Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 3086 | 78.70% | 47 | 59.49% |
Dave Airlie | 347 | 8.85% | 7 | 8.86% |
Jérôme Glisse | 281 | 7.17% | 3 | 3.80% |
Adam Jackson | 97 | 2.47% | 1 | 1.27% |
Roman Kapl | 30 | 0.77% | 1 | 1.27% |
Ville Syrjälä | 21 | 0.54% | 2 | 2.53% |
Daniel Vetter | 17 | 0.43% | 6 | 7.59% |
Stephen Chandler Paul | 11 | 0.28% | 3 | 3.80% |
Stefan Brüns | 8 | 0.20% | 1 | 1.27% |
Andy Shevchenko | 8 | 0.20% | 1 | 1.27% |
Rafał Miłecki | 5 | 0.13% | 1 | 1.27% |
Jani Nikula | 3 | 0.08% | 1 | 1.27% |
Sonika Jindal | 2 | 0.05% | 1 | 1.27% |
Thierry Reding | 2 | 0.05% | 1 | 1.27% |
Laurent Pinchart | 1 | 0.03% | 1 | 1.27% |
David Howells | 1 | 0.03% | 1 | 1.27% |
Thomas Zimmermann | 1 | 0.03% | 1 | 1.27% |
Total | 3921 | 79 |
/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include <drm/radeon_drm.h> #include "radeon.h" #include "atom.h" #include "atom-bits.h" #include <drm/display/drm_dp_helper.h> /* move these to drm_dp_helper.c/h */ #define DP_LINK_CONFIGURATION_SIZE 9 #define DP_DPCD_SIZE DP_RECEIVER_CAP_SIZE static char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; /***** radeon AUX functions *****/ /* Atom needs data in little endian format so swap as appropriate when copying * data to or from atom. Note that atom operates on dw units. * * Use to_le=true when sending data to atom and provide at least * ALIGN(num_bytes,4) bytes in the dst buffer. * * Use to_le=false when receiving data from atom and provide ALIGN(num_bytes,4) * byes in the src buffer. */ void radeon_atom_copy_swap(u8 *dst, u8 *src, u8 num_bytes, bool to_le) { #ifdef __BIG_ENDIAN u32 src_tmp[5], dst_tmp[5]; int i; u8 align_num_bytes = ALIGN(num_bytes, 4); if (to_le) { memcpy(src_tmp, src, num_bytes); for (i = 0; i < align_num_bytes / 4; i++) dst_tmp[i] = cpu_to_le32(src_tmp[i]); memcpy(dst, dst_tmp, align_num_bytes); } else { memcpy(src_tmp, src, align_num_bytes); for (i = 0; i < align_num_bytes / 4; i++) dst_tmp[i] = le32_to_cpu(src_tmp[i]); memcpy(dst, dst_tmp, num_bytes); } #else memcpy(dst, src, num_bytes); #endif } union aux_channel_transaction { PROCESS_AUX_CHANNEL_TRANSACTION_PS_ALLOCATION v1; PROCESS_AUX_CHANNEL_TRANSACTION_PARAMETERS_V2 v2; }; static int radeon_process_aux_ch(struct radeon_i2c_chan *chan, u8 *send, int send_bytes, u8 *recv, int recv_size, u8 delay, u8 *ack) { struct drm_device *dev = chan->dev; struct radeon_device *rdev = dev->dev_private; union aux_channel_transaction args; int index = GetIndexIntoMasterTable(COMMAND, ProcessAuxChannelTransaction); unsigned char *base; int recv_bytes; int r = 0; memset(&args, 0, sizeof(args)); mutex_lock(&chan->mutex); mutex_lock(&rdev->mode_info.atom_context->scratch_mutex); base = (unsigned char *)(rdev->mode_info.atom_context->scratch + 1); radeon_atom_copy_swap(base, send, send_bytes, true); args.v1.lpAuxRequest = cpu_to_le16((u16)(0 + 4)); args.v1.lpDataOut = cpu_to_le16((u16)(16 + 4)); args.v1.ucDataOutLen = 0; args.v1.ucChannelID = chan->rec.i2c_id; args.v1.ucDelay = delay / 10; if (ASIC_IS_DCE4(rdev)) args.v2.ucHPD_ID = chan->rec.hpd; atom_execute_table_scratch_unlocked(rdev->mode_info.atom_context, index, (uint32_t *)&args); *ack = args.v1.ucReplyStatus; /* timeout */ if (args.v1.ucReplyStatus == 1) { DRM_DEBUG_KMS("dp_aux_ch timeout\n"); r = -ETIMEDOUT; goto done; } /* flags not zero */ if (args.v1.ucReplyStatus == 2) { DRM_DEBUG_KMS("dp_aux_ch flags not zero\n"); r = -EIO; goto done; } /* error */ if (args.v1.ucReplyStatus == 3) { DRM_DEBUG_KMS("dp_aux_ch error\n"); r = -EIO; goto done; } recv_bytes = args.v1.ucDataOutLen; if (recv_bytes > recv_size) recv_bytes = recv_size; if (recv && recv_size) radeon_atom_copy_swap(recv, base + 