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct drm_connector *connector = radeon_get_connector_for_encoder(encoder); u32 adjusted_clock = mode->clock; int encoder_mode = atombios_get_encoder_mode(encoder); u32 dp_clock = mode->clock; u32 clock = mode->clock; int bpc = radeon_crtc->bpc; bool is_duallink = radeon_dig_monitor_is_duallink(encoder, mode->clock); /* reset the pll flags */ radeon_crtc->pll_flags = 0; if (ASIC_IS_AVIVO(rdev)) { if ((rdev->family == CHIP_RS600) || (rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740)) radeon_crtc->pll_flags |= (/*RADEON_PLL_USE_FRAC_FB_DIV |*/ RADEON_PLL_PREFER_CLOSEST_LOWER); if (ASIC_IS_DCE32(rdev) && mode->clock > 200000) /* range limits??? */ radeon_crtc->pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV; else radeon_crtc->pll_flags |= RADEON_PLL_PREFER_LOW_REF_DIV; if (rdev->family < CHIP_RV770) radeon_crtc->pll_flags |= RADEON_PLL_PREFER_MINM_OVER_MAXP; /* use frac fb div on APUs */ if (ASIC_IS_DCE41(rdev) || ASIC_IS_DCE61(rdev) || ASIC_IS_DCE8(rdev)) radeon_crtc->pll_flags |= RADEON_PLL_USE_FRAC_FB_DIV; /* use frac fb div on RS780/RS880 */ if (((rdev->family == CHIP_RS780) || (rdev->family == CHIP_RS880)) && !radeon_crtc->ss_enabled) radeon_crtc->pll_flags |= RADEON_PLL_USE_FRAC_FB_DIV; if (ASIC_IS_DCE32(rdev) && mode->clock > 165000) radeon_crtc->pll_flags |= RADEON_PLL_USE_FRAC_FB_DIV; } else { radeon_crtc->pll_flags |= RADEON_PLL_LEGACY; if (mode->clock > 200000) /* range limits??? */ radeon_crtc->pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV; else radeon_crtc->pll_flags |= RADEON_PLL_PREFER_LOW_REF_DIV; } if ((radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) || (radeon_encoder_get_dp_bridge_encoder_id(encoder) != ENCODER_OBJECT_ID_NONE)) { if (connector) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; dp_clock = dig_connector->dp_clock; } } /* use recommended ref_div for ss */ if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) { if (radeon_crtc->ss_enabled) { if (radeon_crtc->ss.refdiv) { radeon_crtc->pll_flags |= RADEON_PLL_USE_REF_DIV; radeon_crtc->pll_reference_div = radeon_crtc->ss.refdiv; if (ASIC_IS_AVIVO(rdev) && rdev->family != CHIP_RS780 && rdev->family != CHIP_RS880) radeon_crtc->pll_flags |= RADEON_PLL_USE_FRAC_FB_DIV; } } } if (ASIC_IS_AVIVO(rdev)) { /* DVO wants 2x pixel clock if the DVO chip is in 12 bit mode */ if (radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1) adjusted_clock = mode->clock * 2; if (radeon_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT)) radeon_crtc->pll_flags |= RADEON_PLL_PREFER_CLOSEST_LOWER; if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) radeon_crtc->pll_flags |= RADEON_PLL_IS_LCD; } else { if (encoder->encoder_type != DRM_MODE_ENCODER_DAC) radeon_crtc->pll_flags |= RADEON_PLL_NO_ODD_POST_DIV; if (encoder->encoder_type == DRM_MODE_ENCODER_LVDS) radeon_crtc->pll_flags |= RADEON_PLL_USE_REF_DIV; } /* adjust pll for deep color modes */ if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { switch (bpc) { case 8: default: break; case 10: clock = (clock * 5) / 4; break; case 12: clock = (clock * 3) / 2; break; case 16: clock = clock * 2; break; } } /* DCE3+ has an AdjustDisplayPll that will adjust the pixel clock * accordingly based on the encoder/transmitter to work around * special hw requirements. */ if (ASIC_IS_DCE3(rdev)) { union adjust_pixel_clock args; u8 frev, crev; int index; index = GetIndexIntoMasterTable(COMMAND, AdjustDisplayPll); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return adjusted_clock; memset(&args, 0, sizeof(args)); switch (frev) { case 1: switch (crev) { case 1: case 2: args.v1.usPixelClock = cpu_to_le16(clock / 10); args.v1.ucTransmitterID = radeon_encoder->encoder_id; args.v1.ucEncodeMode = encoder_mode; if (radeon_crtc->ss_enabled && radeon_crtc->ss.percentage) args.v1.ucConfig |= ADJUST_DISPLAY_CONFIG_SS_ENABLE; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); adjusted_clock = le16_to_cpu(args.v1.usPixelClock) * 10; break; case 3: args.v3.sInput.usPixelClock = cpu_to_le16(clock / 10); args.v3.sInput.ucTransmitterID = radeon_encoder->encoder_id; args.v3.sInput.ucEncodeMode = encoder_mode; args.v3.sInput.ucDispPllConfig = 0; if (radeon_crtc->ss_enabled && radeon_crtc->ss.percentage) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_SS_ENABLE; if (ENCODER_MODE_IS_DP(encoder_mode)) { args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_COHERENT_MODE; /* 16200 or 27000 */ args.v3.sInput.usPixelClock = cpu_to_le16(dp_clock / 10); } else if (radeon_encoder->devices & (ATOM_DEVICE_DFP_SUPPORT)) { struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv; if (dig->coherent_mode) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_COHERENT_MODE; if (is_duallink) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_DUAL_LINK; } if (radeon_encoder_get_dp_bridge_encoder_id(encoder) != ENCODER_OBJECT_ID_NONE) args.v3.sInput.ucExtTransmitterID = radeon_encoder_get_dp_bridge_encoder_id(encoder); else args.v3.sInput.ucExtTransmitterID = 0; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); adjusted_clock = le32_to_cpu(args.v3.sOutput.ulDispPllFreq) * 10; if (args.v3.sOutput.ucRefDiv) { radeon_crtc->pll_flags |= RADEON_PLL_USE_FRAC_FB_DIV; radeon_crtc->pll_flags |= RADEON_PLL_USE_REF_DIV; radeon_crtc->pll_reference_div = args.v3.sOutput.ucRefDiv; } if (args.v3.sOutput.ucPostDiv) { radeon_crtc->pll_flags |= RADEON_PLL_USE_FRAC_FB_DIV; radeon_crtc->pll_flags |= RADEON_PLL_USE_POST_DIV; radeon_crtc->pll_post_div = args.v3.sOutput.ucPostDiv; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return adjusted_clock; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return adjusted_clock; } } return adjusted_clock; } union set_pixel_clock { SET_PIXEL_CLOCK_PS_ALLOCATION base; PIXEL_CLOCK_PARAMETERS v1; PIXEL_CLOCK_PARAMETERS_V2 v2; PIXEL_CLOCK_PARAMETERS_V3 v3; PIXEL_CLOCK_PARAMETERS_V5 v5; PIXEL_CLOCK_PARAMETERS_V6 v6; }; /* on DCE5, make sure the voltage is high enough to support the * required disp clk. */ static void atombios_crtc_set_disp_eng_pll(struct radeon_device *rdev, u32 dispclk) { u8 frev, crev; int index; union set_pixel_clock args; memset(&args, 0, sizeof(args)); index = GetIndexIntoMasterTable(COMMAND, SetPixelClock); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return; switch (frev) { case 1: switch (crev) { case 5: /* if the default dcpll clock is specified, * SetPixelClock provides the dividers */ args.v5.ucCRTC = ATOM_CRTC_INVALID; args.v5.usPixelClock = cpu_to_le16(dispclk); args.v5.ucPpll = ATOM_DCPLL; break; case 6: /* if the default dcpll clock is specified, * SetPixelClock provides the dividers */ args.v6.ulDispEngClkFreq = cpu_to_le32(dispclk); if (ASIC_IS_DCE61(rdev) || ASIC_IS_DCE8(rdev)) args.v6.ucPpll = ATOM_EXT_PLL1; else if (ASIC_IS_DCE6(rdev)) args.v6.ucPpll = ATOM_PPLL0; else args.v6.ucPpll = ATOM_DCPLL; break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_crtc_program_pll(struct drm_crtc *crtc, u32 crtc_id, int pll_id, u32 encoder_mode, u32 encoder_id, u32 clock, u32 ref_div, u32 fb_div, u32 frac_fb_div, u32 post_div, int bpc, bool ss_enabled, struct radeon_atom_ss *ss) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; u8 frev, crev; int index = GetIndexIntoMasterTable(COMMAND, SetPixelClock); union set_pixel_clock args; memset(&args, 0, sizeof(args)); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return; switch (frev) { case 1: switch (crev) { case 1: if (clock == ATOM_DISABLE) return; args.v1.usPixelClock = cpu_to_le16(clock / 10); args.v1.usRefDiv = cpu_to_le16(ref_div); args.v1.usFbDiv = cpu_to_le16(fb_div); args.v1.ucFracFbDiv = frac_fb_div; args.v1.ucPostDiv = post_div; args.v1.ucPpll = pll_id; args.v1.ucCRTC = crtc_id; args.v1.ucRefDivSrc = 1; break; case 2: args.v2.usPixelClock = cpu_to_le16(clock / 10); args.v2.usRefDiv = cpu_to_le16(ref_div); args.v2.usFbDiv = cpu_to_le16(fb_div); args.v2.ucFracFbDiv = frac_fb_div; args.v2.ucPostDiv = post_div; args.v2.ucPpll = pll_id; args.v2.ucCRTC = crtc_id; args.v2.ucRefDivSrc = 1; break; case 3: args.v3.usPixelClock = cpu_to_le16(clock / 10); args.v3.usRefDiv = cpu_to_le16(ref_div); args.v3.usFbDiv = cpu_to_le16(fb_div); args.v3.ucFracFbDiv = frac_fb_div; args.v3.ucPostDiv = post_div; args.v3.ucPpll = pll_id; if (crtc_id == ATOM_CRTC2) args.v3.ucMiscInfo = PIXEL_CLOCK_MISC_CRTC_SEL_CRTC2; else args.v3.ucMiscInfo = PIXEL_CLOCK_MISC_CRTC_SEL_CRTC1; if (ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) args.v3.ucMiscInfo |= PIXEL_CLOCK_MISC_REF_DIV_SRC; args.v3.ucTransmitterId = encoder_id; args.v3.ucEncoderMode = encoder_mode; break; case 5: args.v5.ucCRTC = crtc_id; args.v5.usPixelClock = cpu_to_le16(clock / 10); args.v5.ucRefDiv = ref_div; args.v5.usFbDiv = cpu_to_le16(fb_div); args.v5.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000); args.v5.ucPostDiv = post_div; args.v5.ucMiscInfo = 0; /* HDMI depth, etc. */ if (ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_REF_DIV_SRC; if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { switch (bpc) { case 8: default: args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_24BPP; break; case 10: /* yes this is correct, the atom define is wrong */ args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_32BPP; break; case 12: /* yes this is correct, the atom define is wrong */ args.v5.ucMiscInfo |= PIXEL_CLOCK_V5_MISC_HDMI_30BPP; break; } } args.v5.ucTransmitterID = encoder_id; args.v5.ucEncoderMode = encoder_mode; args.v5.ucPpll = pll_id; break; case 6: args.v6.ulDispEngClkFreq = cpu_to_le32(crtc_id << 24 | clock / 10); args.v6.ucRefDiv = ref_div; args.v6.usFbDiv = cpu_to_le16(fb_div); args.v6.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000); args.v6.ucPostDiv = post_div; args.v6.ucMiscInfo = 0; /* HDMI depth, etc. */ if (ss_enabled && (ss->type & ATOM_EXTERNAL_SS_MASK)) args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_REF_DIV_SRC; if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { switch (bpc) { case 8: default: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_24BPP; break; case 10: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_30BPP_V6; break; case 12: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_36BPP_V6; break; case 16: args.v6.ucMiscInfo |= PIXEL_CLOCK_V6_MISC_HDMI_48BPP; break; } } args.v6.ucTransmitterID = encoder_id; args.v6.ucEncoderMode = encoder_mode; args.v6.ucPpll = pll_id; break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static bool atombios_crtc_prepare_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(radeon_crtc->encoder); int encoder_mode = atombios_get_encoder_mode(radeon_crtc->encoder); radeon_crtc->bpc = 8; radeon_crtc->ss_enabled = false; if ((radeon_encoder->active_device & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) || (radeon_encoder_get_dp_bridge_encoder_id(radeon_crtc->encoder) != ENCODER_OBJECT_ID_NONE)) { struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv; struct drm_connector *connector = radeon_get_connector_for_encoder(radeon_crtc->encoder); struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; int dp_clock; /* Assign mode clock for hdmi deep color max clock limit check */ radeon_connector->pixelclock_for_modeset = mode->clock; radeon_crtc->bpc = radeon_get_monitor_bpc(connector); switch (encoder_mode) { case ATOM_ENCODER_MODE_DP_MST: case ATOM_ENCODER_MODE_DP: /* DP/eDP */ dp_clock = dig_connector->dp_clock / 10; if (ASIC_IS_DCE4(rdev)) radeon_crtc->ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &radeon_crtc->ss, ASIC_INTERNAL_SS_ON_DP, dp_clock); else { if (dp_clock == 16200) { radeon_crtc->ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &radeon_crtc->ss, ATOM_DP_SS_ID2); if (!radeon_crtc->ss_enabled) radeon_crtc->ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &radeon_crtc->ss, ATOM_DP_SS_ID1); } else { radeon_crtc->ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &radeon_crtc->ss, ATOM_DP_SS_ID1); } /* disable spread spectrum on DCE3 DP */ radeon_crtc->ss_enabled = false; } break; case ATOM_ENCODER_MODE_LVDS: if (ASIC_IS_DCE4(rdev)) radeon_crtc->ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &radeon_crtc->ss, dig->lcd_ss_id, mode->clock / 10); else radeon_crtc->ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &radeon_crtc->ss, dig->lcd_ss_id); break; case ATOM_ENCODER_MODE_DVI: if (ASIC_IS_DCE4(rdev)) radeon_crtc->ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &radeon_crtc->ss, ASIC_INTERNAL_SS_ON_TMDS, mode->clock / 10); break; case ATOM_ENCODER_MODE_HDMI: if (ASIC_IS_DCE4(rdev)) radeon_crtc->ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &radeon_crtc->ss, ASIC_INTERNAL_SS_ON_HDMI, mode->clock / 10); break; default: break; } } /* adjust pixel clock as needed */ radeon_crtc->adjusted_clock = atombios_adjust_pll(crtc, mode); return true; } static void atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(radeon_crtc->encoder); u32 pll_clock = mode->clock; u32 clock = mode->clock; u32 ref_div = 0, fb_div = 0, frac_fb_div = 0, post_div = 0; struct radeon_pll *pll; int encoder_mode = atombios_get_encoder_mode(radeon_crtc->encoder); /* pass the actual clock to atombios_crtc_program_pll for DCE5,6 for HDMI */ if (ASIC_IS_DCE5(rdev) && (encoder_mode == ATOM_ENCODER_MODE_HDMI) && (radeon_crtc->bpc > 8)) clock = radeon_crtc->adjusted_clock; switch (radeon_crtc->pll_id) { case ATOM_PPLL1: pll = &rdev->clock.p1pll; break; case ATOM_PPLL2: pll = &rdev->clock.p2pll; break; case ATOM_DCPLL: case ATOM_PPLL_INVALID: default: pll = &rdev->clock.dcpll; break; } /* update pll params */ pll->flags = radeon_crtc->pll_flags; pll->reference_div = radeon_crtc->pll_reference_div; pll->post_div = radeon_crtc->pll_post_div; if (radeon_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT)) /* TV seems to prefer the legacy algo on some boards */ radeon_compute_pll_legacy(pll, radeon_crtc->adjusted_clock, &pll_clock, &fb_div, &frac_fb_div, &ref_div, &post_div); else if (ASIC_IS_AVIVO(rdev)) radeon_compute_pll_avivo(pll, radeon_crtc->adjusted_clock, &pll_clock, &fb_div, &frac_fb_div, &ref_div, &post_div); else radeon_compute_pll_legacy(pll, radeon_crtc->adjusted_clock, &pll_clock, &fb_div, &frac_fb_div, &ref_div, &post_div); atombios_crtc_program_ss(rdev, ATOM_DISABLE, radeon_crtc->pll_id, radeon_crtc->crtc_id, &radeon_crtc->ss); atombios_crtc_program_pll(crtc, radeon_crtc->crtc_id, radeon_crtc->pll_id, encoder_mode, radeon_encoder->encoder_id, clock, ref_div, fb_div, frac_fb_div, post_div, radeon_crtc->bpc, radeon_crtc->ss_enabled, &radeon_crtc->ss); if (radeon_crtc->ss_enabled) { /* calculate ss amount and step size */ if (ASIC_IS_DCE4(rdev)) { u32 step_size; u32 amount = (((fb_div * 10) + frac_fb_div) * (u32)radeon_crtc->ss.percentage) / (100 * (u32)radeon_crtc->ss.percentage_divider); radeon_crtc->ss.amount = (amount / 10) & ATOM_PPLL_SS_AMOUNT_V2_FBDIV_MASK; radeon_crtc->ss.amount |= ((amount - (amount / 10)) << ATOM_PPLL_SS_AMOUNT_V2_NFRAC_SHIFT) & ATOM_PPLL_SS_AMOUNT_V2_NFRAC_MASK; if (radeon_crtc->ss.type & ATOM_PPLL_SS_TYPE_V2_CENTRE_SPREAD) step_size = (4 * amount * ref_div * ((u32)radeon_crtc->ss.rate * 2048)) / (125 * 25 * pll->reference_freq / 100); else step_size = (2 * amount * ref_div * ((u32)radeon_crtc->ss.rate * 2048)) / (125 * 25 * pll->reference_freq / 100); radeon_crtc->ss.step = step_size; } atombios_crtc_program_ss(rdev, ATOM_ENABLE, radeon_crtc->pll_id, radeon_crtc->crtc_id, &radeon_crtc->ss); } } static int dce4_crtc_do_set_base(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, int atomic) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_framebuffer *target_fb; struct drm_gem_object *obj; struct radeon_bo *rbo; uint64_t fb_location; uint32_t fb_format, fb_pitch_pixels, tiling_flags; unsigned bankw, bankh, mtaspect, tile_split; u32 fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_NONE); u32 tmp, viewport_w, viewport_h; int r; bool bypass_lut = false; /* no fb bound */ if (!atomic && !crtc->primary->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } if (atomic) target_fb = fb; else target_fb = crtc->primary->fb; /* If atomic, assume fb object is pinned & idle & fenced and * just update base pointers */ obj = target_fb->obj[0]; rbo = gem_to_radeon_bo(obj); r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; if (atomic) fb_location = radeon_bo_gpu_offset(rbo); else { r = radeon_bo_pin(rbo, RADEON_GEM_DOMAIN_VRAM, &fb_location); if (unlikely(r != 0)) { radeon_bo_unreserve(rbo); return -EINVAL; } } radeon_bo_get_tiling_flags(rbo, &tiling_flags, NULL); radeon_bo_unreserve(rbo); switch (target_fb->format->format) { case DRM_FORMAT_C8: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_8BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_INDEXED)); break; case DRM_FORMAT_XRGB4444: case DRM_FORMAT_ARGB4444: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB4444)); #ifdef __BIG_ENDIAN fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16); #endif break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB1555)); #ifdef __BIG_ENDIAN fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16); #endif break; case DRM_FORMAT_BGRX5551: case DRM_FORMAT_BGRA5551: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_BGRA5551)); #ifdef __BIG_ENDIAN fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16); #endif break; case DRM_FORMAT_RGB565: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB565)); #ifdef __BIG_ENDIAN fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16); #endif break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB8888)); #ifdef __BIG_ENDIAN fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32); #endif break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB2101010)); #ifdef __BIG_ENDIAN fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32); #endif /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ bypass_lut = true; break; case DRM_FORMAT_BGRX1010102: case DRM_FORMAT_BGRA1010102: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_BGRA1010102)); #ifdef __BIG_ENDIAN fb_swap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32); #endif /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ bypass_lut = true; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB8888)); fb_swap = (EVERGREEN_GRPH_RED_CROSSBAR(EVERGREEN_GRPH_RED_SEL_B) | EVERGREEN_GRPH_BLUE_CROSSBAR(EVERGREEN_GRPH_BLUE_SEL_R)); #ifdef __BIG_ENDIAN fb_swap |= EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32); #endif break; default: DRM_ERROR("Unsupported screen format %p4cc\n", &target_fb->format->format); return -EINVAL; } if (tiling_flags & RADEON_TILING_MACRO) { evergreen_tiling_fields(tiling_flags, &bankw, &bankh, &mtaspect, &tile_split); /* Set NUM_BANKS. */ if (rdev->family >= CHIP_TAHITI) { unsigned index, num_banks; if (rdev->family >= CHIP_BONAIRE) { unsigned tileb, tile_split_bytes; /* Calculate the macrotile mode index. */ tile_split_bytes = 64 << tile_split; tileb = 8 * 8 * target_fb->format->cpp[0]; tileb = min(tile_split_bytes, tileb); for (index = 0; tileb > 64; index++) tileb >>= 1; if (index >= 16) { DRM_ERROR("Wrong screen bpp (%u) or tile split (%u)\n", target_fb->format->cpp[0] * 8, tile_split); return -EINVAL; } num_banks = (rdev->config.cik.macrotile_mode_array[index] >> 6) & 0x3; } else { switch (target_fb->format->cpp[0] * 8) { case 8: index = 10; break; case 16: index = SI_TILE_MODE_COLOR_2D_SCANOUT_16BPP; break; default: case 32: index = SI_TILE_MODE_COLOR_2D_SCANOUT_32BPP; break; } num_banks = (rdev->config.si.tile_mode_array[index] >> 20) & 0x3; } fb_format |= EVERGREEN_GRPH_NUM_BANKS(num_banks); } else { /* NI and older. */ if (rdev->family >= CHIP_CAYMAN) tmp = rdev->config.cayman.tile_config; else tmp = rdev->config.evergreen.tile_config; switch ((tmp & 0xf0) >> 4) { case 0: /* 4 banks */ fb_format |= EVERGREEN_GRPH_NUM_BANKS(EVERGREEN_ADDR_SURF_4_BANK); break; case 1: /* 8 banks */ default: fb_format |= EVERGREEN_GRPH_NUM_BANKS(EVERGREEN_ADDR_SURF_8_BANK); break; case 2: /* 16 banks */ fb_format |= EVERGREEN_GRPH_NUM_BANKS(EVERGREEN_ADDR_SURF_16_BANK); break; } } fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_2D_TILED_THIN1); fb_format |= EVERGREEN_GRPH_TILE_SPLIT(tile_split); fb_format |= EVERGREEN_GRPH_BANK_WIDTH(bankw); fb_format |= EVERGREEN_GRPH_BANK_HEIGHT(bankh); fb_format |= EVERGREEN_GRPH_MACRO_TILE_ASPECT(mtaspect); if (rdev->family >= CHIP_BONAIRE) { /* XXX need to know more about the surface tiling mode */ fb_format |= CIK_GRPH_MICRO_TILE_MODE(CIK_DISPLAY_MICRO_TILING); } } else if (tiling_flags & RADEON_TILING_MICRO) fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_1D_TILED_THIN1); if (rdev->family >= CHIP_BONAIRE) { /* Read the pipe config from the 2D TILED SCANOUT mode. * It should be the same for the other modes too, but not all * modes set the pipe config field. */ u32 pipe_config = (rdev->config.cik.tile_mode_array[10] >> 6) & 0x1f; fb_format |= CIK_GRPH_PIPE_CONFIG(pipe_config); } else if ((rdev->family == CHIP_TAHITI) || (rdev->family == CHIP_PITCAIRN)) fb_format |= SI_GRPH_PIPE_CONFIG(SI_ADDR_SURF_P8_32x32_8x16); else if ((rdev->family == CHIP_VERDE) || (rdev->family == CHIP_OLAND) || (rdev->family == CHIP_HAINAN)) /* for completeness. HAINAN has no display hw */ fb_format |= SI_GRPH_PIPE_CONFIG(SI_ADDR_SURF_P4_8x16); switch (radeon_crtc->crtc_id) { case 0: WREG32(AVIVO_D1VGA_CONTROL, 0); break; case 1: WREG32(AVIVO_D2VGA_CONTROL, 0); break; case 2: WREG32(EVERGREEN_D3VGA_CONTROL, 0); break; case 3: WREG32(EVERGREEN_D4VGA_CONTROL, 0); break; case 4: WREG32(EVERGREEN_D5VGA_CONTROL, 0); break; case 5: WREG32(EVERGREEN_D6VGA_CONTROL, 0); break; default: break; } /* Make sure surface address is updated at vertical blank rather than * horizontal blank */ WREG32(EVERGREEN_GRPH_FLIP_CONTROL + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset, upper_32_bits(fb_location)); WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset, upper_32_bits(fb_location)); WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32)fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK); WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK); WREG32(EVERGREEN_GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format); WREG32(EVERGREEN_GRPH_SWAP_CONTROL + radeon_crtc->crtc_offset, fb_swap); /* * The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT * for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to * retain the full precision throughout the pipeline. */ WREG32_P(EVERGREEN_GRPH_LUT_10BIT_BYPASS_CONTROL + radeon_crtc->crtc_offset, (bypass_lut ? EVERGREEN_LUT_10BIT_BYPASS_EN : 0), ~EVERGREEN_LUT_10BIT_BYPASS_EN); if (bypass_lut) DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n"); WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_X_START + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_Y_START + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_X_END + radeon_crtc->crtc_offset, target_fb->width); WREG32(EVERGREEN_GRPH_Y_END + radeon_crtc->crtc_offset, target_fb->height); fb_pitch_pixels = target_fb->pitches[0] / target_fb->format->cpp[0]; WREG32(EVERGREEN_GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels); WREG32(EVERGREEN_GRPH_ENABLE + radeon_crtc->crtc_offset, 