16, recv_bytes, false); r = recv_bytes; done: mutex_unlock(&rdev->mode_info.atom_context->scratch_mutex); mutex_unlock(&chan->mutex); return r; } #define BARE_ADDRESS_SIZE 3 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) static ssize_t radeon_dp_aux_transfer_atom(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct radeon_i2c_chan *chan = container_of(aux, struct radeon_i2c_chan, aux); int ret; u8 tx_buf[20]; size_t tx_size; u8 ack, delay = 0; if (WARN_ON(msg->size > 16)) return -E2BIG; tx_buf[0] = msg->address & 0xff; tx_buf[1] = (msg->address >> 8) & 0xff; tx_buf[2] = (msg->request << 4) | ((msg->address >> 16) & 0xf); tx_buf[3] = msg->size ? (msg->size - 1) : 0; switch (msg->request & ~DP_AUX_I2C_MOT) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: case DP_AUX_I2C_WRITE_STATUS_UPDATE: /* The atom implementation only supports writes with a max payload of * 12 bytes since it uses 4 bits for the total count (header + payload) * in the parameter space. The atom interface supports 16 byte * payloads for reads. The hw itself supports up to 16 bytes of payload. */ if (WARN_ON_ONCE(msg->size > 12)) return -E2BIG; /* tx_size needs to be 4 even for bare address packets since the atom * table needs the info in tx_buf[3]. */ tx_size = HEADER_SIZE + msg->size; if (msg->size == 0) tx_buf[3] |= BARE_ADDRESS_SIZE << 4; else tx_buf[3] |= tx_size << 4; memcpy(tx_buf + HEADER_SIZE, msg->buffer, msg->size); ret = radeon_process_aux_ch(chan, tx_buf, tx_size, NULL, 0, delay, &ack); if (ret >= 0) /* Return payload size. */ ret = msg->size; break; case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: /* tx_size needs to be 4 even for bare address packets since the atom * table needs the info in tx_buf[3]. */ tx_size = HEADER_SIZE; if (msg->size == 0) tx_buf[3] |= BARE_ADDRESS_SIZE << 4; else tx_buf[3] |= tx_size << 4; ret = radeon_process_aux_ch(chan, tx_buf, tx_size, msg->buffer, msg->size, delay, &ack); break; default: ret = -EINVAL; break; } if (ret >= 0) msg->reply = ack >> 4; return ret; } void radeon_dp_aux_init(struct radeon_connector *radeon_connector) { struct drm_device *dev = radeon_connector->base.dev; struct radeon_device *rdev = dev->dev_private; int ret; radeon_connector->ddc_bus->rec.hpd = radeon_connector->hpd.hpd; radeon_connector->ddc_bus->aux.dev = radeon_connector->base.kdev; radeon_connector->ddc_bus->aux.drm_dev = radeon_connector->base.dev; if (ASIC_IS_DCE5(rdev)) { if (radeon_auxch) radeon_connector->ddc_bus->aux.transfer = radeon_dp_aux_transfer_native; else radeon_connector->ddc_bus->aux.transfer = radeon_dp_aux_transfer_atom; } else { radeon_connector->ddc_bus->aux.transfer = radeon_dp_aux_transfer_atom; } ret = drm_dp_aux_register(&radeon_connector->ddc_bus->aux); if (!ret) radeon_connector->ddc_bus->has_aux = true; WARN(ret, "drm_dp_aux_register() failed with error %d\n", ret); } /***** general DP utility functions *****/ #define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_LEVEL_3 #define DP_PRE_EMPHASIS_MAX DP_TRAIN_PRE_EMPH_LEVEL_3 static void dp_get_adjust_train(const u8 link_status[DP_LINK_STATUS_SIZE], int lane_count, u8 train_set[4]) { u8 v = 0; u8 p = 0; int lane; for (lane = 0; lane < lane_count; lane++) { u8 this_v = drm_dp_get_adjust_request_voltage(link_status, lane); u8 this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane); DRM_DEBUG_KMS("requested signal parameters: lane %d voltage %s pre_emph %s\n", lane, voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= DP_VOLTAGE_MAX) v |= DP_TRAIN_MAX_SWING_REACHED; if (p >= DP_PRE_EMPHASIS_MAX) p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; DRM_DEBUG_KMS("using signal parameters: voltage %s pre_emph %s\n", voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT], pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT]); for (lane = 0; lane < 4; lane++) train_set[lane] = v | p; } /* convert bits per color to bits per pixel */ /* get bpc from the EDID */ static int convert_bpc_to_bpp(int bpc) { if (bpc == 0) return 24; else return bpc * 3; } /***** radeon specific DP functions *****/ static int radeon_dp_get_dp_link_config(struct drm_connector *connector, const u8 dpcd[DP_DPCD_SIZE], unsigned pix_clock, unsigned *dp_lanes, unsigned *dp_rate) { int bpp = convert_bpc_to_bpp(radeon_get_monitor_bpc(connector)); static const unsigned link_rates[3] = { 162000, 270000, 540000 }; unsigned max_link_rate = drm_dp_max_link_rate(dpcd); unsigned max_lane_num = drm_dp_max_lane_count(dpcd); unsigned lane_num, i, max_pix_clock; if (radeon_connector_encoder_get_dp_bridge_encoder_id(connector) == ENCODER_OBJECT_ID_NUTMEG) { for (lane_num = 1; lane_num <= max_lane_num; lane_num <<= 1) { max_pix_clock = (lane_num * 270000 * 8) / bpp; if (max_pix_clock >= pix_clock) { *dp_lanes = lane_num; *dp_rate = 270000; return 0; } } } else { for (i = 0; i < ARRAY_SIZE(link_rates) && link_rates[i] <= max_link_rate; i++) { for (lane_num = 1; lane_num <= max_lane_num; lane_num <<= 1) { max_pix_clock = (lane_num * link_rates[i] * 8) / bpp; if (max_pix_clock >= pix_clock) { *dp_lanes = lane_num; *dp_rate = link_rates[i]; return 0; } } } } return -EINVAL; } static u8 radeon_dp_encoder_service(struct radeon_device *rdev, int action, int dp_clock, u8 ucconfig, u8 lane_num) { DP_ENCODER_SERVICE_PARAMETERS args; int index = GetIndexIntoMasterTable(COMMAND, DPEncoderService); memset(&args, 0, sizeof(args)); args.ucLinkClock = dp_clock / 10; args.ucConfig = ucconfig; args.ucAction = action; args.ucLaneNum = lane_num; args.ucStatus = 0; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); return args.ucStatus; } u8 radeon_dp_getsinktype(struct radeon_connector *radeon_connector) { struct drm_device *dev = radeon_connector->base.dev; struct radeon_device *rdev = dev->dev_private; return radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_GET_SINK_TYPE, 0, radeon_connector->ddc_bus->rec.i2c_id, 0); } static void radeon_dp_probe_oui(struct radeon_connector *radeon_connector) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; u8 buf[3]; if (!(dig_connector->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) return; if (drm_dp_dpcd_read(&radeon_connector->ddc_bus->aux, DP_SINK_OUI, buf, 3) == 3) DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); if (drm_dp_dpcd_read(&radeon_connector->ddc_bus->aux, DP_BRANCH_OUI, buf, 3) == 3) DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); } bool radeon_dp_getdpcd(struct radeon_connector *radeon_connector) { struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; u8 msg[DP_DPCD_SIZE]; int ret; ret = drm_dp_dpcd_read(&radeon_connector->ddc_bus->aux, DP_DPCD_REV, msg, DP_DPCD_SIZE); if (ret == DP_DPCD_SIZE) { memcpy(dig_connector->dpcd, msg, DP_DPCD_SIZE); DRM_DEBUG_KMS("DPCD: %*ph\n", (int)sizeof(dig_connector->dpcd), dig_connector->dpcd); radeon_dp_probe_oui(radeon_connector); return true; } dig_connector->dpcd[0] = 0; return false; } int radeon_dp_get_panel_mode(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_connector *radeon_connector = to_radeon_connector(connector); int panel_mode = DP_PANEL_MODE_EXTERNAL_DP_MODE; u16 dp_bridge = radeon_connector_encoder_get_dp_bridge_encoder_id(connector); u8 tmp; if (!ASIC_IS_DCE4(rdev)) return panel_mode; if (!radeon_connector->con_priv) return panel_mode; if (dp_bridge != ENCODER_OBJECT_ID_NONE) { /* DP bridge chips */ if (drm_dp_dpcd_readb(&radeon_connector->ddc_bus->aux, DP_EDP_CONFIGURATION_CAP, &tmp) == 1) { if (tmp & 1) panel_mode = DP_PANEL_MODE_INTERNAL_DP2_MODE; else if ((dp_bridge == ENCODER_OBJECT_ID_NUTMEG) || (dp_bridge == ENCODER_OBJECT_ID_TRAVIS)) panel_mode = DP_PANEL_MODE_INTERNAL_DP1_MODE; else panel_mode = DP_PANEL_MODE_EXTERNAL_DP_MODE; } } else if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { /* eDP */ if (drm_dp_dpcd_readb(&radeon_connector->ddc_bus->aux, DP_EDP_CONFIGURATION_CAP, &tmp) == 1) { if (tmp & 1) panel_mode = DP_PANEL_MODE_INTERNAL_DP2_MODE; } } return panel_mode; } void radeon_dp_set_link_config(struct drm_connector *connector, const struct drm_display_mode *mode) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector; int ret; if (!radeon_connector->con_priv) return; dig_connector = radeon_connector->con_priv; if ((dig_connector->dp_sink_type == CONNECTOR_OBJECT_ID_DISPLAYPORT) || (dig_connector->dp_sink_type == CONNECTOR_OBJECT_ID_eDP)) { ret = radeon_dp_get_dp_link_config(connector, dig_connector->dpcd, mode->clock, &dig_connector->dp_lane_count, &dig_connector->dp_clock); if (ret) { dig_connector->dp_clock = 0; dig_connector->dp_lane_count = 0; } } } int radeon_dp_mode_valid_helper(struct drm_connector *connector, struct drm_display_mode *mode) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector; unsigned dp_clock, dp_lanes; int ret; if ((mode->clock > 340000) && (!radeon_connector_is_dp12_capable(connector))) return MODE_CLOCK_HIGH; if (!radeon_connector->con_priv) return MODE_CLOCK_HIGH; dig_connector = radeon_connector->con_priv; ret = radeon_dp_get_dp_link_config(connector, dig_connector->dpcd, mode->clock, &dp_lanes, &dp_clock); if (ret) return MODE_CLOCK_HIGH; if ((dp_clock == 540000) && (!radeon_connector_is_dp12_capable(connector))) return MODE_CLOCK_HIGH; return MODE_OK; } bool radeon_dp_needs_link_train(struct radeon_connector *radeon_connector) { u8 link_status[DP_LINK_STATUS_SIZE]; struct radeon_connector_atom_dig *dig = radeon_connector->con_priv; if (drm_dp_dpcd_read_link_status(&radeon_connector->ddc_bus->aux, link_status) <= 0) return false; if (drm_dp_channel_eq_ok(link_status, dig->dp_lane_count)) return false; return true; } void radeon_dp_set_rx_power_state(struct drm_connector *connector, u8 power_state) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector; if (!radeon_connector->con_priv) return; dig_connector = radeon_connector->con_priv; /* power up/down the sink */ if (dig_connector->dpcd[0] >= 0x11) { drm_dp_dpcd_writeb(&radeon_connector->ddc_bus->aux, DP_SET_POWER, power_state); usleep_range(1000, 2000); } } struct radeon_dp_link_train_info { struct radeon_device *rdev; struct drm_encoder *encoder; struct drm_connector *connector; int enc_id; int dp_clock; int dp_lane_count; bool tp3_supported; u8 dpcd[DP_RECEIVER_CAP_SIZE]; u8 train_set[4]; u8 link_status[DP_LINK_STATUS_SIZE]; u8 tries; bool use_dpencoder; struct drm_dp_aux *aux; }; static void radeon_dp_update_vs_emph(struct radeon_dp_link_train_info *dp_info) { /* set the initial vs/emph on the source */ atombios_dig_transmitter_setup(dp_info->encoder, ATOM_TRANSMITTER_ACTION_SETUP_VSEMPH, 0, dp_info->train_set[0]); /* sets all lanes at once */ /* set the vs/emph on the sink */ drm_dp_dpcd_write(dp_info->aux, DP_TRAINING_LANE0_SET, dp_info->train_set, dp_info->dp_lane_count); } static void radeon_dp_set_tp(struct radeon_dp_link_train_info *dp_info, int tp) { int rtp = 0; /* set training pattern on the source */ if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder) { switch (tp) { case DP_TRAINING_PATTERN_1: rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN1; break; case DP_TRAINING_PATTERN_2: rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN2; break; case DP_TRAINING_PATTERN_3: rtp = ATOM_ENCODER_CMD_DP_LINK_TRAINING_PATTERN3; break; } atombios_dig_encoder_setup(dp_info->encoder, rtp, 0); } else { switch (tp) { case DP_TRAINING_PATTERN_1: rtp = 0; break; case DP_TRAINING_PATTERN_2: rtp = 1; break; } radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_PATTERN_SEL, dp_info->dp_clock, dp_info->enc_id, rtp); } /* enable training pattern on the sink */ drm_dp_dpcd_writeb(dp_info->aux, DP_TRAINING_PATTERN_SET, tp); } static int radeon_dp_link_train_init(struct radeon_dp_link_train_info *dp_info) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(dp_info->encoder); struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv; u8 tmp; /* power up the sink */ radeon_dp_set_rx_power_state(dp_info->connector, DP_SET_POWER_D0); /* possibly enable downspread on the sink */ if (dp_info->dpcd[3] & 0x1) drm_dp_dpcd_writeb(dp_info->aux, DP_DOWNSPREAD_CTRL, DP_SPREAD_AMP_0_5); else drm_dp_dpcd_writeb(dp_info->aux, DP_DOWNSPREAD_CTRL, 0); if (dig->panel_mode == DP_PANEL_MODE_INTERNAL_DP2_MODE) drm_dp_dpcd_writeb(dp_info->aux, DP_EDP_CONFIGURATION_SET, 1); /* set the lane count on the sink */ tmp = dp_info->dp_lane_count; if (drm_dp_enhanced_frame_cap(dp_info->dpcd)) tmp |= DP_LANE_COUNT_ENHANCED_FRAME_EN; drm_dp_dpcd_writeb(dp_info->aux, DP_LANE_COUNT_SET, tmp); /* set the link rate on the sink */ tmp = drm_dp_link_rate_to_bw_code(dp_info->dp_clock); drm_dp_dpcd_writeb(dp_info->aux, DP_LINK_BW_SET, tmp); /* start training on the source */ if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder) atombios_dig_encoder_setup(dp_info->encoder, ATOM_ENCODER_CMD_DP_LINK_TRAINING_START, 0); else radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_START, dp_info->dp_clock, dp_info->enc_id, 0); /* disable the training pattern on the sink */ drm_dp_dpcd_writeb(dp_info->aux, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); return 0; } static int radeon_dp_link_train_finish(struct radeon_dp_link_train_info *dp_info) { udelay(400); /* disable the training pattern on the sink */ drm_dp_dpcd_writeb(dp_info->aux, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); /* disable the training pattern on the source */ if (ASIC_IS_DCE4(dp_info->rdev) || !dp_info->use_dpencoder) atombios_dig_encoder_setup(dp_info->encoder, ATOM_ENCODER_CMD_DP_LINK_TRAINING_COMPLETE, 0); else radeon_dp_encoder_service(dp_info->rdev, ATOM_DP_ACTION_TRAINING_COMPLETE, dp_info->dp_clock, dp_info->enc_id, 0); return 0; } static int radeon_dp_link_train_cr(struct radeon_dp_link_train_info *dp_info) { bool clock_recovery; u8 voltage; int i; radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_1); memset(dp_info->train_set, 0, 4); radeon_dp_update_vs_emph(dp_info); udelay(400); /* clock recovery loop */ clock_recovery = false; dp_info->tries = 0; voltage = 0xff; while (1) { drm_dp_link_train_clock_recovery_delay(dp_info->aux, dp_info->dpcd); if (drm_dp_dpcd_read_link_status(dp_info->aux, dp_info->link_status) <= 0) { DRM_ERROR("displayport link status failed\n"); break; } if (drm_dp_clock_recovery_ok(dp_info->link_status, dp_info->dp_lane_count)) { clock_recovery = true; break; } for (i = 0; i < dp_info->dp_lane_count; i++) { if ((dp_info->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; } if (i == dp_info->dp_lane_count) { DRM_ERROR("clock recovery reached max voltage\n"); break; } if ((dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++dp_info->tries; if (dp_info->tries == 5) { DRM_ERROR("clock recovery tried 5 times\n"); break; } } else dp_info->tries = 0; voltage = dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new train_set as