1); if (rdev->family >= CHIP_BONAIRE) WREG32(CIK_LB_DESKTOP_HEIGHT + radeon_crtc->crtc_offset, target_fb->height); else WREG32(EVERGREEN_DESKTOP_HEIGHT + radeon_crtc->crtc_offset, target_fb->height); x &= ~3; y &= ~1; WREG32(EVERGREEN_VIEWPORT_START + radeon_crtc->crtc_offset, (x << 16) | y); viewport_w = crtc->mode.hdisplay; viewport_h = (crtc->mode.vdisplay + 1) & ~1; if ((rdev->family >= CHIP_BONAIRE) && (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE)) viewport_h *= 2; WREG32(EVERGREEN_VIEWPORT_SIZE + radeon_crtc->crtc_offset, (viewport_w << 16) | viewport_h); /* set pageflip to happen anywhere in vblank interval */ WREG32(EVERGREEN_MASTER_UPDATE_MODE + radeon_crtc->crtc_offset, 0); if (!atomic && fb && fb != crtc->primary->fb) { rbo = gem_to_radeon_bo(fb->obj[0]); r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; radeon_bo_unpin(rbo); radeon_bo_unreserve(rbo); } /* Bytes per pixel may have changed */ radeon_bandwidth_update(rdev); return 0; } static int avivo_crtc_do_set_base(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, int atomic) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_gem_object *obj; struct radeon_bo *rbo; struct drm_framebuffer *target_fb; uint64_t fb_location; uint32_t fb_format, fb_pitch_pixels, tiling_flags; u32 fb_swap = R600_D1GRPH_SWAP_ENDIAN_NONE; u32 viewport_w, viewport_h; int r; bool bypass_lut = false; /* no fb bound */ if (!atomic && !crtc->primary->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } if (atomic) target_fb = fb; else target_fb = crtc->primary->fb; obj = target_fb->obj[0]; rbo = gem_to_radeon_bo(obj); r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; /* If atomic, assume fb object is pinned & idle & fenced and * just update base pointers */ if (atomic) fb_location = radeon_bo_gpu_offset(rbo); else { r = radeon_bo_pin(rbo, RADEON_GEM_DOMAIN_VRAM, &fb_location); if (unlikely(r != 0)) { radeon_bo_unreserve(rbo); return -EINVAL; } } radeon_bo_get_tiling_flags(rbo, &tiling_flags, NULL); radeon_bo_unreserve(rbo); switch (target_fb->format->format) { case DRM_FORMAT_C8: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_8BPP | AVIVO_D1GRPH_CONTROL_8BPP_INDEXED; break; case DRM_FORMAT_XRGB4444: case DRM_FORMAT_ARGB4444: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP | AVIVO_D1GRPH_CONTROL_16BPP_ARGB4444; #ifdef __BIG_ENDIAN fb_swap = R600_D1GRPH_SWAP_ENDIAN_16BIT; #endif break; case DRM_FORMAT_XRGB1555: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP | AVIVO_D1GRPH_CONTROL_16BPP_ARGB1555; #ifdef __BIG_ENDIAN fb_swap = R600_D1GRPH_SWAP_ENDIAN_16BIT; #endif break; case DRM_FORMAT_RGB565: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP | AVIVO_D1GRPH_CONTROL_16BPP_RGB565; #ifdef __BIG_ENDIAN fb_swap = R600_D1GRPH_SWAP_ENDIAN_16BIT; #endif break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_32BPP | AVIVO_D1GRPH_CONTROL_32BPP_ARGB8888; #ifdef __BIG_ENDIAN fb_swap = R600_D1GRPH_SWAP_ENDIAN_32BIT; #endif break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_32BPP | AVIVO_D1GRPH_CONTROL_32BPP_ARGB2101010; #ifdef __BIG_ENDIAN fb_swap = R600_D1GRPH_SWAP_ENDIAN_32BIT; #endif /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ bypass_lut = true; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_32BPP | AVIVO_D1GRPH_CONTROL_32BPP_ARGB8888; if (rdev->family >= CHIP_R600) fb_swap = (R600_D1GRPH_RED_CROSSBAR(R600_D1GRPH_RED_SEL_B) | R600_D1GRPH_BLUE_CROSSBAR(R600_D1GRPH_BLUE_SEL_R)); else /* DCE1 (R5xx) */ fb_format |= AVIVO_D1GRPH_SWAP_RB; #ifdef __BIG_ENDIAN fb_swap |= R600_D1GRPH_SWAP_ENDIAN_32BIT; #endif break; default: DRM_ERROR("Unsupported screen format %p4cc\n", &target_fb->format->format); return -EINVAL; } if (rdev->family >= CHIP_R600) { if (tiling_flags & RADEON_TILING_MACRO) fb_format |= R600_D1GRPH_ARRAY_MODE_2D_TILED_THIN1; else if (tiling_flags & RADEON_TILING_MICRO) fb_format |= R600_D1GRPH_ARRAY_MODE_1D_TILED_THIN1; } else { if (tiling_flags & RADEON_TILING_MACRO) fb_format |= AVIVO_D1GRPH_MACRO_ADDRESS_MODE; if (tiling_flags & RADEON_TILING_MICRO) fb_format |= AVIVO_D1GRPH_TILED; } if (radeon_crtc->crtc_id == 0) WREG32(AVIVO_D1VGA_CONTROL, 0); else WREG32(AVIVO_D2VGA_CONTROL, 0); /* Make sure surface address is update at vertical blank rather than * horizontal blank */ WREG32(AVIVO_D1GRPH_FLIP_CONTROL + radeon_crtc->crtc_offset, 0); if (rdev->family >= CHIP_RV770) { if (radeon_crtc->crtc_id) { WREG32(R700_D2GRPH_PRIMARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); WREG32(R700_D2GRPH_SECONDARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); } else { WREG32(R700_D1GRPH_PRIMARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); WREG32(R700_D1GRPH_SECONDARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); } } WREG32(AVIVO_D1GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location); WREG32(AVIVO_D1GRPH_SECONDARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location); WREG32(AVIVO_D1GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format); if (rdev->family >= CHIP_R600) WREG32(R600_D1GRPH_SWAP_CONTROL + radeon_crtc->crtc_offset, fb_swap); /* LUT only has 256 slots for 8 bpc fb. Bypass for > 8 bpc scanout for precision */ WREG32_P(AVIVO_D1GRPH_LUT_SEL + radeon_crtc->crtc_offset, (bypass_lut ? AVIVO_LUT_10BIT_BYPASS_EN : 0), ~AVIVO_LUT_10BIT_BYPASS_EN); if (bypass_lut) DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n"); WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_X_START + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_Y_START + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_X_END + radeon_crtc->crtc_offset, target_fb->width); WREG32(AVIVO_D1GRPH_Y_END + radeon_crtc->crtc_offset, target_fb->height); fb_pitch_pixels = target_fb->pitches[0] / target_fb->format->cpp[0]; WREG32(AVIVO_D1GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels); WREG32(AVIVO_D1GRPH_ENABLE + radeon_crtc->crtc_offset, 1); WREG32(AVIVO_D1MODE_DESKTOP_HEIGHT + radeon_crtc->crtc_offset, target_fb->height); x &= ~3; y &= ~1; WREG32(AVIVO_D1MODE_VIEWPORT_START + radeon_crtc->crtc_offset, (x << 16) | y); viewport_w = crtc->mode.hdisplay; viewport_h = (crtc->mode.vdisplay + 1) & ~1; WREG32(AVIVO_D1MODE_VIEWPORT_SIZE + radeon_crtc->crtc_offset, (viewport_w << 16) | viewport_h); /* set pageflip to happen only at start of vblank interval (front porch) */ WREG32(AVIVO_D1MODE_MASTER_UPDATE_MODE + radeon_crtc->crtc_offset, 3); if (!atomic && fb && fb != crtc->primary->fb) { rbo = gem_to_radeon_bo(fb->obj[0]); r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; radeon_bo_unpin(rbo); radeon_bo_unreserve(rbo); } /* Bytes per pixel may have changed */ radeon_bandwidth_update(rdev); return 0; } int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; if (ASIC_IS_DCE4(rdev)) return dce4_crtc_do_set_base(crtc, old_fb, x, y, 0); else if (ASIC_IS_AVIVO(rdev)) return avivo_crtc_do_set_base(crtc, old_fb, x, y, 0); else return radeon_crtc_do_set_base(crtc, old_fb, x, y, 0); } int atombios_crtc_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; if (ASIC_IS_DCE4(rdev)) return dce4_crtc_do_set_base(crtc, fb, x, y, 1); else if (ASIC_IS_AVIVO(rdev)) return avivo_crtc_do_set_base(crtc, fb, x, y, 1); else return radeon_crtc_do_set_base(crtc, fb, x, y, 1); } /* properly set additional regs when using atombios */ static void radeon_legacy_atom_fixup(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); u32 disp_merge_cntl; switch (radeon_crtc->crtc_id) { case 0: disp_merge_cntl = RREG32(RADEON_DISP_MERGE_CNTL); disp_merge_cntl &= ~RADEON_DISP_RGB_OFFSET_EN; WREG32(RADEON_DISP_MERGE_CNTL, disp_merge_cntl); break; case 1: disp_merge_cntl = RREG32(RADEON_DISP2_MERGE_CNTL); disp_merge_cntl &= ~RADEON_DISP2_RGB_OFFSET_EN; WREG32(RADEON_DISP2_MERGE_CNTL, disp_merge_cntl); WREG32(RADEON_FP_H2_SYNC_STRT_WID, RREG32(RADEON_CRTC2_H_SYNC_STRT_WID)); WREG32(RADEON_FP_V2_SYNC_STRT_WID, RREG32(RADEON_CRTC2_V_SYNC_STRT_WID)); break; } } /** * radeon_get_pll_use_mask - look up a mask of which pplls are in use * * @crtc: drm crtc * * Returns the mask of which PPLLs (Pixel PLLs) are in use. */ static u32 radeon_get_pll_use_mask(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_crtc *test_crtc; struct radeon_crtc *test_radeon_crtc; u32 pll_in_use = 0; list_for_each_entry(test_crtc, &dev->mode_config.crtc_list, head) { if (crtc == test_crtc) continue; test_radeon_crtc = to_radeon_crtc(test_crtc); if (test_radeon_crtc->pll_id != ATOM_PPLL_INVALID) pll_in_use |= (1 << test_radeon_crtc->pll_id); } return pll_in_use; } /** * radeon_get_shared_dp_ppll - return the PPLL used by another crtc for DP * * @crtc: drm crtc * * Returns the PPLL (Pixel PLL) used by another crtc/encoder which is * also in DP mode. For DP, a single PPLL can be used for all DP * crtcs/encoders. */ static int radeon_get_shared_dp_ppll(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_crtc *test_crtc; struct radeon_crtc *test_radeon_crtc; list_for_each_entry(test_crtc, &dev->mode_config.crtc_list, head) { if (crtc == test_crtc) continue; test_radeon_crtc = to_radeon_crtc(test_crtc); if (test_radeon_crtc->encoder && ENCODER_MODE_IS_DP(atombios_get_encoder_mode(test_radeon_crtc->encoder))) { /* PPLL2 is exclusive to UNIPHYA on DCE61 */ if (ASIC_IS_DCE61(rdev) && !ASIC_IS_DCE8(rdev) && test_radeon_crtc->pll_id == ATOM_PPLL2) continue; /* for DP use the same PLL for all */ if (test_radeon_crtc->pll_id != ATOM_PPLL_INVALID) return test_radeon_crtc->pll_id; } } return ATOM_PPLL_INVALID; } /** * radeon_get_shared_nondp_ppll - return the PPLL used by another non-DP crtc * * @crtc: drm crtc * * Returns the PPLL (Pixel PLL) used by another non-DP crtc/encoder which can * be shared (i.e., same clock). */ static int radeon_get_shared_nondp_ppll(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_crtc *test_crtc; struct radeon_crtc *test_radeon_crtc; u32 adjusted_clock, test_adjusted_clock; adjusted_clock = radeon_crtc->adjusted_clock; if (adjusted_clock == 0) return ATOM_PPLL_INVALID; list_for_each_entry(test_crtc, &dev->mode_config.crtc_list, head) { if (crtc == test_crtc) continue; test_radeon_crtc = to_radeon_crtc(test_crtc); if (test_radeon_crtc->encoder && !ENCODER_MODE_IS_DP(atombios_get_encoder_mode(test_radeon_crtc->encoder))) { /* PPLL2 is exclusive to UNIPHYA on DCE61 */ if (ASIC_IS_DCE61(rdev) && !ASIC_IS_DCE8(rdev) && test_radeon_crtc->pll_id == ATOM_PPLL2) continue; /* check if we are already driving this connector with another crtc */ if (test_radeon_crtc->connector == radeon_crtc->connector) { /* if we are, return that pll */ if (test_radeon_crtc->pll_id != ATOM_PPLL_INVALID) return test_radeon_crtc->pll_id; } /* for non-DP check the clock */ test_adjusted_clock = test_radeon_crtc->adjusted_clock; if ((crtc->mode.clock == test_crtc->mode.clock) && (adjusted_clock == test_adjusted_clock) && (radeon_crtc->ss_enabled == test_radeon_crtc->ss_enabled) && (test_radeon_crtc->pll_id != ATOM_PPLL_INVALID)) return test_radeon_crtc->pll_id; } } return ATOM_PPLL_INVALID; } /** * radeon_atom_pick_pll - Allocate a PPLL for use by the crtc. * * @crtc: drm crtc * * Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors * a single PPLL can be used for all DP crtcs/encoders. For non-DP * monitors a dedicated PPLL must be used. If a particular board has * an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming * as there is no need to program the PLL itself. If we are not able to * allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to * avoid messing up an existing monitor. * * Asic specific PLL information * * DCE 8.x * KB/KV * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) * CI * - PPLL0, PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC * * DCE 6.1 * - PPLL2 is only available to UNIPHYA (both DP and non-DP) * - PPLL0, PPLL1 are available for UNIPHYB/C/D/E/F (both DP and non-DP) * * DCE 6.0 * - PPLL0 is available to all UNIPHY (DP only) * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC * * DCE 5.0 * - DCPLL is available to all UNIPHY (DP only) * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC * * DCE 3.0/4.0/4.1 * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC * */ static int radeon_atom_pick_pll(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(radeon_crtc->encoder); u32 pll_in_use; int pll; if (ASIC_IS_DCE8(rdev)) { if (ENCODER_MODE_IS_DP(atombios_get_encoder_mode(radeon_crtc->encoder))) { if (rdev->clock.dp_extclk) /* skip PPLL programming if using ext clock */ return ATOM_PPLL_INVALID; else { /* use the same PPLL for all DP monitors */ pll = radeon_get_shared_dp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } } else { /* use the same PPLL for all monitors with the same clock */ pll = radeon_get_shared_nondp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } /* otherwise, pick one of the plls */ if ((rdev->family == CHIP_KABINI) || (rdev->family == CHIP_MULLINS)) { /* KB/ML has PPLL1 and PPLL2 */ pll_in_use = radeon_get_pll_use_mask(crtc); if (!(pll_in_use & (1 << ATOM_PPLL2))) return ATOM_PPLL2; if (!(pll_in_use & (1 << ATOM_PPLL1))) return ATOM_PPLL1; DRM_ERROR("unable to allocate a PPLL\n"); return ATOM_PPLL_INVALID; } else { /* CI/KV has PPLL0, PPLL1, and PPLL2 */ pll_in_use = radeon_get_pll_use_mask(crtc); if (!(pll_in_use & (1 << ATOM_PPLL2))) return ATOM_PPLL2; if (!(pll_in_use & (1 << ATOM_PPLL1))) return ATOM_PPLL1; if (!(pll_in_use & (1 << ATOM_PPLL0))) return ATOM_PPLL0; DRM_ERROR("unable to allocate a PPLL\n"); return ATOM_PPLL_INVALID; } } else if (ASIC_IS_DCE61(rdev)) { struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv; if ((radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_UNIPHY) && (dig->linkb == false)) /* UNIPHY A uses PPLL2 */ return ATOM_PPLL2; else if (ENCODER_MODE_IS_DP(atombios_get_encoder_mode(radeon_crtc->encoder))) { /* UNIPHY B/C/D/E/F */ if (rdev->clock.dp_extclk) /* skip PPLL programming if using ext clock */ return ATOM_PPLL_INVALID; else { /* use the same PPLL for all DP monitors */ pll = radeon_get_shared_dp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } } else { /* use the same PPLL for all monitors with the same clock */ pll = radeon_get_shared_nondp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } /* UNIPHY B/C/D/E/F */ pll_in_use = radeon_get_pll_use_mask(crtc); if (!(pll_in_use & (1 << ATOM_PPLL0))) return ATOM_PPLL0; if (!(pll_in_use & (1 << ATOM_PPLL1))) return ATOM_PPLL1; DRM_ERROR("unable to allocate a PPLL\n"); return ATOM_PPLL_INVALID; } else if (ASIC_IS_DCE41(rdev)) { /* Don't share PLLs on DCE4.1 chips */ if (ENCODER_MODE_IS_DP(atombios_get_encoder_mode(radeon_crtc->encoder))) { if (rdev->clock.dp_extclk) /* skip PPLL programming if using ext clock */ return ATOM_PPLL_INVALID; } pll_in_use = radeon_get_pll_use_mask(crtc); if (!(pll_in_use & (1 << ATOM_PPLL1))) return ATOM_PPLL1; if (!(pll_in_use & (1 << ATOM_PPLL2))) return ATOM_PPLL2; DRM_ERROR("unable to allocate a PPLL\n"); return ATOM_PPLL_INVALID; } else if (ASIC_IS_DCE4(rdev)) { /* in DP mode, the DP ref clock can come from PPLL, DCPLL, or ext clock, * depending on the asic: * DCE4: PPLL or ext clock * DCE5: PPLL, DCPLL, or ext clock * DCE6: PPLL, PPLL0, or ext clock * * Setting ATOM_PPLL_INVALID will cause SetPixelClock to skip * PPLL/DCPLL programming and only program the DP DTO for the * crtc virtual pixel clock. */ if (ENCODER_MODE_IS_DP(atombios_get_encoder_mode(radeon_crtc->encoder))) { if (rdev->clock.dp_extclk) /* skip PPLL programming if using ext clock */ return ATOM_PPLL_INVALID; else if (ASIC_IS_DCE6(rdev)) /* use PPLL0 for all DP */ return ATOM_PPLL0; else if (ASIC_IS_DCE5(rdev)) /* use DCPLL for all DP */ return ATOM_DCPLL; else { /* use the same PPLL for all DP monitors */ pll = radeon_get_shared_dp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } } else { /* use the same PPLL for all monitors with the same clock */ pll = radeon_get_shared_nondp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } /* all other cases */ pll_in_use = radeon_get_pll_use_mask(crtc); if (!(pll_in_use & (1 << ATOM_PPLL1))) return ATOM_PPLL1; if (!(pll_in_use & (1 << ATOM_PPLL2))) return ATOM_PPLL2; DRM_ERROR("unable to allocate a PPLL\n"); return ATOM_PPLL_INVALID; } else { /* on pre-R5xx asics, the crtc to pll mapping is hardcoded */ /* some atombios (observed in some DCE2/DCE3) code have a bug, * the matching btw pll and crtc is done through * PCLK_CRTC[1|2]_CNTL (0x480/0x484) but atombios code use the * pll (1 or 2) to select which register to write. ie if using * pll1 it will use PCLK_CRTC1_CNTL (0x480) and if using pll2 * it will use PCLK_CRTC2_CNTL (0x484), it then use crtc id to * choose which value to write. Which is reverse order from * register logic. So only case that works is when pllid is * same as crtcid or when both pll and crtc are enabled and * both use same clock. * * So just return crtc id as if crtc and pll were hard linked * together even if they aren't */ return radeon_crtc->crtc_id; } } void radeon_atom_disp_eng_pll_init(struct radeon_device *rdev) { /* always set DCPLL */ if (ASIC_IS_DCE6(rdev)) atombios_crtc_set_disp_eng_pll(rdev, rdev->clock.default_dispclk); else if (ASIC_IS_DCE4(rdev)) { struct radeon_atom_ss ss; bool ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_SS_ON_DCPLL, rdev->clock.default_dispclk); if (ss_enabled) atombios_crtc_program_ss(rdev, ATOM_DISABLE, ATOM_DCPLL, -1, &ss); /* XXX: DCE5, make sure voltage, dispclk is high