requested by sink */ dp_get_adjust_train(dp_info->link_status, dp_info->dp_lane_count, dp_info->train_set); radeon_dp_update_vs_emph(dp_info); } if (!clock_recovery) { DRM_ERROR("clock recovery failed\n"); return -1; } else { DRM_DEBUG_KMS("clock recovery at voltage %d pre-emphasis %d\n", dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (dp_info->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } } static int radeon_dp_link_train_ce(struct radeon_dp_link_train_info *dp_info) { bool channel_eq; if (dp_info->tp3_supported) radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_3); else radeon_dp_set_tp(dp_info, DP_TRAINING_PATTERN_2); /* channel equalization loop */ dp_info->tries = 0; channel_eq = false; while (1) { drm_dp_link_train_channel_eq_delay(dp_info->aux, dp_info->dpcd); if (drm_dp_dpcd_read_link_status(dp_info->aux, dp_info->link_status) <= 0) { DRM_ERROR("displayport link status failed\n"); break; } if (drm_dp_channel_eq_ok(dp_info->link_status, dp_info->dp_lane_count)) { channel_eq = true; break; } /* Try 5 times */ if (dp_info->tries > 5) { DRM_ERROR("channel eq failed: 5 tries\n"); break; } /* Compute new train_set as requested by sink */ dp_get_adjust_train(dp_info->link_status, dp_info->dp_lane_count, dp_info->train_set); radeon_dp_update_vs_emph(dp_info); dp_info->tries++; } if (!channel_eq) { DRM_ERROR("channel eq failed\n"); return -1; } else { DRM_DEBUG_KMS("channel eq at voltage %d pre-emphasis %d\n", dp_info->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK, (dp_info->train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); return 0; } } void radeon_dp_link_train(struct drm_encoder *encoder, struct drm_connector *connector) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct radeon_encoder_atom_dig *dig; struct radeon_connector *radeon_connector; struct radeon_connector_atom_dig *dig_connector; struct radeon_dp_link_train_info dp_info; int index; u8 tmp, frev, crev; if (!radeon_encoder->enc_priv) return; dig = radeon_encoder->enc_priv; radeon_connector = to_radeon_connector(connector); if (!radeon_connector->con_priv) return; dig_connector = radeon_connector->con_priv; if ((dig_connector->dp_sink_type != CONNECTOR_OBJECT_ID_DISPLAYPORT) && (dig_connector->dp_sink_type != CONNECTOR_OBJECT_ID_eDP)) return; /* DPEncoderService newer than 1.1 can't program properly the * training pattern. When facing such version use the * DIGXEncoderControl (X== 1 | 2) */ dp_info.use_dpencoder = true; index = GetIndexIntoMasterTable(COMMAND, DPEncoderService); if (atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) { if (crev > 1) dp_info.use_dpencoder = false; } dp_info.enc_id = 0; if (dig->dig_encoder) dp_info.enc_id |= ATOM_DP_CONFIG_DIG2_ENCODER; else dp_info.enc_id |= ATOM_DP_CONFIG_DIG1_ENCODER; if (dig->linkb) dp_info.enc_id |= ATOM_DP_CONFIG_LINK_B; else dp_info.enc_id |= ATOM_DP_CONFIG_LINK_A; if (drm_dp_dpcd_readb(&radeon_connector->ddc_bus->aux, DP_MAX_LANE_COUNT, &tmp) == 1) { if (ASIC_IS_DCE5(rdev) && (tmp & DP_TPS3_SUPPORTED)) dp_info.tp3_supported = true; else dp_info.tp3_supported = false; } else { dp_info.tp3_supported = false; } memcpy(dp_info.dpcd, dig_connector->dpcd, DP_RECEIVER_CAP_SIZE); dp_info.rdev = rdev; dp_info.encoder = encoder; dp_info.connector = connector; dp_info.dp_lane_count = dig_connector->dp_lane_count; dp_info.dp_clock = dig_connector->dp_clock; dp_info.aux = &radeon_connector->ddc_bus->aux; if (radeon_dp_link_train_init(&dp_info)) goto done; if (radeon_dp_link_train_cr(&dp_info)) goto done; if (radeon_dp_link_train_ce(&dp_info)) goto done; done: if (radeon_dp_link_train_finish(&dp_info)) return; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1