enough */ atombios_crtc_set_disp_eng_pll(rdev, rdev->clock.default_dispclk); if (ss_enabled) atombios_crtc_program_ss(rdev, ATOM_ENABLE, ATOM_DCPLL, -1, &ss); } } int atombios_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(radeon_crtc->encoder); bool is_tvcv = false; if (radeon_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT)) is_tvcv = true; if (!radeon_crtc->adjusted_clock) return -EINVAL; atombios_crtc_set_pll(crtc, adjusted_mode); if (ASIC_IS_DCE4(rdev)) atombios_set_crtc_dtd_timing(crtc, adjusted_mode); else if (ASIC_IS_AVIVO(rdev)) { if (is_tvcv) atombios_crtc_set_timing(crtc, adjusted_mode); else atombios_set_crtc_dtd_timing(crtc, adjusted_mode); } else { atombios_crtc_set_timing(crtc, adjusted_mode); if (radeon_crtc->crtc_id == 0) atombios_set_crtc_dtd_timing(crtc, adjusted_mode); radeon_legacy_atom_fixup(crtc); } atombios_crtc_set_base(crtc, x, y, old_fb); atombios_overscan_setup(crtc, mode, adjusted_mode); atombios_scaler_setup(crtc); radeon_cursor_reset(crtc); /* update the hw version fpr dpm */ radeon_crtc->hw_mode = *adjusted_mode; return 0; } static bool atombios_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_encoder *encoder; /* assign the encoder to the radeon crtc to avoid repeated lookups later */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc == crtc) { radeon_crtc->encoder = encoder; radeon_crtc->connector = radeon_get_connector_for_encoder(encoder); break; } } if ((radeon_crtc->encoder == NULL) || (radeon_crtc->connector == NULL)) { radeon_crtc->encoder = NULL; radeon_crtc->connector = NULL; return false; } if (radeon_crtc->encoder) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(radeon_crtc->encoder); radeon_crtc->output_csc = radeon_encoder->output_csc; } if (!radeon_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode)) return false; if (!atombios_crtc_prepare_pll(crtc, adjusted_mode)) return false; /* pick pll */ radeon_crtc->pll_id = radeon_atom_pick_pll(crtc); /* if we can't get a PPLL for a non-DP encoder, fail */ if ((radeon_crtc->pll_id == ATOM_PPLL_INVALID) && !ENCODER_MODE_IS_DP(atombios_get_encoder_mode(radeon_crtc->encoder))) return false; return true; } static void atombios_crtc_prepare(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; /* disable crtc pair power gating before programming */ if (ASIC_IS_DCE6(rdev)) atombios_powergate_crtc(crtc, ATOM_DISABLE); atombios_lock_crtc(crtc, ATOM_ENABLE); atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); } static void atombios_crtc_commit(struct drm_crtc *crtc) { atombios_crtc_dpms(crtc, DRM_MODE_DPMS_ON); atombios_lock_crtc(crtc, ATOM_DISABLE); } static void atombios_crtc_disable(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_atom_ss ss; int i; atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); if (crtc->primary->fb) { int r; struct radeon_bo *rbo; rbo = gem_to_radeon_bo(crtc->primary->fb->obj[0]); r = radeon_bo_reserve(rbo, false); if (unlikely(r)) DRM_ERROR("failed to reserve rbo before unpin\n"); else { radeon_bo_unpin(rbo); radeon_bo_unreserve(rbo); } } /* disable the GRPH */ if (ASIC_IS_DCE4(rdev)) WREG32(EVERGREEN_GRPH_ENABLE + radeon_crtc->crtc_offset, 0); else if (ASIC_IS_AVIVO(rdev)) WREG32(AVIVO_D1GRPH_ENABLE + radeon_crtc->crtc_offset, 0); if (ASIC_IS_DCE6(rdev)) atombios_powergate_crtc(crtc, ATOM_ENABLE); for (i = 0; i < rdev->num_crtc; i++) { if (rdev->mode_info.crtcs[i] && rdev->mode_info.crtcs[i]->enabled && i != radeon_crtc->crtc_id && radeon_crtc->pll_id == rdev->mode_info.crtcs[i]->pll_id) { /* one other crtc is using this pll don't turn * off the pll */ goto done; } } switch (radeon_crtc->pll_id) { case ATOM_PPLL1: case ATOM_PPLL2: /* disable the ppll */ atombios_crtc_program_pll(crtc, radeon_crtc->crtc_id, radeon_crtc->pll_id, 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); break; case ATOM_PPLL0: /* disable the ppll */ if ((rdev->family == CHIP_ARUBA) || (rdev->family == CHIP_KAVERI) || (rdev->family == CHIP_BONAIRE) || (rdev->family == CHIP_HAWAII)) atombios_crtc_program_pll(crtc, radeon_crtc->crtc_id, radeon_crtc->pll_id, 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); break; default: break; } done: radeon_crtc->pll_id = ATOM_PPLL_INVALID; radeon_crtc->adjusted_clock = 0; radeon_crtc->encoder = NULL; radeon_crtc->connector = NULL; } static const struct drm_crtc_helper_funcs atombios_helper_funcs = { .dpms = atombios_crtc_dpms, .mode_fixup = atombios_crtc_mode_fixup, .mode_set = atombios_crtc_mode_set, .mode_set_base = atombios_crtc_set_base, .mode_set_base_atomic = atombios_crtc_set_base_atomic, .prepare = atombios_crtc_prepare, .commit = atombios_crtc_commit, .disable = atombios_crtc_disable, .get_scanout_position = radeon_get_crtc_scanout_position, }; void radeon_atombios_init_crtc(struct drm_device *dev, struct radeon_crtc *radeon_crtc) { struct radeon_device *rdev = dev->dev_private; if (ASIC_IS_DCE4(rdev)) { switch (radeon_crtc->crtc_id) { case 0: default: radeon_crtc->crtc_offset = EVERGREEN_CRTC0_REGISTER_OFFSET; break; case 1: radeon_crtc->crtc_offset = EVERGREEN_CRTC1_REGISTER_OFFSET; break; case 2: radeon_crtc->crtc_offset = EVERGREEN_CRTC2_REGISTER_OFFSET; break; case 3: radeon_crtc->crtc_offset = EVERGREEN_CRTC3_REGISTER_OFFSET; break; case 4: radeon_crtc->crtc_offset = EVERGREEN_CRTC4_REGISTER_OFFSET; break; case 5: radeon_crtc->crtc_offset = EVERGREEN_CRTC5_REGISTER_OFFSET; break; } } else { if (radeon_crtc->crtc_id == 1) radeon_crtc->crtc_offset = AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL; else radeon_crtc->crtc_offset = 0; } radeon_crtc->pll_id = ATOM_PPLL_INVALID; radeon_crtc->adjusted_clock = 0; radeon_crtc->encoder = NULL; radeon_crtc->connector = NULL; drm_crtc_helper_add(&radeon_crtc->base, &atombios_helper_funcs); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1